

Translator Design to Model Cpp Files

Er. Satwinder Singh, Dr. K.S. Kahlon, Rakesh Kumar, Er. Gurjeet Singh

 Abstract— The most reliable and accurate description of the
actual behavior of a software system is its source code. However, not
all questions about the system can be answered directly by resorting to
this repository of information. What the reverse engineering
methodology aims at is the extraction of abstract, goal-oriented
“views” of the system, able to summarize relevant properties of the
computation performed by the program. While concentrating on
reverse engineering we had modeled the C++ files by designing the
translator.

Keywords:- Translator, Modeling, UML, DYNO, ISVis, TED

I. INTRODUCTION

E all want to build software that makes things better,
avoiding the bad things that lurk in the shadow of failed

efforts. To succeed we need discipline when software is
designed and built. We need an engineered approach.

The usefulness of an abstract system model was already
recognized in the 1970s, when structured methods were
proposed as software development methods. These methods
offered Entity-Relationship diagrams [1] to model the data
aspect of a system, and data flow diagrams or functional
decomposition techniques to model the functional, behavioral
aspect of a system. The main drawbacks of these structured
approaches were the often missing horizontal consistency
between the data and behavior part within the overall system
model, and the vertical mismatch of concepts between the real
world domain and the model as well as between the model and
the implementation. As a solution to these drawbacks, the
concept of an abstract data type, where data and behavior of
objects are closely coupled, became popular within the 1980s.
This concept then formed the base for the object-oriented
paradigm. In particular, object-oriented languages like C++ or
Java have become the de facto standard for programming [10].
The same holds for the analysis and design phases within a
software development process, where object-oriented modeling
approaches are becoming more and more the standard ones.
The success of object-oriented modeling approaches was
hindered in the beginning of the 90s due to the fact that surely
more than fifty object-oriented modeling approaches claimed to
be the right one. This so-called method war came to an end by
an industrial initiative, which pushed the development of the
meanwhile standardized object-oriented modeling language
UML (Unified Modeling Language) [8]. But, despite the fact
that it has been standardized, UML is still a moving target.

II. RELATED WORK

TIMO RAITALAAKSO in Dynamic Visualization of C++
Programs with UML sequence Diagrams introduced DYNO [6]
system. DYNO collects runtime data of a subject non-
concurrent C++ program. Information about classes and

methods has to be collected and certain objects must be added
into C++ code to collect the data about the dynamic behavior of
a program.

Dyno operates only on WINDOWS NT 4.0 environment
because TED Support only to it. It does not operate in other
environment. It uses the TED software engineering
environment to visualize the sequence diagram. It also does not
support more than one source file and slicing before
instrumentation. The exception is not handled by the it. When
an exception is thrown in the C++ program the execution is
moved to the exception handler. DYNO can not produce
information from the executed exception and therefore loses
track of the position where the program code is been presently
executed.

Robert J. Walker et al, [3] have developed an off-line,
flexible approach for visualizing the operation of an object-
oriented system at the architectural level. This approach
complements and extends existing visualization approaches
available to engineers attempting to utilize dynamic
information. There approach abstracts two fundamental pieces
of dynamic information: the number of objects involved in the
execution, and the interactions between the objects. They
visualize these two pieces of information in terms of a high-
level view of the system that is selected by the engineer as
useful for the task being performed. Their approach allows an

1. Unfamiliar system to be studied without alteration of
source code,

2. Permits lightweight changes to the abstraction used for
condensing the dynamic information,

3. Supplies a visualization independent of the speed of
execution of the system being studied,

4. Allows a user to investigate the abstracted information in a
detailed manner by supporting both forwards and backwards
navigation across the visualizations.

 ISVis [5] uses the static information of a program. It
depend on user that in which part of program he is interested
in. user can choose single part of his interest. ISVis produces
the whole scenario so that the chosen participants interact into
the right part of window. By selecting a part from the larger
trace it is possible to zoom a smaller part of a trace in the main
window. By zooming more actual method names called are
drawn in the view. In this dynamic information is missing. And
in this the interface is not the GUI which make it difficult to
understand.

Koskimies Kai, Mössenböck Hanspeter [2]. Scene develop a
Scene which is a reverse engineering tool that uses scenarios to
visualize object-oriented program execution. It uses source
code instrumentation technique to produce event traces. With
Scene, it is possible to browse not only scenarios but several
different kinds of documents like class diagrams, source code,
class interfaces and call matrices. Scene also allows the user to

W

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1406International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

73
6.

pd
f

investigate the inner state of an object in a specific point of
execution.

III. TRANSLATOR DESIGN
A. LOGICAL DESIGN

Logical design gave the conceptual view of the solution. In
this paper the conceptual view of the translator was described.
As described in the problem analysis to design a translator
there were four components which were to be designed. These
include:

1. Packages
2. Variables
3. Methods
4. Classes

1.Packages: Translator should give the list of in build and

user build packages or header files used in source CPP file.
2.Variables: Variables declared in the CPP file should be

listed. Data type of each variable will be represented in the
notated form. A special and unique symbol should be used for
notation of each variables data type.

3.Methods: Translator should list the user defined functions
which were declared in source file. It should also list the return
type of methods in notated form. Notations used for each return
type key word should be same as in declaring variables.
Definition of each method should also be output. This
definition includes the variable name declared in it including
their data type in notated form. If translator found any data type
from the following list then it was notated with special symbol
as marked against each data type.

 TABLE I
 NOTATION FOR VARIABLES AND FUNCTIONS
S.No Data Type Notation
1. Int $
2 Int* $*
3 Int* $*
4 Long $
5 Short $
6 Float @
7 Float* @*
8 Float** @*
9 Double @
10 Char &
11 Char* &*
12 Char** &*
13 Void 0

4.Class: In this translator listed those item which are

encapsulated in the class e.g. data member, member functions
and inherited classes. It should also define the scope of each
data members and member functions. It should list the data
type or return type of data member or member functions
respectively with their name. The notation used for specifying
the data type and return type would be same as in Table I.

Notations for the scope of variables and methods were
followed.

 TABLE II
NOTATIONS FOR SCOPE OF VARIABLES AND FUNCTIONS

S.No Scope Notation
1. Public -
2 Private +
3 Protected =

B. OUTPUT

Any amount of work which has been done can be mirrored in
the output. So if the output was not well designed or required
results were not produced then all work can be damaged. Out
put of translator was designed very carefully so that it can be
understood by the beginner or layman. The output of translator
will be in text form. In the output first it display the file use as
source file in the box with its path and current directory.

Out put screen list the packages used in the source CPP file.
List was headed by the message “Packages used Are:”. After
this message list of packages will be appeared. There will be
one header file or Package in one line. Each header file was
ended with extension “.h”.

 Then if global variables and methods were declared after the
packages in the source file then these will be shown with their
data type and return type respectively. Data type and return
type will be notated as described in the Table I. These variables
and methods were globally declared in the source CPP file.
Variables will be listed in the same order as in the source file.
If there will be any initialization of variables this would also be
displayed as it will be. If there will be more than one variable
of same data type declared in one line in source file then all
these variables will be notated in front of variables name as per
Table I. Global variables or methods can be declared any where
in the source file. So these are displayed in the design where it
was defined.

 Below figure shows that how the translator works on
inputting the CPP file. After input of CPP file translator will
model the output in text form and store the modeled design in
new text file. From where we can again read it to analyze for
further work.

CPP File Translator

Text(Modeled) File
Fig. 1 Translator working

Output model of class was designed in a manner such that it

should be easy to understand. After the message of “Class
Started” ,name of the class will be displayed. After that if there
will be any inherited classes in the current class then the same
will be listed with their scope. After the message of “Inherited
Classes” name of the classes will be appeared. Name of the
class will be prefixed with their scope which will be notated as
per notations in Table II. After this screen will be divided into
three columns “Scope, Data type , Variables and Methods” .
Under the scope column, scope of each variable or method will

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1407International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

73
6.

pd
f

be listed. Scope will be notated as per Table II. Every time
scope will not be notated for each variable or Method until new
scope will be encountered.

FOR EXAMPLE:
Class A
{Public:
 Int a;
Int box();
 Private :
 Int b;
 Int square();
 };
Scope of variable ‘a’ and method ‘box()’ is public and this

will be notated once with sign ‘+’ . Variables/methods after ‘+’
sign will be public until new scope will be encountered. As in
above example when translator reads “Private:” it notate them
as “-“ and variables and methods under this sign will be
private until end of class is encountered. Output model of
above class will be as follow:
 Class A
 Declaration Of Variables And

Methods
 Scope Data Type Variables/Methods
 +
 $ a
 $ box()
 -
 $ b
 $

 square()
 End Class
In the column of Data type, data type or return type of

Variables and Methods respectively will be notated as per
Table I. Data type or return type will be notated every time
under this column e.g. as in above model of class A, under
column Data type, data type of variable ‘a’ is notated with
special symbol $(dollar) and return type of method ‘box()’ is
again notated with symbol (dollar).

At the last in the column of “Variable/Method” name of
variable and method will be displayed as it will be in source
file. If variable had some initialized value then that will also be
displayed as it will be. It will not be necessary that each line
had one variable in one line under column
“Variables/Methods”. If there will be more than one variable
in one line then all these variables will be of same data type as
notated in the column “Data Type”. This depends on the
number of variable in one line in the source file.

 When ever the function definition will be defined in the
source file at same place it will be displayed in the design. In
the function definition the list of variables declared will be
displayed with their data type notations as per Table I. Function
definition will not show the what ever coding or concept
running in it e.g. any loop, control statement, any inbuild

function etc. definition will only shows the list of variables
declared.

A complete Example of one CPP (C++) file is shown in
Table III. Where first column contain the code of CPP file and
second column contains the model of the corresponding file.
This also shows the inherited class “a” in “Class b” with public
represented by the plus (+) sign. This also shows the definition
of each function. At the end of model column. Empty definition
shows that there no new variable is define in the functions
(getdata(), putdata(), due(),display())

TABLE III

COMPLETE EXAMPLE
Cpp file Model

#include<conio.h>
#include<iostream.h
>
class a
{ private:
int i;
public:
void getdata();
void putdata(); };
class b : public a
{ int j;
public:
void due();
void display(); };
void a::getdata()
{ cout<<"enter roll
no.";
cin>>i; }
void a::putdata()
{ cout<<" roll no.
is"<<i<<endl; }
void b::due()
{ a::getdata();
cout<<"enter due
amount.";
cin>>j; }
void b::display()
{ a::putdata();
cout<<" Due is"<<j;
}
void main()
{ clrscr();
b derived;
derived.due();
derived.display();
getch(); }

Packages in use are:
 1 conio.h
 2 iostream.h
Class Started a
Declaration of variables and methods
Scope DataType Variables/Methods
-
 $ i
+
 0 getdata()
 0 putdata()
 End of Class
Class Started b
Inherited Classes +a
Declaration of variables and methods
Scope DataType Variables/Methods
-
 $ j
+
 0 due()
 0 display()
 End of Class
FUNCTION DEFINATION OF

 getdata()
FUNCTION DEFINATION OF

 putdata()
 FUNCTION DEFINATION OF

 due()
FUNCTION DEFINATION OF

 display()

IV. CONCLUSION

Translator proposed in this paper gives the design of
underlying system which is coded in C++ library. This will
model the CPP files and analyze object oriented nature of the
file. The main items which were abstracted from the code were
classes and their relationship, header files used in source file,
variables declared global and the definition of the function used

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1408International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

73
6.

pd
f

global or encapsulated in the classes. Notations were devised in
translator where the main consideration about this was that the
notation used was as near as UML.

There is lot to be done which makes the translator stronger
and more active. Suggestions are translator should support
more than one source file which should make it more active.
The exceptions are not handled by the translator. Try and catch
blocks are not instrumented in translator. Ways to produce
information that includes exception handling should be
investigated and implemented into translator. Work is going on
to make this translator suitable for the any object oriented
language. A part from C++.

Interface can also help to make it more understandable and
easy to use. Interface can be designed with the existing
visualization tools like jGRASP and TED. Some Interface can
also be designed in tree form where output can be expand or
decompress by a single mouse click.

REFERENCES
[1] P. Chen: The Entity-Relationship Model - Toward a Unified View of

Data. ACM Transactions on Database Systems, 1(1), 1976, 9-36.
[2] Koskimies Kai, Mössenböck Hanspeter. Scene: Using Scenario

Diagrams and Active Test for Illustrating Object-Oriented Programs,
Proceedings of the 18th International Conference on Software
Engineering (ICSE –96), ACM Press, 1996, pp.366-375.

[3] Walker Robert J., Murphy Gail C., Bjorn Freeman-Benson, Wright
Darin, Swanson Darin, and Isaak Jeremy. Visualizing Dynamic Software
System Information through High-level Models,Proceedings of the
Conference on Object-Oriented Programing, Systems, Languages, and
Applications (Vancouver, British Columbia, Canada; 18–22 October
1998), ACM SIGPLAN, pp. 271–283, 1998. Published as ACM
SIGPLAN Notices, 33(10), October 1998.

[4] Kazman Rick, Carriere Jeromy, View Extraction and View Fusion in
Architectural Understanding, Proceedings of the Fifth International
Conference on Software Reuse (ICSR5), 1998.

[5] MORALE project, ISVis tool, Available:
http://www.cc.gatech.edu/morale/tools/ .

[6] TIMO RAITALAAKSO, Dynamic Visualization of C++ Programs with
UML Sequence Diagrams, Master of Science Thesis.

[7] Müller Hausi A., Understanding Software Systems Using Reverse
Engineering Technologies Research and Practice,
Available:http://www.rigi.csc.uvic.ca/UVicRevTut/F4rev.html,
Department of Computer Science, University of Victoria, 2000.

[8] Booch Grady,Rumbagh James and Jacobson Ivar. The Unified Modeling
User Guide-5th Indian Reprint,Addison Wesley Longman (Singapore)
Pte.Ltd,2001.

[9] Deitel H.M. and Deitel P.J. .C++ How To Program 4th edition. Pearson
Education (Singapore) Pte. Ltd. 2004.

[10] Gregor Engels, Object-Oriented Modeling: A Roadmap, Available :
www.cs.ucl.ac.uk/staff/A.Finkelstein/fose/finalengels.pdf

Er. Satwinder Singh born in Amritsar (India) on 08 july 1980. Author is M-
tech(Information Tecchnology) from guru nanak dev University Amritsar,
Punjab (India) in July 2002. Major field of study is modeling of object oriented
language and compiler design. Working in this field from last two years.

He has work experience of two year teaching . He also has one year
research experience during the post graduation. He had participated in various
national conferences. His work has been published in various national
proceedings. Currently he is working as a LECTURER in Rayat Institute of
Engg. and Information technology, Rail Majra, near Ropar, Nawan Shahar,
Punjab(India) E-mail : satwinder_man@rediffmail.com

Dr. K.S. Kahlon born in Patiala . Author is Doctorate in Computer Science.

His major field Of study is Parallel Computing. He had seven year of work
experience in this field and Currently he is doing research in object oriented
modeling.

He has a thirteen year of teaching and research experience. He had
participated in various national and international conferences. His dozen of
paper has been published in various journals and proceedings. Currently he is
working as ASSOCIATE PROFESSOR in CSE Dept in Guru Nanak Dev
University, Amritsar, Punjab(India)

Rakesh Kumar born in Gurdaspur(India) on 23 June 1980. Author is M-tech

in Information Technology. His major field of study Object Orinted Analysis &
Design and Data security techniques. Working in this field from last two years

He has work experience of one year research in Data security techniques
during his M-tech. has two year teaching experience in Post Graduate degree
college. Currently he is working as LECTURER in Computer Science Dept in
S.S.M College Dinanagar , Distt. Gurdaspur, Punjab, INDIA. He has
participated in various National level conferences in India.

Gurjeet Singh born in Amritsar (India) in August 1977. Author did Masters

in M-tech in information Technology from G.N.D.U. Major field of study is
Modeling of languages and Parallel processing and Scheduling algorithms.
Working in these fields from last three years

He has four year work experience of teaching to post graduate classes. He
has participated in three National level conferences in India. Currently he is
lecturer Post graduate Computer Science Dept of Tri Shatabdi College near
Gurdwara Ramsar , Amritsar , Punjab, India. E-mail
gurjit_singh_1977@yahoomail.com

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:5, 2007

1409International Scholarly and Scientific Research & Innovation 1(5) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

5,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/3

73
6.

pd
f

