Search results for: Compact modeling
1415 Modeling Reaction Time in Car-Following Behaviour Based on Human Factors
Authors: Atif Mehmood, Said M. Easa
Abstract:
This paper develops driver reaction-time models for car-following analysis based on human factors. The reaction time was classified as brake-reaction time (BRT) and acceleration/deceleration reaction time (ADRT). The BRT occurs when the lead vehicle is barking and its brake light is on, while the ADRT occurs when the driver reacts to adjust his/her speed using the gas pedal only. The study evaluates the effect of driver characteristics and traffic kinematic conditions on the driver reaction time in a car-following environment. The kinematic conditions introduced urgency and expectancy based on the braking behaviour of the lead vehicle at different speeds and spacing. The kinematic conditions were used for evaluating the BRT and are classified as normal, surprised, and stationary. Data were collected on a driving simulator integrated into a real car and included the BRT and ADRT (as dependent variables) and driver-s age, gender, driving experience, driving intensity (driving hours per week), vehicle speed, and spacing (as independent variables). The results showed that there was a significant difference in the BRT at normal, surprised, and stationary scenarios and supported the hypothesis that both urgency and expectancy had significant effects on BRT. Driver-s age, gender, speed, and spacing were found to be significant variables for the BRT in all scenarios. The results also showed that driver-s age and gender were significant variables for the ADRT. The research presented in this paper is part of a larger project to develop a driversensitive in-vehicle rear-end collision warning system.Keywords: Brake reaction time, car-following, human factors, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43141414 Examination of the Effect of Air Viscosity on Narrow Acoustic Tubes Using FEM Involving Complex Effective Density and Complex Bulk Modulus
Authors: M. Watanabe, T. Yamaguchi, M. Sasajima, Y. Kurosawa, Y. Koike
Abstract:
Earphones and headphones, which are compact electro-acoustic transducers, tend to have a lot of acoustic absorption materials and porous materials known as dampers, which often have a large number of extremely small holes and narrow slits to inhibit the resonance of the vibrating system, because the air viscosity significantly affects the acoustic characteristics in such acoustic paths. In order to perform simulations using the finite element method (FEM), it is necessary to be aware of material characteristics such as the impedance and propagation constants of sound absorbing materials and porous materials. The transfer function is widely known as a measurement method for an acoustic tube with such physical properties, but literature describing the measurements at the upper limits of the audible range is yet to be found. The acoustic tube, which is a measurement instrument, must be made narrow, and the distance between the two sets of microphones must be shortened in order to take measurements of acoustic characteristics at higher frequencies. When such a tube is made narrow, however, the characteristic impedance has been observed to become lower than the impedance of air. This paper considers the cause of this phenomenon to be the effect of the air viscosity and describes an FEM analysis of an acoustic tube considering air viscosity to compare to the theoretical formula by including the effect of air viscosity in the theoretical formula for an acoustic tube.
Keywords: Acoustic tube, air viscosity, earphones, FEM, porous materials, sound absorbing materials, transfer function method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17831413 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
Authors: Guang Zou, Kian Banisoleiman, Arturo González
Abstract:
Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.
Keywords: Crack initiation, fatigue reliability, inspection planning, welded joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13981412 GRNN Application in Power Systems Simulation for Integrated SOFC Plant Dynamic Model
Authors: N. Nim-on, A. Oonsivilai
Abstract:
In this paper, the application of GRNN in modeling of SOFC fuel cells were studied. The parameters are of interested as voltage and power value and the current changes are investigated. In addition, the comparison between GRNN neural network application and conventional method was made. The error value showed the superlative results.Keywords: SOFC, GRNN, Fuel cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21001411 Multi-Agent Systems Applied in the Modeling and Simulation of Biological Problems: A Case Study in Protein Folding
Authors: Pedro Pablo González Pérez, Hiram I. Beltrán, Arturo Rojo-Domínguez, Máximo EduardoSánchez Gutiérrez
Abstract:
Multi-agent system approach has proven to be an effective and appropriate abstraction level to construct whole models of a diversity of biological problems, integrating aspects which can be found both in "micro" and "macro" approaches when modeling this type of phenomena. Taking into account these considerations, this paper presents the important computational characteristics to be gathered into a novel bioinformatics framework built upon a multiagent architecture. The version of the tool presented herein allows studying and exploring complex problems belonging principally to structural biology, such as protein folding. The bioinformatics framework is used as a virtual laboratory to explore a minimalist model of protein folding as a test case. In order to show the laboratory concept of the platform as well as its flexibility and adaptability, we studied the folding of two particular sequences, one of 45-mer and another of 64-mer, both described by an HP model (only hydrophobic and polar residues) and coarse grained 2D-square lattice. According to the discussion section of this piece of work, these two sequences were chosen as breaking points towards the platform, in order to determine the tools to be created or improved in such a way to overcome the needs of a particular computation and analysis of a given tough sequence. The backwards philosophy herein is that the continuous studying of sequences provides itself important points to be added into the platform, to any time improve its efficiency, as is demonstrated herein.
Keywords: multi-agent systems, blackboard-based agent architecture, bioinformatics framework, virtual laboratory, protein folding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22061410 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method
Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi
Abstract:
Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.Keywords: Free surface flows, Breaking waves, Boundary layer, Wigley hull, Volume of fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35641409 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method
Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi
Abstract:
Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.Keywords: Free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33031408 Relevance Feedback within CBIR Systems
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.
Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23421407 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car
Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga
Abstract:
Starting in 2020, an EU-wide CO2-limitation of 95 g/km is scheduled for the average of an OEMs passenger car fleet. Taking that into consideration additional improvement measures of the Diesel cycle are necessary in order to reduce fuel consumption and emissions while boosting, or at the least, keeping performance values at the same time. The present article deals with the possibilities of an optimized air/water charge air cooler, also called iCAC (indirect Charge Air Cooler) for a Diesel passenger car amongst extreme-boundary conditions. In this context, the precise objective was to show the impact of improved intercooling with reference to the engine working process (fuel consumption and NOx-emissions). Several extremeboundaries - e.g. varying ambient temperatures or mountainous routes - that will become very important in the near future regarding RDE (Real Driving emissions) were subject of the investigation. With the introduction of RDE in 2017 (EU6c measure), the controversial NEDC (New European Driving Cycle) will belong to the past and the OEMs will have to avoid harmful emissions in any conceivable real life situation. This is certainly going to lead to optimization-measurements at the powertrain, which again is going to make the implementation of iCACs, presently solely used for the premium class, more and more attractive for compact class cars. The investigations showed a benefit in FC between 1 and 3% for the iCAC in real world conditions.
Keywords: Air/Water-Charge Air Cooler, Co-Simulation, Diesel Working Process, EURO VI Fuel Consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29051406 Influence of Dilution and Lean-premixed on Mild Combustion in an Industrial Burner
Authors: Sh.Khalilarya, H.Oryani, S.Jafarmadar, H.Khatamnezhad, A.Nemati
Abstract:
Understanding of how and where NOx formation occurs in industrial burner is very important for efficient and clean operation of utility burners. Also the importance of this problem is mainly due to its relation to the pollutants produced by more burners used widely of gas turbine in thermal power plants and glass and steel industry. In this article, a numerical model of an industrial burner operating in MILD combustion is validated with experimental data.. Then influence of air flow rate and air temperature on combustor temperature profiles and NOX product are investigated. In order to modification this study reports on the effects of fuel and air dilution (with inert gases H2O, CO2, N2), and also influence of lean-premixed of fuel, on the temperature profiles and NOX emission. Conservation equations of mass, momentum and energy, and transport equations of species concentrations, turbulence, combustion and radiation modeling in addition to NO modeling equations were solved together to present temperature and NO distribution inside the burner. The results shows that dilution, cause to a reduction in value of temperature and NOX emission, and suppresses any flame propagation inside the furnace and made the flame inside the furnace invisible. Dilution with H2O rather than N2 and CO2 decreases further the value of the NOX. Also with raise of lean-premix level, local temperature of burner and the value of NOX product are decreases because of premixing prevents local “hot spots" within the combustor volume that can lead to significant NOx formation. Also leanpremixing of fuel with air cause to amount of air in reaction zone is reach more than amount that supplied as is actually needed to burn the fuel and this act lead to limiting NOx formationKeywords: Mild combustion, Flameless, Numerical simulation, Burner, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17761405 An Approach to Correlate the Statistical-Based Lorenz Method, as a Way of Measuring Heterogeneity, with Kozeny-Carman Equation
Authors: H. Khanfari, M. Johari Fard
Abstract:
Dealing with carbonate reservoirs can be mind-boggling for the reservoir engineers due to various digenetic processes that cause a variety of properties through the reservoir. A good estimation of the reservoir heterogeneity which is defined as the quality of variation in rock properties with location in a reservoir or formation, can better help modeling the reservoir and thus can offer better understanding of the behavior of that reservoir. Most of reservoirs are heterogeneous formations whose mineralogy, organic content, natural fractures, and other properties vary from place to place. Over years, reservoir engineers have tried to establish methods to describe the heterogeneity, because heterogeneity is important in modeling the reservoir flow and in well testing. Geological methods are used to describe the variations in the rock properties because of the similarities of environments in which different beds have deposited in. To illustrate the heterogeneity of a reservoir vertically, two methods are generally used in petroleum work: Dykstra-Parsons permeability variations (V) and Lorenz coefficient (L) that are reviewed briefly in this paper. The concept of Lorenz is based on statistics and has been used in petroleum from that point of view. In this paper, we correlated the statistical-based Lorenz method to a petroleum concept, i.e. Kozeny-Carman equation and derived the straight line plot of Lorenz graph for a homogeneous system. Finally, we applied the two methods on a heterogeneous field in South Iran and discussed each, separately, with numbers and figures. As expected, these methods show great departure from homogeneity. Therefore, for future investment, the reservoir needs to be treated carefully.
Keywords: Carbonate reservoirs, heterogeneity, homogeneous system, Dykstra-Parsons permeability variations (V), Lorenz coefficient (L).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17911404 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5401403 Rotor Bearing System Analysis Using the Transfer Matrix Method with Thickness Assumption of Disk and Bearing
Authors: Omid Ghasemalizadeh, Mohammad Reza Mirzaee, Hossein Sadeghi, Mohammad Taghi Ahmadian
Abstract:
There are lots of different ways to find the natural frequencies of a rotating system. One of the most effective methods which is used because of its precision and correctness is the application of the transfer matrix. By use of this method the entire continuous system is subdivided and the corresponding differential equation can be stated in matrix form. So to analyze shaft that is this paper issue the rotor is divided as several elements along the shaft which each one has its own mass and moment of inertia, which this work would create possibility of defining the named matrix. By Choosing more elements number, the size of matrix would become larger and as a result more accurate answers would be earned. In this paper the dynamics of a rotor-bearing system is analyzed, considering the gyroscopic effect. To increase the accuracy of modeling the thickness of the disk and bearings is also taken into account which would cause more complicated matrix to be solved. Entering these parameters to our modeling would change the results completely that these differences are shown in the results. As said upper, to define transfer matrix to reach the natural frequencies of probed system, introducing some elements would be one of the requirements. For the boundary condition of these elements, bearings at the end of the shaft are modeled as equivalent spring and dampers for the discretized system. Also, continuous model is used for the shaft in the system. By above considerations and using transfer matrix, exact results are taken from the calculations. Results Show that, by increasing thickness of the bearing the amplitude of vibration would decrease, but obviously the stiffness of the shaft and the natural frequencies of the system would accompany growth. Consequently it is easily understood that ignoring the influences of bearing and disk thicknesses would results not real answers.Keywords: Rotor System, Disk and Bearing Thickness, Transfer Matrix, Amplitude.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15481402 Evaluation of Mixed-Mode Stress Intensity Factor by Digital Image Correlation and Intelligent Hybrid Method
Authors: K. Machida, H. Yamada
Abstract:
Displacement measurement was conducted on compact normal and shear specimens made of acrylic homogeneous material subjected to mixed-mode loading by digital image correlation. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis near the crack tip. The accuracy of stress-intensity factor at the free surface was discussed from the viewpoint of both the experiment and 3-D finite element analysis. The surface images before and after deformation were taken by a CMOS camera, and we developed the system which enabled the real time stress analysis based on digital image correlation and inverse problem analysis. The great portion of processing time of this system was spent on displacement analysis. Then, we tried improvement in speed of this portion. In the case of cracked body, it is also possible to evaluate fracture mechanics parameters such as the J integral, the strain energy release rate, and the stress-intensity factor of mixed-mode. The 9-points elliptic paraboloid approximation could not analyze the displacement of submicron order with high accuracy. The analysis accuracy of displacement was improved considerably by introducing the Newton-Raphson method in consideration of deformation of a subset. The stress-intensity factor was evaluated with high accuracy of less than 1% of the error.
Keywords: Digital image correlation, mixed mode, Newton-Raphson method, stress intensity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031401 X-Ray Intensity Measurement Using Frequency Output Sensor for Computed Tomography
Authors: R. M. Siddiqui, D. Z. Moghaddam, T. R. Turlapati, S. H. Khan, I. Ul Ahad
Abstract:
Quality of 2D and 3D cross-sectional images produce by Computed Tomography primarily depend upon the degree of precision of primary and secondary X-Ray intensity detection. Traditional method of primary intensity detection is apt to errors. Recently the X-Ray intensity measurement system along with smart X-Ray sensors is developed by our group which is able to detect primary X-Ray intensity unerringly. In this study a new smart X-Ray sensor is developed using Light-to-Frequency converter TSL230 from Texas Instruments which has numerous advantages in terms of noiseless data acquisition and transmission. TSL230 construction is based on a silicon photodiode which converts incoming X-Ray radiation into the proportional current signal. A current to frequency converter is attached to this photodiode on a single monolithic CMOS integrated circuit which provides proportional frequency count to incoming current signal in the form of the pulse train. The frequency count is delivered to the center of PICDEM FS USB board with PIC18F4550 microcontroller mounted on it. With highly compact electronic hardware, this Demo Board efficiently read the smart sensor output data. The frequency output approaches overcome nonlinear behavior of sensors with analog output thus un-attenuated X-Ray intensities could be measured precisely and better normalization could be acquired in order to attain high resolution.Keywords: Computed tomography, detector technology, X-Ray intensity measurement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26091400 Efficient Electromagnetic Modeling of Dual-GateTransistor with Iterative Method using Auxiliary Sources
Authors: Z. Harouni, L. Osman, M. Yeddes, A. Gharsallah, H. Baudrand
Abstract:
In this paper, an efficient wave concept iterative process (WCIP) with auxiliary Sources is presented for full wave investigation of an active microwave structure on micro strip technology. Good agreement between the experimental and simulation results is observed.Keywords: WCIP, Dual-Gate Transistor, Auxiliary source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12671399 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling
Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao
Abstract:
Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.Keywords: Neural Network, Fuzzy, River, Forecasting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12891398 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6451397 Flood Modeling in Urban Area Using a Well-Balanced Discontinuous Galerkin Scheme on Unstructured Triangular Grids
Authors: Rabih Ghostine, Craig Kapfer, Viswanathan Kannan, Ibrahim Hoteit
Abstract:
Urban flooding resulting from a sudden release of water due to dam-break or excessive rainfall is a serious threatening environment hazard, which causes loss of human life and large economic losses. Anticipating floods before they occur could minimize human and economic losses through the implementation of appropriate protection, provision, and rescue plans. This work reports on the numerical modelling of flash flood propagation in urban areas after an excessive rainfall event or dam-break. A two-dimensional (2D) depth-averaged shallow water model is used with a refined unstructured grid of triangles for representing the urban area topography. The 2D shallow water equations are solved using a second-order well-balanced discontinuous Galerkin scheme. Theoretical test case and three flood events are described to demonstrate the potential benefits of the scheme: (i) wetting and drying in a parabolic basin (ii) flash flood over a physical model of the urbanized Toce River valley in Italy; (iii) wave propagation on the Reyran river valley in consequence of the Malpasset dam-break in 1959 (France); and (iv) dam-break flood in October 1982 at the town of Sumacarcel (Spain). The capability of the scheme is also verified against alternative models. Computational results compare well with recorded data and show that the scheme is at least as efficient as comparable second-order finite volume schemes, with notable efficiency speedup due to parallelization.Keywords: Flood modeling, dam-break, shallow water equations, Discontinuous Galerkin scheme, MUSCL scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9471396 An Automated Test Setup for the Characterization of Antenna in CATR
Authors: Faisal Amin, Abdul Mueed, Xu Jiadong
Abstract:
This paper describes the development of a fully automated measurement software for antenna radiation pattern measurements in a Compact Antenna Test Range (CATR). The CATR has a frequency range from 2-40 GHz and the measurement hardware includes a Network Analyzer for transmitting and Receiving the microwave signal and a Positioner controller to control the motion of the Styrofoam column. The measurement process includes Calibration of CATR with a Standard Gain Horn (SGH) antenna followed by Gain versus angle measurement of the Antenna under test (AUT). The software is designed to control a variety of microwave transmitter / receiver and two axis Positioner controllers through the standard General Purpose interface bus (GPIB) interface. Addition of new Network Analyzers is supported through a slight modification of hardware control module. Time-domain gating is implemented to remove the unwanted signals and get the isolated response of AUT. The gated response of the AUT is compared with the calibration data in the frequency domain to obtain the desired results. The data acquisition and processing is implemented in Agilent VEE and Matlab. A variety of experimental measurements with SGH antennas were performed to validate the accuracy of software. A comparison of results with existing commercial softwares is presented and the measured results are found to be within .2 dBm.Keywords: Antenna measurement, calibration, time-domain gating, VNA, Positioner controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701395 Integrated Wastewater Reuse Project of the Faculty of Sciences Ain Chock, Morocco
Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Fouad Amraoui
Abstract:
In Morocco, water scarcity requires the exploitation of non-conventional resources. Rural areas are under-equipped with sanitation infrastructure, unlike urban areas. Decentralized and low-cost solutions could improve the quality of life of the population and the environment. In this context, the Faculty of Sciences Ain Chock (FSAC) has undertaken an integrated project to treat part of its wastewater using a decentralized compact system. The project will propose alternative solutions that are inexpensive and adapted to the context of peri-urban and rural areas in order to treat the wastewater generated and to use it for irrigation, watering and cleaning. For this purpose, several tests were carried out in the laboratory in order to develop a liquid waste treatment system optimized for local conditions. Based on the results obtained at laboratory scale of the different proposed scenarios, we designed and implemented a prototype of a mini wastewater treatment plant for the faculty. In this article, we will outline the steps of dimensioning, construction and monitoring of the mini-station in our faculty.
Keywords: Wastewater, purification, response methodology surfaces optimization, vertical filter, Moving Bed Biofilm Reactors, MBBR process, sizing, prototype, Faculty of Sciences Ain Chock, decentralized approach, mini wastewater treatment plant, reuse of treated wastewater reuse, irrigation, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591394 Feature Point Reduction for Video Stabilization
Authors: Theerawat Songyot, Tham Manjing, Bunyarit Uyyanonvara, Chanjira Sinthanayothin
Abstract:
Corner detection and optical flow are common techniques for feature-based video stabilization. However, these algorithms are computationally expensive and should be performed at a reasonable rate. This paper presents an algorithm for discarding irrelevant feature points and maintaining them for future use so as to improve the computational cost. The algorithm starts by initializing a maintained set. The feature points in the maintained set are examined against its accuracy for modeling. Corner detection is required only when the feature points are insufficiently accurate for future modeling. Then, optical flows are computed from the maintained feature points toward the consecutive frame. After that, a motion model is estimated based on the simplified affine motion model and least square method, with outliers belonging to moving objects presented. Studentized residuals are used to eliminate such outliers. The model estimation and elimination processes repeat until no more outliers are identified. Finally, the entire algorithm repeats along the video sequence with the points remaining from the previous iteration used as the maintained set. As a practical application, an efficient video stabilization can be achieved by exploiting the computed motion models. Our study shows that the number of times corner detection needs to perform is greatly reduced, thus significantly improving the computational cost. Moreover, optical flow vectors are computed for only the maintained feature points, not for outliers, thus also reducing the computational cost. In addition, the feature points after reduction can sufficiently be used for background objects tracking as demonstrated in the simple video stabilizer based on our proposed algorithm.
Keywords: background object tracking, feature point reduction, low cost tracking, video stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17671393 Non-Coplanar Nuclei in Heavy-Ion Reactions
Authors: Sahila Chopra, Hemdeep, Arshdeep Kaur, Raj K. Gupta
Abstract:
In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM.Keywords: Dynamical cluster-decay model, fusion cross sections, non-compound nucleus effects, non-coplanarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11861392 Compact Optical Sensors for Harsh Environments
Authors: Branislav Timotijevic, Yves Petremand, Markus Luetzelschwab, Dara Bayat, Laurent Aebi
Abstract:
Optical miniaturized sensors with remote readout are required devices for the monitoring in harsh electromagnetic environments. As an example, in turbo and hydro generators, excessively high vibrations of the end-windings can lead to dramatic damages, imposing very high, additional service costs. A significant change of the generator temperature can also be an indicator of the system failure. Continuous monitoring of vibrations, temperature, humidity, and gases is therefore mandatory. The high electromagnetic fields in the generators impose the use of non-conductive devices in order to prevent electromagnetic interferences and to electrically isolate the sensing element to the electronic readout. Metal-free sensors are good candidates for such systems since they are immune to very strong electromagnetic fields and given the fact that they are non-conductive. We have realized miniature optical accelerometer and temperature sensors for a remote sensing of the harsh environments using the common, inexpensive silicon Micro Electro-Mechanical System (MEMS) platform. Both devices show highly linear response. The accelerometer has a deviation within 1% from the linear fit when tested in a range 0 – 40 g. The temperature sensor can provide the measurement accuracy better than 1 °C in a range 20 – 150 °C. The design of other type of sensors for the environments with high electromagnetic interferences has also been discussed.
Keywords: Accelerometer, harsh environment, optical MEMS, pressure sensor, remote sensing, temperature sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11301391 Quasi-ballistic Transport in Submicron Hg0.8Cd0.2Te Diodes: Hydrodynamic Modeling
Authors: M. Daoudi, A. Belghachi, L. Varani
Abstract:
In this paper, we analyze the problem of quasiballistic electron transport in ultra small of mercury -cadmiumtelluride (Hg0.8Cd0.2Te -MCT) n+-n- n+ devices from hydrodynamic point view. From our study, we note that, when the size of the active layer is low than 0.1μm and for low bias application( ( ≥ 9mV), the quasi-ballistic transport has an important effect.
Keywords: Hg0.8Cd0.2Te semiconductor, Hydrodynamicmode, Quasi-ballistic transport, Submicron diode
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15141390 Integrated Modeling of Transformation of Electricity and Transportation Sectors: A Case Study of Australia
Authors: T. Aboumahboub, R. Brecha, H. B. Shrestha, U. F. Hutfilter, A. Geiges, W. Hare, M. Schaeffer, L. Welder, M. Gidden
Abstract:
The proposed stringent mitigation targets require an immediate start for a drastic transformation of the whole energy system. The current Australian energy system is mainly centralized and fossil fuel-based in most states with coal and gas-fired plants dominating the total produced electricity over the recent past. On the other hand, the country is characterized by a huge, untapped renewable potential, where wind and solar energy could play a key role in the decarbonization of the Australia’s future energy system. However, integrating high shares of such variable renewable energy sources (VRES) challenges the power system considerably due to their temporal fluctuations and geographical dispersion. This raises the concerns about flexibility gap in the system to ensure the security of supply with increasing shares of such intermittent sources. One main flexibility dimension to facilitate system integration of high shares of VRES is to increase the cross-sectoral integration through coupling of electricity to other energy sectors alongside the decarbonization of the power sector and reinforcement of the transmission grid. This paper applies a multi-sectoral energy system optimization model for Australia. We investigate the cost-optimal configuration of a renewable-based Australian energy system and its transformation pathway in line with the ambitious range of proposed climate change mitigation targets. We particularly analyse the implications of linking the electricity and transport sectors in a prospective, highly renewable Australian energy system.
Keywords: Decarbonization, energy system modeling, sector coupling, variable renewable energies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5971389 Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling
Authors: Mohammed El Raey, Moustafa Osman Mohammed
Abstract:
The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s system. Naturally exchanged patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s system. The Probabilistic Risk Assessment (PRA) technique is utilized to assess the safety of an industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA-safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and rural areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is predicted for multiple factors distribution schemes of multi-criteria analysis. The input–output analysis is explored from the spillover effect, and we conducted Monte Carlo simulations for sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the composite index for biosphere with collective structure of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in an artistic/architectural perspective. The hypothesis is deployed to unify analytic and analogical spatial structure in development urban environments using optimization loads as an example of integrated industrial structure where the process is based on engineering topology of systems ecology.
Keywords: Spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571388 Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators
Authors: T. C. Manjunath, B. Bandyopadhyay
Abstract:
Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.Keywords: Smart structure, Timoshenko beam theory, Fast output sampling feedback control, Finite Element Method, State space model, SISO, Vibration control, LMI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17881387 Neuro-Fuzzy Networks for Identification of Mathematical Model Parameters of Geofield
Authors: A. Pashayev, R. Sadiqov, C. Ardil, F. Ildiz , H. Karabork
Abstract:
The new technology of fuzzy neural networks for identification of parameters for mathematical models of geofields is proposed and checked. The effectiveness of that soft computing technology is demonstrated, especially in the early stage of modeling, when the information is uncertain and limited.
Keywords: Identification, interpolation methods, neuro-fuzzy networks, geofield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13321386 Progressive AAM Based Robust Face Alignment
Authors: Daehwan Kim, Jaemin Kim, Seongwon Cho, Yongsuk Jang, Sun-Tae Chung, Boo-Gyoun Kim
Abstract:
AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.Keywords: Face Alignment, AAM, facial feature detection, model matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639