Search results for: hierarchical classification
513 Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks
Authors: Simone C. F. Neves, Lúcio F. A. Campos, Ewaldo Santana, Ginalber L. O. Serra, Allan K. Barros
Abstract:
We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.Keywords: Cancer ovarian, Proteomic patterns in serum, independent component analysis and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832512 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine
Authors: Djamila Benhaddouche, Abdelkader Benyettou
Abstract:
In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.
Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870511 Association Rule and Decision Tree based Methodsfor Fuzzy Rule Base Generation
Authors: Ferenc Peter Pach, Janos Abonyi
Abstract:
This paper focuses on the data-driven generation of fuzzy IF...THEN rules. The resulted fuzzy rule base can be applied to build a classifier, a model used for prediction, or it can be applied to form a decision support system. Among the wide range of possible approaches, the decision tree and the association rule based algorithms are overviewed, and two new approaches are presented based on the a priori fuzzy clustering based partitioning of the continuous input variables. An application study is also presented, where the developed methods are tested on the well known Wisconsin Breast Cancer classification problem. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307510 Metamorphism, Formal Grammars and Undecidable Code Mutation
Authors: Eric Filiol
Abstract:
This paper presents a formalisation of the different existing code mutation techniques (polymorphism and metamorphism) by means of formal grammars. While very few theoretical results are known about the detection complexity of viral mutation techniques, we exhaustively address this critical issue by considering the Chomsky classification of formal grammars. This enables us to determine which family of code mutation techniques are likely to be detected or on the contrary are bound to remain undetected. As an illustration we then present, on a formal basis, a proof-of-concept metamorphic mutation engine denoted PB MOT, whose detection has been proven to be undecidable.
Keywords: Polymorphism, Metamorphism, Formal Grammars, Formal Languages, Language Decision, Code Mutation, Word Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430509 Building Relationship Network for Machine Analysis from Wear Debris Measurements
Authors: Qurban A Memon, Mohammad S. Laghari
Abstract:
Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear debris analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self-organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear debris. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.Keywords: Relationship Network, Relationship Measurement, Self-organizing Clusters, Wear Debris Analysis, Kohonen Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941508 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415507 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.
Keywords: Data integration, disease-related malnutrition, expert systems, mobile health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2201506 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.
Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352505 Cluster Analysis for the Statistical Modeling of Aesthetic Judgment Data Related to Comics Artists
Authors: George E. Tsekouras, Evi Sampanikou
Abstract:
We compare three categorical data clustering algorithms with respect to the problem of classifying cultural data related to the aesthetic judgment of comics artists. Such a classification is very important in Comics Art theory since the determination of any classes of similarities in such kind of data will provide to art-historians very fruitful information of Comics Art-s evolution. To establish this, we use a categorical data set and we study it by employing three categorical data clustering algorithms. The performances of these algorithms are compared each other, while interpretations of the clustering results are also given.Keywords: Aesthetic judgment, comics artists, cluster analysis, categorical data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637504 Expressive Modes and Species of Language
Authors: Richard Elling Moe
Abstract:
Computer languages are usually lumped together into broad -paradigms-, leaving us in want of a finer classification of kinds of language. Theories distinguishing between -genuine differences- in language has been called for, and we propose that such differences can be observed through a notion of expressive mode. We outline this concept, propose how it could be operationalized and indicate a possible context for the development of a corresponding theory. Finally we consider a possible application in connection with evaluation of language revision. We illustrate this with a case, investigating possible revisions of the relational algebra in order to overcome weaknesses of the division operator in connection with universal queries.Keywords: Expressive mode, Computer language species, Evaluation of revision, Relational algebra, Universal database queries
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327503 Ottoman Script Recognition Using Hidden Markov Model
Authors: Ayşe Onat, Ferruh Yildiz, Mesut Gündüz
Abstract:
In this study, an OCR system for segmentation, feature extraction and recognition of Ottoman Scripts has been developed using handwritten characters. Detection of handwritten characters written by humans is a difficult process. Segmentation and feature extraction stages are based on geometrical feature analysis, followed by the chain code transformation of the main strokes of each character. The output of segmentation is well-defined segments that can be fed into any classification approach. The classes of main strokes are identified through left-right Hidden Markov Model (HMM).Keywords: Chain Code, HMM, Ottoman Script Recognition, OCR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323502 Location Update Cost Analysis of Mobile IPv6 Protocols
Authors: Brahmjit Singh
Abstract:
Mobile IP has been developed to provide the continuous information network access to mobile users. In IP-based mobile networks, location management is an important component of mobility management. This management enables the system to track the location of mobile node between consecutive communications. It includes two important tasks- location update and call delivery. Location update is associated with signaling load. Frequent updates lead to degradation in the overall performance of the network and the underutilization of the resources. It is, therefore, required to devise the mechanism to minimize the update rate. Mobile IPv6 (MIPv6) and Hierarchical MIPv6 (HMIPv6) have been the potential candidates for deployments in mobile IP networks for mobility management. HMIPv6 through studies has been shown with better performance as compared to MIPv6. It reduces the signaling overhead traffic by making registration process local. In this paper, we present performance analysis of MIPv6 and HMIPv6 using an analytical model. Location update cost function is formulated based on fluid flow mobility model. The impact of cell residence time, cell residence probability and user-s mobility is investigated. Numerical results are obtained and presented in graphical form. It is shown that HMIPv6 outperforms MIPv6 for high mobility users only and for low mobility users; performance of both the schemes is almost equivalent to each other.Keywords: Wireless networks, Mobile IP networks, Mobility management, performance analysis, Handover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756501 Selection Initial modes for Belief K-modes Method
Authors: Sarra Ben Hariz, Zied Elouedi, Khaled Mellouli
Abstract:
The belief K-modes method (BKM) approach is a new clustering technique handling uncertainty in the attribute values of objects in both the cluster construction task and the classification one. Like the standard version of this method, the BKM results depend on the chosen initial modes. So, one selection method of initial modes is developed, in this paper, aiming at improving the performances of the BKM approach. Experiments with several sets of real data show that by considered the developed selection initial modes method, the clustering algorithm produces more accurate results.Keywords: Clustering, Uncertainty, Belief function theory, Belief K-modes Method, Initial modes selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816500 Searching for Similar Informational Articles in the Internet Channel
Authors: Sung Ho Ha, Seong Hyeon Joo, Hyun U. Pae
Abstract:
In terms of total online audience, newspapers are the most successful form of online content to date. The online audience for newspapers continues to demand higher-quality services, including personalized news services. News providers should be able to offer suitable users appropriate content. In this paper, a news article recommender system is suggested based on a user-s preference when he or she visits an Internet news site and reads the published articles. This system helps raise the user-s satisfaction, increase customer loyalty toward the content provider.
Keywords: Content classification, content recommendation, customer profiling, documents clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608499 Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant
Authors: J. R. Wang, S. W. Chen, Y. Chiang, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih
Abstract:
In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.
Keywords: PWR, HABIT, habitability, Maanshan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 911498 Using HABIT to Estimate the Concentration of CO2 and H2SO4 for Kuosheng Nuclear Power Plant
Authors: Y. Chiang, W. Y. Li, J. R. Wang, S. W. Chen, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih
Abstract:
In this research, the HABIT code was used to estimate the concentration under the CO2 and H2SO4 storage burst conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and reports were used in this research. In addition, to evaluate the control room habitability for these cases, the HABIT analysis results were compared with the R.G. 1.78 failure criteria. The comparison results show that the HABIT results are below the criteria. Additionally, some sensitivity studies (stability classification, wind speed and control room intake rate) were performed in this study.
Keywords: BWR, HABIT, habitability, KUOSHENG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849497 Face Recognition using Features Combination and a New Non-linear Kernel
Authors: Essam Al Daoud
Abstract:
To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542496 Authenticity of Lipid and Soluble Sugar Profiles of Various Oat Cultivars (Avena sativa)
Authors: Marijana M. Ačanski, Kristian A. Pastor, Djura N. Vujić
Abstract:
The identification of lipid and soluble sugar components in flour samples of different cultivars belonging to common oat species (Avena sativa L.) was performed: spring oat, winter oat and hulless oat. Fatty acids were extracted from flour samples with n-hexane, and derivatized into volatile methyl esters, using TMSH (trimethylsulfonium hydroxide in methanol). Soluble sugars were then extracted from defatted and dried samples of oat flour with 96% ethanol, and further derivatized into corresponding TMS-oximes, using hydroxylamine hydrochloride solution and BSTFA (N,O-bis-(trimethylsilyl)-trifluoroacetamide). The hexane and ethanol extracts of each oat cultivar were analyzed using GC-MS system. Lipid and simple sugar compositions are very similar in all samples of investigated cultivars. Chemometric tool was applied to numeric values of automatically integrated surface areas of detected lipid and simple sugar components in their corresponding derivatized forms. Hierarchical cluster analysis shows a very high similarity between the investigated flour samples of oat cultivars, according to the fatty acid content (0.9955). Moderate similarity was observed according to the content of soluble sugars (0.50). These preliminary results support the idea of establishing methods for oat flour authentication, and provide the means for distinguishing oat flour samples, regardless of the variety, from flour samples made of other cereal species, just by lipid and simple sugar profile analysis.
Keywords: Authentication, chemometrics, GC-MS, lipid and soluble sugar composition, oat cultivars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373495 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.
Keywords: Tifinagh character recognition, Neural networks, Local cost computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286494 Oracle JDE Enterprise One ERP Implementation: A Case Study
Authors: Abhimanyu Pati, Krishna Kumar Veluri
Abstract:
The paper intends to bring out a real life experience encountered during actual implementation of a large scale Tier-1 Enterprise Resource Planning (ERP) system in a multi-location, discrete manufacturing organization in India, involved in manufacturing of auto components and aggregates. The business complexities, prior to the implementation of ERP, include multi-product with hierarchical product structures, geographically distributed multiple plant locations with disparate business practices, lack of inter-plant broadband connectivity, existence of disparate legacy applications for different business functions, and non-standardized codifications of products, machines, employees, and accounts apart from others. On the other hand, the manufacturing environment consisted of processes like Assemble-to-Order (ATO), Make-to-Stock (MTS), and Engineer-to-Order (ETO) with a mix of discrete and process operations. The paper has highlighted various business plan areas and concerns, prior to the implementation, with specific focus on strategic issues and objectives. Subsequently, it has dealt with the complete process of ERP implementation, starting from strategic planning, project planning, resource mobilization, and finally, the program execution. The step-by-step process provides a very good learning opportunity about the implementation methodology. At the end, various organizational challenges and lessons emerged, which will act as guidelines and checklist for organizations to successfully align and implement ERP and achieve their business objectives.
Keywords: ERP, ATO, MTS, ETO, discrete manufacturing, strategic planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807493 Information Fusion for Identity Verification
Authors: Girija Chetty, Monica Singh
Abstract:
In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..
Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779492 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.
Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434491 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images
Authors: Sofia Matoug, Amr Abdel-Dayem
Abstract:
This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.
Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images, MRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840490 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease
Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan
Abstract:
In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824489 Pruning Method of Belief Decision Trees
Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli
Abstract:
The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911488 A New Approaches for Seismic Signals Discrimination
Authors: M. Benbrahim, K. Benjelloun, A. Ibenbrahim, M. Kasmi, E. Ardil
Abstract:
The automatic discrimination of seismic signals is an important practical goal for the earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present new techniques for seismic signals classification: local, regional and global discrimination. These techniques were tested on seismic signals from the data base of the National Geophysical Institute of the Centre National pour la Recherche Scientifique et Technique (Morocco) by using the Moroccan software for seismic signals analysis.
Keywords: Seismic signals, local discrimination, regionaldiscrimination, global discrimination, Moroccan software for seismicsignals analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558487 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey
Authors: Melis Inalpulat, Levent Genc
Abstract:
Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased 29% between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32°C in 1984 and 27-33°C in 2014. Minimum temperature of agricultural lands was increased 3°C and reached to 23°C. In contrast, maximum temperature of A class decreased to 41°C from 44°C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2°C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.Keywords: Census data, landsat, land surface temperature (LST), land use land cover (LULC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122486 Predicting Protein Function using Decision Tree
Authors: Manpreet Singh, Parminder Kaur Wadhwa, Surinder Kaur
Abstract:
The drug discovery process starts with protein identification because proteins are responsible for many functions required for maintenance of life. Protein identification further needs determination of protein function. Proposed method develops a classifier for human protein function prediction. The model uses decision tree for classification process. The protein function is predicted on the basis of matched sequence derived features per each protein function. The research work includes the development of a tool which determines sequence derived features by analyzing different parameters. The other sequence derived features are determined using various web based tools.Keywords: Sequence Derived Features, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954485 Multi-Channel Information Fusion in C-OTDR Monitoring Systems: Various Approaches to Classify of Targeted Events
Authors: Andrey V. Timofeev
Abstract:
The paper presents new results concerning selection of optimal information fusion formula for ensembles of C-OTDR channels. The goal of information fusion is to create an integral classificator designed for effective classification of seismoacoustic target events. The LPBoost (LP-β and LP-B variants), the Multiple Kernel Learning, and Weighing of Inversely as Lipschitz Constants (WILC) approaches were compared. The WILC is a brand new approach to optimal fusion of Lipschitz Classifiers Ensembles. Results of practical usage are presented.Keywords: Lipschitz Classifier, Classifiers Ensembles, LPBoost, C-OTDR systems, ν-OTDR systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669484 Biosensor Design through Molecular Dynamics Simulation
Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang
Abstract:
The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structureprocess- property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.
Keywords: Biosensor, design, DNA, molecular dynamics simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038