Search results for: Stochastic recurrent neural networks
1819 Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices
Authors: S. Jadid, S. Jalilzadeh
Abstract:
In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.Keywords: composite indices, transient stability, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22281818 A Predictive control based on Neural Network for Proton Exchange Membrane Fuel Cell
Authors: M. Sedighizadeh, M. Rezaei, V. Najmi
Abstract:
The Proton Exchange Membrane Fuel Cell (PEMFC) control system has an important effect on operation of cell. Traditional controllers couldn-t lead to acceptable responses because of time- change, long- hysteresis, uncertainty, strong- coupling and nonlinear characteristics of PEMFCs, so an intelligent or adaptive controller is needed. In this paper a neural network predictive controller have been designed to control the voltage of at the presence of fluctuations of temperature. The results of implementation of this designed NN Predictive controller on a dynamic electrochemical model of a small size 5 KW, PEM fuel cell have been simulated by MATLAB/SIMULINK.Keywords: PEMFC, Neural Network, Predictive Control..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26231817 Estimating Development Time of Software Projects Using a Neuro Fuzzy Approach
Authors: Venus Marza, Amin Seyyedi, Luiz Fernando Capretz
Abstract:
Software estimation accuracy is among the greatest challenges for software developers. This study aimed at building and evaluating a neuro-fuzzy model to estimate software projects development time. The forty-one modules developed from ten programs were used as dataset. Our proposed approach is compared with fuzzy logic and neural network model and Results show that the value of MMRE (Mean of Magnitude of Relative Error) applying neuro-fuzzy was substantially lower than MMRE applying fuzzy logic and neural network.Keywords: Artificial Neural Network, Fuzzy Logic, Neuro-Fuzzy, Software Estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651816 Hubs as Catalysts for Geospatial Communication in Kinship Networks
Authors: Sameer Kumar, Jariah Mohd. Jan
Abstract:
Earlier studies in kinship networks have primarily focused on observing the social relationships existing between family relatives. In this study, we pre-identified hubs in the network to investigate if they could play a catalyst role in the transfer of physical information. We conducted a case study of a ceremony performed in one of the families of a small Hindu community – the Uttar Rarhi Kayasthas. Individuals (n = 168) who resided in 11 geographically dispersed regions were contacted through our hub-based representation. We found that using this representation, over 98% of the individuals were successfully contacted within the stipulated period. The network also demonstrated a small-world property, with an average geodesic distance of 3.56.Keywords: Social Networks, Kinship Networks, Social Network Analysis, Geospatial Communication, Hubs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19391815 Inverse Heat Conduction Analysis of Cooling on Run Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.
Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021814 Authentication in Multi-Hop Wireless Mesh Networks
Authors: Kaleemullah Khan, Muhammmad Akbar
Abstract:
Wireless Mesh Networks (WMNs) are an emerging technology for last-mile broadband access. In WMNs, similar to ad hoc networks, each user node operates not only as a host but also as a router. User packets are forwarded to and from an Internet-connected gateway in multi-hop fashion. The WMNs can be integrated with other networking technologies i.e. ad hoc networks, to implement a smooth network extension. The meshed topology provides good reliability and scalability, as well as low upfront investments. Despite the recent start-up surge in WMNs, much research remains to be done in standardizing the functional parameters of WMNs to fully exploit their full potential. An edifice of the security concerns of these networks is authentication of a new client joining an integrated ad hoc network and such a scenario will require execution of a multihop authentication technique. Our endeavor in this paper is to introduce a secure authentication technique, with light over-heads that can be conveniently implemented for the ad-hoc nodes forming clients of an integrated WMN, thus facilitating their inter-operability.Keywords: Multi-Hop WMNs, PANA, EAP-TTLS, Authentication, RADIUS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231813 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection
Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson
Abstract:
A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.Keywords: Image processing, artificial neural network, anomaly detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171812 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –
Authors: Reinhold Decker, Christian Holsing, Sascha Lerke
Abstract:
This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12041811 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: Artificial neural network, EDM, metal removal rate, modeling, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11721810 Research on the Relevance Feedback-based Image Retrieval in Digital Library
Authors: Rongtao Ding, Xinhao Ji, Linting Zhu
Abstract:
In recent years, the relevance feedback technology is regarded in content-based image retrieval. This paper suggests a neural networks feedback algorithm based on the radial basis function, coming to extract the semantic character of image. The results of experiment indicated that the performance of this relevance feedback is better than the feedback algorithm based on Single-RBF.
Keywords: Image retrieval, relevance feedback, radial basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391809 The Using Artificial Neural Network to Estimate of Chemical Oxygen Demand
Authors: S. Areerachakul
Abstract:
Nowadays, the increase of human population every year results in increasing of water usage and demand. Saen Saep canal is important canal in Bangkok. The main objective of this study is using Artificial Neural Network (ANN) model to estimate the Chemical Oxygen Demand (COD) on data from 11 sampling sites. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2007-2011. The twelve parameters of water quality are used as the input of the models. These water quality indices affect the COD. The experimental results indicate that the ANN model provides a high correlation coefficient (R=0.89).
Keywords: Artificial neural network, chemical oxygen demand, estimate, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22711808 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.
Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14271807 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31571806 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: S. Areerachakul, N. Ployong, S. Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.
Keywords: Artificial neural network, classification, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14991805 A Sub-mW Low Noise Amplifier for Wireless Sensor Networks
Authors: Gianluca Cornetta, David J. Santos, Balwant Godara
Abstract:
A 1.2 V, 0.61 mA bias current, low noise amplifier (LNA) suitable for low-power applications in the 2.4 GHz band is presented. Circuit has been implemented, laid out and simulated using a UMC 130 nm RF-CMOS process. The amplifier provides a 13.3 dB power gain a noise figure NF< 2.28 dB and a 1-dB compression point of -15.69 dBm, while dissipating 0.74 mW. Such performance make this design suitable for wireless sensor networks applications such as ZigBee.Keywords: Current Reuse, IEEE 802.15.4 (ZigBee), Low NoiseAmplifiers, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161804 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14191803 A Hypercube Social Feature Extraction and Multipath Routing in Delay Tolerant Networks
Authors: S. Balaji, M. Rajaram, Y. Harold Robinson, E. Golden Julie
Abstract:
Delay Tolerant Networks (DTN) which have sufficient state information include trajectory and contact information, to protect routing efficiency. However, state information is dynamic and hard to obtain without a global and/or long-term collection process. To deal with these problems, the internal social features of each node are introduced in the network to perform the routing process. This type of application is motivated from several human contact networks where people contact each other more frequently if they have more social features in common. Two unique processes were developed for this process; social feature extraction and multipath routing. The routing method then becomes a hypercube–based feature matching process. Furthermore, the effectiveness of multipath routing is evaluated and compared to that of single-path routing.
Keywords: Delay tolerant networks, entropy, human contact networks, hyper cubes, multipath Routing, social features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13091802 A Study on Neural Network Training Algorithm for Multiface Detection in Static Images
Authors: Zulhadi Zakaria, Nor Ashidi Mat Isa, Shahrel A. Suandi
Abstract:
This paper reports the study results on neural network training algorithm of numerical optimization techniques multiface detection in static images. The training algorithms involved are scale gradient conjugate backpropagation, conjugate gradient backpropagation with Polak-Riebre updates, conjugate gradient backpropagation with Fletcher-Reeves updates, one secant backpropagation and resilent backpropagation. The final result of each training algorithms for multiface detection application will also be discussed and compared.Keywords: training algorithm, multiface, static image, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25731801 Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model
Authors: Mughal Yar M, Israr Ul Haq, Bushra Noman
Abstract:
The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.Keywords: Computational shcmin, meiosis, mitosis, neuralnetwork, Stem cell SOM;
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101800 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.
Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9651799 Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis
Authors: M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.Keywords: Morphometric, Tor tambroides, Stepwise Discriminant Analysis , Neural Network Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21521798 Data Envelopment Analysis under Uncertainty and Risk
Authors: P. Beraldi, M. E. Bruni
Abstract:
Data Envelopment Analysis (DEA) is one of the most widely used technique for evaluating the relative efficiency of a set of homogeneous decision making units. Traditionally, it assumes that input and output variables are known in advance, ignoring the critical issue of data uncertainty. In this paper, we deal with the problem of efficiency evaluation under uncertain conditions by adopting the general framework of the stochastic programming. We assume that output parameters are represented by discretely distributed random variables and we propose two different models defined according to a neutral and risk-averse perspective. The models have been validated by considering a real case study concerning the evaluation of the technical efficiency of a sample of individual firms operating in the Italian leather manufacturing industry. Our findings show the validity of the proposed approach as ex-ante evaluation technique by providing the decision maker with useful insights depending on his risk aversion degree.Keywords: DEA, Stochastic Programming, Ex-ante evaluation technique, Conditional Value at Risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19711797 View-Point Insensitive Human Pose Recognition using Neural Network
Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung
Abstract:
This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.Keywords: Computer vision, neural network, pose recognition, view-point insensitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13341796 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.
Keywords: Hadoop, NoSQL, ontology, backpropagation neural network, and high distributed file system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10021795 Performance Evaluation of Routing Protocols for High Density Ad Hoc Networks Based on Energy Consumption by GlomoSim Simulator
Abstract:
Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing (LAR1).Our evaluation is based on energy consumption in mobile ad hoc networks. The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.
Keywords: Ad hoc Network, energy consumption, Glomosim, routing protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21391794 A Novel Approach for Protein Classification Using Fourier Transform
Authors: A. F. Ali, D. M. Shawky
Abstract:
Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.
Keywords: Bioinformatics, Artificial Neural Networks, Protein Sequence Analysis, Feature Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23681793 Existence and Stability of Anti-periodic Solutions for an Impulsive Cohen-Grossberg SICNNs on Time Scales
Abstract:
By using the method of coincidence degree and constructing suitable Lyapunov functional, some sufficient conditions are established for the existence and global exponential stability of antiperiodic solutions for a kind of impulsive Cohen-Grossberg shunting inhibitory cellular neural networks (CGSICNNs) on time scales. An example is given to illustrate our results.
Keywords: Anti-periodic solution, coincidence degree, CGSICNNs, impulse, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13171792 An Advanced Approach Based on Artificial Neural Networks to Identify Environmental Bacteria
Authors: Mauro Giacomini, Stefania Bertone, Federico Caneva Soumetz, Carmelina Ruggiero
Abstract:
Environmental micro-organisms include a large number of taxa and some species that are generally considered nonpathogenic, but can represent a risk in certain conditions, especially for elderly people and immunocompromised individuals. Chemotaxonomic identification techniques are powerful tools for environmental micro-organisms, and cellular fatty acid methyl esters (FAME) content is a powerful fingerprinting identification technique. A system based on an unsupervised artificial neural network (ANN) was set up using the fatty acid profiles of standard bacterial strains, obtained by gas-chromatography, used as learning data. We analysed 45 certified strains belonging to Acinetobacter, Aeromonas, Alcaligenes, Aquaspirillum, Arthrobacter, Bacillus, Brevundimonas, Enterobacter, Flavobacterium, Micrococcus, Pseudomonas, Serratia, Shewanella and Vibrio genera. A set of 79 bacteria isolated from a drinking water line (AMGA, the major water supply system in Genoa) were used as an example for identification compared to standard MIDI method. The resulting ANN output map was found to be a very powerful tool to identify these fresh isolates.
Keywords: Cellular fatty acid methyl esters, environmental bacteria, gas-chromatography, unsupervised ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18421791 Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System
Authors: S. Sendhilkumar, N. Mohanasundaram, M. Senthilkumar, S. N. Sivanandam
Abstract:
The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system.Keywords: Elman neural network, fault detection, rotating machines, unbalance, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14761790 Supervisory Control for Induction Machine with a Modified Star/Delta Switch in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper proposes an intelligent, supervisory, hysteresis liquid-level control with three-state energy saving mode (ESM) for induction motor (IM) in fluid transportation system (FTS) including storage tank. The IM pump drive comprises a modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to the computer’s ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. Considering the motor’s thermal capacity used (TCU) and grid-compatible tariff structure, a logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction. Fuzzy-logic (FL) based availability assessment is designed and deployed on cloud, in order to provide mobilized service for the star/delta switch and highly reliable contactors. Moreover, an artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and computer simulations are performed to demonstrate the validity and effectiveness of the proposed control system in terms of reliability, power quality and operational cost reduction with a motivation of power factor correction.
Keywords: Artificial Neural Network, ANN, Contactor Health Assessment, Energy Saving Mode, Induction Machine, IM, Supervisory Control, Fluid Transportation, Fuzzy Logic, FL, cloud computing, pumped storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453