Search results for: Fast Information Detection
4971 A Preliminary Study on Effects of Community Structures on Epidemic Spreading and Detection in Complex Networks
Authors: Yi Yu, Gaoxi Xiao
Abstract:
Community structures widely exist in almost all real-life networks. Extensive researches have been carried out on detecting community structures in complex networks. However, many aspects of how community structures may affect the dynamics and properties of complex networks still remain unclear. In this work, we examine the impacts of community structures on the epidemic spreading and detection in complex networks. Extensive simulation results show that community structures may not help decrease the infection size at steady state, yet they could indeed help slow down the infection spreading. Also, networks with strong community structures may expect to have a smaller average infection size when equipped with a number of sparsely deployed monitors.
Keywords: Complex network, epidemic spreading, infection size, infection monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16004970 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives
Authors: Andreas Theissler, Ian Dear
Abstract:
In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.
Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24794969 Upgraded Rough Clustering and Outlier Detection Method on Yeast Dataset by Entropy Rough K-Means Method
Authors: P. Ashok, G. M. Kadhar Nawaz
Abstract:
Rough set theory is used to handle uncertainty and incomplete information by applying two accurate sets, Lower approximation and Upper approximation. In this paper, the rough clustering algorithms are improved by adopting the Similarity, Dissimilarity–Similarity and Entropy based initial centroids selection method on three different clustering algorithms namely Entropy based Rough K-Means (ERKM), Similarity based Rough K-Means (SRKM) and Dissimilarity-Similarity based Rough K-Means (DSRKM) were developed and executed by yeast dataset. The rough clustering algorithms are validated by cluster validity indexes namely Rand and Adjusted Rand indexes. An experimental result shows that the ERKM clustering algorithm perform effectively and delivers better results than other clustering methods. Outlier detection is an important task in data mining and very much different from the rest of the objects in the clusters. Entropy based Rough Outlier Factor (EROF) method is seemly to detect outlier effectively for yeast dataset. In rough K-Means method, by tuning the epsilon (ᶓ) value from 0.8 to 1.08 can detect outliers on boundary region and the RKM algorithm delivers better results, when choosing the value of epsilon (ᶓ) in the specified range. An experimental result shows that the EROF method on clustering algorithm performed very well and suitable for detecting outlier effectively for all datasets. Further, experimental readings show that the ERKM clustering method outperformed the other methods.
Keywords: Clustering, Entropy, Outlier, Rough K-Means, validity index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14164968 Realtime Lip Contour Tracking For Audio-Visual Speech Recognition Applications
Authors: Mehran Yazdi, Mehdi Seyfi, Amirhossein Rafati, Meghdad Asadi
Abstract:
Detection and tracking of the lip contour is an important issue in speechreading. While there are solutions for lip tracking once a good contour initialization in the first frame is available, the problem of finding such a good initialization is not yet solved automatically, but done manually. We have developed a new tracking solution for lip contour detection using only few landmarks (15 to 25) and applying the well known Active Shape Models (ASM). The proposed method is a new LMS-like adaptive scheme based on an Auto regressive (AR) model that has been fit on the landmark variations in successive video frames. Moreover, we propose an extra motion compensation model to address more general cases in lip tracking. Computer simulations demonstrate a fair match between the true and the estimated spatial pixels. Significant improvements related to the well known LMS approach has been obtained via a defined Frobenius norm index.Keywords: Lip contour, Tracking, LMS-Like
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18024967 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm
Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee
Abstract:
Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.
Keywords: Enhanced ideal gas molecular movement, Kriging, probability-based damage detection, probability of damage existence, surrogate modeling, uncertainty quantification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9514966 Invariant Characters of Tolerance Class and Reduction under Homomorphism in IIS
Authors: Chen Wu, Lijuan Wang
Abstract:
Some invariant properties of incomplete information systems homomorphism are studied in this paper. Demand conditions of tolerance class, attribute reduction, indispensable attribute and dispensable attribute being invariant under homomorphism in incomplete information system are revealed and discussed. The existing condition of endohomomorphism on an incomplete information system is also explored. It establishes some theoretical foundations for further investigations on incomplete information systems in rough set theory, like in information systems.
Keywords: Attribute reduction, homomorphism, incomplete information system, rough set, tolerance relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7474965 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network
Authors: Z. Abdollahi Biron, P. Pisu
Abstract:
Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.
Keywords: Fault diagnostics, communication network, connected vehicles, packet drop out, platoon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20054964 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults
Authors: Sarah Odofin, Zhiwei Gao, Sun Kai
Abstract:
Operations, maintenance and reliability of wind turbines have received much attention over the years due to the rapid expansion of wind farms. This paper explores early fault diagnosis technique for a 5MW wind turbine system subjected to multiple faults, where genetic optimization algorithm is employed to make the residual sensitive to the faults, but robust against disturbances. The proposed technique has a potential to reduce the downtime mostly caused by the breakdown of components and exploit the productivity consistency by providing timely fault alarms. Simulation results show the effectiveness of the robust fault detection methods used under Matlab/Simulink/Gatool environment.
Keywords: Disturbance robustness, fault monitoring and detection, genetic algorithm and observer technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25624963 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor
Authors: Abdelsalam A. Ahmed
Abstract:
Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is derived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.Keywords: Permanent magnet synchronous motor, mode predictive control, optimization of DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31064962 A Fast Replica Placement Methodology for Large-scale Distributed Computing Systems
Authors: Samee Ullah Khan, C. Ardil
Abstract:
Fine-grained data replication over the Internet allows duplication of frequently accessed data objects, as opposed to entire sites, to certain locations so as to improve the performance of largescale content distribution systems. In a distributed system, agents representing their sites try to maximize their own benefit since they are driven by different goals such as to minimize their communication costs, latency, etc. In this paper, we will use game theoretical techniques and in particular auctions to identify a bidding mechanism that encapsulates the selfishness of the agents, while having a controlling hand over them. In essence, the proposed game theory based mechanism is the study of what happens when independent agents act selfishly and how to control them to maximize the overall performance. A bidding mechanism asks how one can design systems so that agents- selfish behavior results in the desired system-wide goals. Experimental results reveal that this mechanism provides excellent solution quality, while maintaining fast execution time. The comparisons are recorded against some well known techniques such as greedy, branch and bound, game theoretical auctions and genetic algorithms.
Keywords: Data replication, auctions, static allocation, pricing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16974961 Straight Line Defect Detection with Feed Forward Neural Network
Authors: S. Liangwongsan, A. Oonsivilai
Abstract:
Nowadays, hard disk is one of the most popular storage components. In hard disk industry, the hard disk drive must pass various complex processes and tested systems. In each step, there are some failures. To reduce waste from these failures, we must find the root cause of those failures. Conventionall data analysis method is not effective enough to analyze the large capacity of data. In this paper, we proposed the Hough method for straight line detection that helps to detect straight line defect patterns that occurs in hard disk drive. The proposed method will help to increase more speed and accuracy in failure analysis.
Keywords: Hough Transform, Failure Analysis, Media, Hard Disk Drive
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20964960 Face Detection using Gabor Wavelets and Neural Networks
Authors: Hossein Sahoolizadeh, Davood Sarikhanimoghadam, Hamid Dehghani
Abstract:
This paper proposes new hybrid approaches for face recognition. Gabor wavelets representation of face images is an effective approach for both facial action recognition and face identification. Perform dimensionality reduction and linear discriminate analysis on the down sampled Gabor wavelet faces can increase the discriminate ability. Nearest feature space is extended to various similarity measures. In our experiments, proposed Gabor wavelet faces combined with extended neural net feature space classifier shows very good performance, which can achieve 93 % maximum correct recognition rate on ORL data set without any preprocessing step.Keywords: Face detection, Neural Networks, Multi-layer Perceptron, Gabor wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21674959 Secure Power Systems Against Malicious Cyber-Physical Data Attacks: Protection and Identification
Authors: Morteza Talebi, Jianan Wang, Zhihua Qu
Abstract:
The security of power systems against malicious cyberphysical data attacks becomes an important issue. The adversary always attempts to manipulate the information structure of the power system and inject malicious data to deviate state variables while evading the existing detection techniques based on residual test. The solutions proposed in the literature are capable of immunizing the power system against false data injection but they might be too costly and physically not practical in the expansive distribution network. To this end, we define an algebraic condition for trustworthy power system to evade malicious data injection. The proposed protection scheme secures the power system by deterministically reconfiguring the information structure and corresponding residual test. More importantly, it does not require any physical effort in either microgrid or network level. The identification scheme of finding meters being attacked is proposed as well. Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the proposed schemes.Keywords: Algebraic Criterion, Malicious Cyber-Physical Data Injection, Protection and Identification, Trustworthy Power System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19974958 A New Application of Stochastic Transformation
Authors: Nilar Win Kyaw
Abstract:
In cryptography, confusion and diffusion are very important to get confidentiality and privacy of message in block ciphers and stream ciphers. There are two types of network to provide confusion and diffusion properties of message in block ciphers. They are Substitution- Permutation network (S-P network), and Feistel network. NLFS (Non-Linear feedback stream cipher) is a fast and secure stream cipher for software application. NLFS have two modes basic mode that is synchronous mode and self synchronous mode. Real random numbers are non-deterministic. R-box (random box) based on the dynamic properties and it performs the stochastic transformation of data that can be used effectively meet the challenges of information is protected from international destructive impacts. In this paper, a new implementation of stochastic transformation will be proposed.Keywords: S-P network, Feistel network, R-block, stochastic transformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15174957 Evaluation of a Multi-Resolution Dyadic Wavelet Transform Method for usable Speech Detection
Authors: Wajdi Ghezaiel, Amel Ben Slimane Rahmouni, Ezzedine Ben Braiek
Abstract:
Many applications of speech communication and speaker identification suffer from the problem of co-channel speech. This paper deals with a multi-resolution dyadic wavelet transform method for usable segments of co-channel speech detection that could be processed by a speaker identification system. Evaluation of this method is performed on TIMIT database referring to the Target to Interferer Ratio measure. Co-channel speech is constructed by mixing all possible gender speakers. Results do not show much difference for different mixtures. For the overall mixtures 95.76% of usable speech is correctly detected with false alarms of 29.65%.Keywords: Co-channel speech, usable speech, multi-resolutionanalysis, speaker identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13684956 Multiple Input Multiple Output Detection Using Roulette Wheel Based Ant Colony Optimization Technique
Authors: B. Rebekka, B. Malarkodi
Abstract:
This paper describes an approach to detect the transmitted signals for 2×2 Multiple Input Multiple Output (MIMO) setup using roulette wheel based ant colony optimization technique. The results obtained are compared with classical zero forcing and least mean square techniques. The detection rates achieved using this technique are consistently larger than the one achieved using classical methods for 50 number of attempts with two different antennas transmitting the input stream from a user. This paves the path to use alternative techniques to improve the throughput achieved in advanced networks like Long Term Evolution (LTE) networks.Keywords: MIMO, ant colony optimization, roulette wheel, soft computing, LTE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10794955 Detection of Bias in GPS satellites- Measurements for Enhanced Measurement Integrity
Authors: Mamoun F. Abdel-Hafez
Abstract:
In this paper, the detection of a fault in the Global Positioning System (GPS) measurement is addressed. The class of faults considered is a bias in the GPS pseudorange measurements. This bias is modeled as an unknown constant. The fault could be the result of a receiver fault or signal fault such as multipath error. A bias bank is constructed based on set of possible fault hypotheses. Initially, there is equal probability of occurrence for any of the biases in the bank. Subsequently, as the measurements are processed, the probability of occurrence for each of the biases is sequentially updated. The fault with a probability approaching unity will be declared as the current fault in the GPS measurement. The residual formed from the GPS and Inertial Measurement Unit (IMU) measurements is used to update the probability of each fault. Results will be presented to show the performance of the presented algorithm.
Keywords: Estimation and filtering, Statistical data analysis, Faultdetection and identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19714954 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection
Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane
Abstract:
Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.
Keywords: MOOC, Massive Open Online Courses, Online learning, E-learning, Blended learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9434953 Research Topic Map Construction
Authors: Hei-Chia Wang, Che-Tsung Yang
Abstract:
While the explosive increase in information published on the Web, researchers have to filter information when searching for conference related information. To make it easier for users to search related information, this paper uses Topic Maps and social information to implement ontology since ontology can provide the formalisms and knowledge structuring for comprehensive and transportable machine understanding that digital information requires. Besides enhancing information in Topic Maps, this paper proposes a method of constructing research Topic Maps considering social information. First, extract conference data from the web. Then extract conference topics and the relationships between them through the proposed method. Finally visualize it for users to search and browse. This paper uses ontology, containing abundant of knowledge hierarchy structure, to facilitate researchers getting useful search results. However, most previous ontology construction methods didn-t take “people" into account. So this paper also analyzes the social information which helps researchers find the possibilities of cooperation/combination as well as associations between research topics, and tries to offer better results.Keywords: Ontology, topic maps, social information, co-authorship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18054952 Earnings-Related Information, Cognitive Bias, and the Disposition Effect
Authors: Chih-Hsiang Chang, Pei-Shan Kao
Abstract:
This paper discusses the reaction of investors in the Taiwan stock market to the most probable unknown earnings-related information and the most probable known earnings-related information. As compared with the previous literature regarding the effect of an official announcement of earnings forecast revision, this paper further analyzes investors’ cognitive bias toward the unknown and known earnings-related information, and the role of media during the investors' reactions to the foresaid information shocks. The empirical results show that both the unknown and known earnings-related information provides useful information content for a stock market. In addition, cognitive bias and disposition effect are the behavioral pitfalls that commonly occur in the process of the investors' reactions to the earnings-related information. Finally, media coverage has a remarkable influence upon the investors' trading decisions.Keywords: Cognitive bias, role of media, disposition effect, earnings-related information, behavioral pitfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8784951 Information Entropy of Isospectral Hydrogen Atom
Authors: Anil Kumar, C. Nagaraja Kumar
Abstract:
The position and momentum space information entropies of hydrogen atom are exactly evaluated. Using isospectral Hamiltonian approach, a family of isospectral potentials is constructed having same energy eigenvalues as that of the original potential. The information entropy content is obtained in position space as well as in momentum space. It is shown that the information entropy content in each level can be re-arranged as a function of deformation parameter.Keywords: Information Entropy, BBM inequality, Isospectral Potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21744950 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks
Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó
Abstract:
One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7294949 Exploring Perceptions and Practices About Information and Communication Technologies in Business English Teaching in Pakistan
Authors: M. Athar Hussain, N.B. Jumani, Munazza Sultana., M. Zafar Iqbal
Abstract:
Language Reforms and potential use of ICTs has been a focal area of Higher Education Commission of Pakistan. Efforts are being accelerated to incorporate fast expanding ICTs to bring qualitative improvement in language instruction in higher education. This paper explores how university teachers are benefitting from ICTs to make their English class effective and what type of problems they face in practicing ICTs during their lectures. An in-depth qualitative study was employed to understand why language teachers tend to use ICTs in their instruction and how they are practicing it. A sample of twenty teachers from five universities located in Islamabad, three from public sector and two from private sector, was selected on non-random (Snowball) sampling basis. An interview with 15 semi-structured items was used as research instruments to collect data. The findings reveal that business English teaching is facilitated and improved through the use of ICTs. The language teachers need special training regarding the practices and implementation of ICTs. It is recommended that initiatives might be taken to equip university language teachers with modern methodology incorporating ICTs as focal area and efforts might be made to remove barriers regarding the training of language teachers and proper usage of ICTs.
Keywords: Information and communication technologies, internet assisted learning, teaching business English, online instructional content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19494948 DWM-CDD: Dynamic Weighted Majority Concept Drift Detection for Spam Mail Filtering
Authors: Leili Nosrati, Alireza Nemaney Pour
Abstract:
Although e-mail is the most efficient and popular communication method, unwanted and mass unsolicited e-mails, also called spam mail, endanger the existence of the mail system. This paper proposes a new algorithm called Dynamic Weighted Majority Concept Drift Detection (DWM-CDD) for content-based filtering. The design purposes of DWM-CDD are first to accurate the performance of the previously proposed algorithms, and second to speed up the time to construct the model. The results show that DWM-CDD can detect both sudden and gradual changes quickly and accurately. Moreover, the time needed for model construction is less than previously proposed algorithms.
Keywords: Concept drift, Content-based filtering, E-mail, Spammail.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19664947 Shape Sensing and Damage Detection of Thin-Walled Cylinders Using an Inverse Finite Element Method
Authors: Ionel D. Craiu, Mihai Nedelcu
Abstract:
Thin-walled cylinders are often used by the offshore industry as columns of floating installations. Based on observed strains, the inverse Finite Element Method (iFEM) may rebuild the deformation of structures. Structural Health Monitoring uses this approach extensively. However, the number of in-situ strain gauges is what determines how accurate it is, and for shell structures with complicated deformation, this number can easily become too high for practical use. Any thin-walled beam member's complicated deformation can be modeled by the Generalized Beam Theory (GBT) as a linear combination of pre-specified cross-section deformation modes. GBT uses bar finite elements as opposed to shell finite elements. This paper proposes an iFEM/GBT formulation for the shape sensing of thin-walled cylinders based on these benefits. This method significantly reduces the number of strain gauges compared to using the traditional inverse-shell finite elements. Using numerical simulations, dent damage detection is achieved by comparing the strain distributions of the undamaged and damaged members. The effect of noise on strain measurements is also investigated.
Keywords: Damage detection, generalized beam theory, inverse finite element method, shape sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654946 Many-Sided Self Risk Analysis Model for Information Asset to Secure Stability of the Information and Communication Service
Authors: Jin-Tae Lee, Jung-Hoon Suh, Sang-Soo Jang, Jae-Il Lee
Abstract:
Information and communication service providers (ICSP) that are significant in size and provide Internet-based services take administrative, technical, and physical protection measures via the information security check service (ISCS). These protection measures are the minimum action necessary to secure the stability and continuity of the information and communication services (ICS) that they provide. Thus, information assets are essential to providing ICS, and deciding the relative importance of target assets for protection is a critical procedure. The risk analysis model designed to decide the relative importance of information assets, which is described in this study, evaluates information assets from many angles, in order to choose which ones should be given priority when it comes to protection. Many-sided risk analysis (MSRS) grades the importance of information assets, based on evaluation of major security check items, evaluation of the dependency on the information and communication facility (ICF) and influence on potential incidents, and evaluation of major items according to their service classification, in order to identify the ISCS target. MSRS could be an efficient risk analysis model to help ICSPs to identify their core information assets and take information protection measures first, so that stability of the ICS can be ensured.Keywords: Information Asset, Information CommunicationFacility, Evaluation, ISCS (Information Security Check Service), Evaluation, Grade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14514945 Adjustment of a PET Scanner for PEPT
Authors: Alireza Sadrmomtaz
Abstract:
Positron emission particle tracking (PEPT) is a technique in which a single radioactive tracer particle can be accurately tracked as it moves. A limitation of PET is that in order to reconstruct a tomographic image it is necessary to acquire a large volume of data (millions of events), so it is difficult to study rapidly changing systems. By considering this fact, PEPT is a very fast process compared with PET. In PEPT detecting both photons defines a line and the annihilation is assumed to have occurred somewhere along this line. The location of the tracer can be determined to within a few mm from coincident detection of a small number of pairs of back-to-back gamma rays and using triangulation. This can be achieved many times per second and the track of a moving particle can be reliably followed. This technique was invented at the University of Birmingham [1]. The attempt in PEPT is not to form an image of the tracer particle but simply to determine its location with time. If this tracer is followed for a long enough period within a closed, circulating system it explores all possible types of motion. The application of PEPT to industrial process systems carried out at the University of Birmingham is categorized in two subjects: the behaviour of granular materials and viscous fluids. Granular materials are processed in industry for example in the manufacture of pharmaceuticals, ceramics, food, polymers and PEPT has been used in a number of ways to study the behaviour of these systems [2]. PEPT allows the possibility of tracking a single particle within the bed [3]. Also PEPT has been used for studying systems such as: fluid flow, viscous fluids in mixers [4], using a neutrally-buoyant tracer particle [5].Keywords: PET, BGO, Particle Tracking, ECAT 931, List mode, PEPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14084944 Network Based Intrusion Detection and Prevention Systems in IP-Level Security Protocols
Authors: R. Kabila
Abstract:
IPsec has now become a standard information security technology throughout the Internet society. It provides a well-defined architecture that takes into account confidentiality, authentication, integrity, secure key exchange and protection mechanism against replay attack also. For the connectionless security services on packet basis, IETF IPsec Working Group has standardized two extension headers (AH&ESP), key exchange and authentication protocols. It is also working on lightweight key exchange protocol and MIB's for security management. IPsec technology has been implemented on various platforms in IPv4 and IPv6, gradually replacing old application-specific security mechanisms. IPv4 and IPv6 are not directly compatible, so programs and systems designed to one standard can not communicate with those designed to the other. We propose the design and implementation of controlled Internet security system, which is IPsec-based Internet information security system in IPv4/IPv6 network and also we show the data of performance measurement. With the features like improved scalability and routing, security, ease-of-configuration, and higher performance of IPv6, the controlled Internet security system provides consistent security policy and integrated security management on IPsec-based Internet security system.Keywords: IDS, IPS, IP-Sec, IPv6, IPv4, VPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45454943 Vehicle Position Estimation for Driver Assistance System
Authors: Hyun-Koo Kim, Sangmoon Lee, Ho-Youl Jung, Ju H. Park
Abstract:
We present a system that finds road boundaries and constructs the virtual lane based on fusion data from a laser and a monocular sensor, and detects forward vehicle position even in no lane markers or bad environmental conditions. When the road environment is dark or a lot of vehicles are parked on the both sides of the road, it is difficult to detect lane and road boundary. For this reason we use fusion of laser and vision sensor to extract road boundary to acquire three dimensional data. We use parabolic road model to calculate road boundaries which is based on vehicle and sensors state parameters and construct virtual lane. And then we distinguish vehicle position in each lane.Keywords: Vehicle Detection, Adaboost, Haar-like Feature, Road Boundary Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16434942 Efficient Secured Lossless Coding of Medical Images– Using Modified Runlength Coding for Character Representation
Authors: S. Annadurai, P. Geetha
Abstract:
Lossless compression schemes with secure transmission play a key role in telemedicine applications that helps in accurate diagnosis and research. Traditional cryptographic algorithms for data security are not fast enough to process vast amount of data. Hence a novel Secured lossless compression approach proposed in this paper is based on reversible integer wavelet transform, EZW algorithm, new modified runlength coding for character representation and selective bit scrambling. The use of the lifting scheme allows generating truly lossless integer-to-integer wavelet transforms. Images are compressed/decompressed by well-known EZW algorithm. The proposed modified runlength coding greatly improves the compression performance and also increases the security level. This work employs scrambling method which is fast, simple to implement and it provides security. Lossless compression ratios and distortion performance of this proposed method are found to be better than other lossless techniques.Keywords: EZW algorithm, lifting scheme, losslesscompression, reversible integer wavelet transform, securetransmission, selective bit scrambling, modified runlength coding .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369