Authenticity of Lipid and Soluble Sugar Profiles of Various Oat Cultivars (Avena sativa)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Authenticity of Lipid and Soluble Sugar Profiles of Various Oat Cultivars (Avena sativa)

Authors: Marijana M. Ačanski, Kristian A. Pastor, Djura N. Vujić

Abstract:

The identification of lipid and soluble sugar components in flour samples of different cultivars belonging to common oat species (Avena sativa L.) was performed: spring oat, winter oat and hulless oat. Fatty acids were extracted from flour samples with n-hexane, and derivatized into volatile methyl esters, using TMSH (trimethylsulfonium hydroxide in methanol). Soluble sugars were then extracted from defatted and dried samples of oat flour with 96% ethanol, and further derivatized into corresponding TMS-oximes, using hydroxylamine hydrochloride solution and BSTFA (N,O-bis-(trimethylsilyl)-trifluoroacetamide). The hexane and ethanol extracts of each oat cultivar were analyzed using GC-MS system. Lipid and simple sugar compositions are very similar in all samples of investigated cultivars. Chemometric tool was applied to numeric values of automatically integrated surface areas of detected lipid and simple sugar components in their corresponding derivatized forms. Hierarchical cluster analysis shows a very high similarity between the investigated flour samples of oat cultivars, according to the fatty acid content (0.9955). Moderate similarity was observed according to the content of soluble sugars (0.50). These preliminary results support the idea of establishing methods for oat flour authentication, and provide the means for distinguishing oat flour samples, regardless of the variety, from flour samples made of other cereal species, just by lipid and simple sugar profile analysis.

Keywords: Authentication, chemometrics, GC-MS, lipid and soluble sugar composition, oat cultivars.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1112045

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376

References:


[1] M. S. Butt, M. Tahir-Nadeem, M. K. I. Khan, R. Shabir, and M. S. Butt, „Oat: Unique among the cereals“, Eur. J. Nutr., vol. 47, no. 2, pp. 68–79, 2008.
[2] M. Zhou, K. Robards, M. Glennie-Holmes, and S. Helliwell, „Oat lipids“, J. Am. Oil Chem. Soc., vol. 76, no. 2, pp. 159–169, 1999.
[3] A. Kilci, and D. Gocmen, „Phenolic acid composition, antioxidant activity and phenolic content of tarhana supplemented with oat flour“, Food Chem., vol. 151, pp. 547–553, 2014.
[4] R. A. Othman, M. H. Moghadasian, and P. J. H. Jones, „Cholesterol-lowering effects of oat β-glucan“, Nutr. Rev., vol. 69, no. 6, pp. 299–309, 2011.
[5] U. Tiwari, and E. Cummins, „A comparison of oat flour and oat bran-based bread formulations“, Brit. Food J., vol. 115, no. 2, pp. 300–313, 2013.
[6] D. M. Londono, M. J. M. Smulders, R. G. F. Visser, L. J. W. J. Gilissen, and R. J. Hamer, R. J., „Development of a standard test for dough-making properties of oat cultivars“, J. Cereal Sci., vol. 59, no. 1, pp. 56–61, 2014.
[7] S. Pentikäinen et al., „Enrichment of biscuits and juice with oat β-glucan enhances postprandial satiety“, Appetite, vol. 75, pp. 150-156, 2014.
[8] J. Ou. B.Yang, M. L. Wise, and Y. Chu, „In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides“, Food Chem., vol. 160, pp. 338–345, 2014.
[9] D. M. Peterson, „Oat Antioxidants“, J. Cereal Sci., vol. 33, no. 2, pp. 115–129, 2001.
[10] T. García, R. Martín, N. Pegels, and I. Gonz, I., „Authenticity testing of wheat, barley, rye and oats in food and feed market samples by real-time PCR assays“, LWT - Food Sci. Technol., vol. 60, pp. 867–875, 2015.
[11] D. Cozzolino, „An overview of the use of infrared spectroscopy and chemometrics in authenticity and traceability of cereals“, Food Res. Int., vol. 60, pp. 262–265, 2014.
[12] R. Karoui, „Food Authenticity and fraud“, in Chemical Analysis of Food: Techniques and Applications, Y. Pico, Ed. Elsevier Inc, 2012, pp. 499-517.
[13] M. Brescia, A. Sgaramella, S. Ghelli, and A. Sacco, „1H HR-MAS NMR and isotopic investigation of bread and flour samples produced in southern Italy“, J. Sci. Food Agr., vol. 83, no. 14, pp. 1463–1468, 2003.
[14] M. M. Ačanski, D. N. Vujić, and D. B. Psodorov, „Practical method for the confirmation of authentic flours of different types of cereals and pseudocereals”, Food Chem., vol. 172, pp. 314–317, 2015.
[15] M. M. Ačanski, and D. N. Vujić, „Comparing sugar components of cereal and pseudocereal flour by GC-MS analysis“, Food Chem., vol. 145, pp. 743–748, 2014.
[16] A. I. Ruiz-Matute, O. Hernández-Hernández, S. Rodríguez-Sánchez, M. L. Sanz, and I. Martínez-Castro, „Derivatization of carbohydrates for GC and GC-MS analyses“, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., vol. 879, no. 17-18, pp. 1226–1240, 2011.
[17] Ø. Hammer, D. A. T. Harper, and P. D. Ryan, „PAST: Paleontological statistics software package for education and data analysis“, Palaeontologia Electronica, vol. 4, no. 1, pp. 9–18, 2001.
[18] K. Varmuza, and P. Filzmoser, Introduction to Multivariate Statistical Analysis in Chemometrics. Boca Raton, FL: Taylor & Francis, 2008.