
 

 
Abstract—Thin-walled cylinders are often used by the offshore 

industry as columns of floating installations. Based on observed 
strains, the inverse Finite Element Method (iFEM) may rebuild the 
deformation of structures. Structural Health Monitoring uses this 
approach extensively. However, the number of in-situ strain gauges is 
what determines how accurate it is, and for shell structures with 
complicated deformation, this number can easily become too high for 
practical use. Any thin-walled beam member's complicated 
deformation can be modeled by the Generalized Beam Theory (GBT) 
as a linear combination of pre-specified cross-section deformation 
modes. GBT uses bar finite elements as opposed to shell finite 
elements. This paper proposes an iFEM/GBT formulation for the shape 
sensing of thin-walled cylinders based on these benefits. This method 
significantly reduces the number of strain gauges compared to using 
the traditional inverse-shell finite elements. Using numerical 
simulations, dent damage detection is achieved by comparing the strain 
distributions of the undamaged and damaged members. The effect of 
noise on strain measurements is also investigated.  
 

Keywords—Damage detection, generalized beam theory, inverse 
finite element method, shape sensing.  

I. INTRODUCTION 

HAPE monitoring stands as a pivotal concern of Structural 
Health Monitoring across various domains, encompassing 

ocean engineering (ship and submarine hulls, floating offshore 
installations), civil engineering (bridges, wind turbines), and 
aerospace engineering (aircraft wings). This paper presents an 
approach for monitoring floating offshore or land-based wind 
turbines. The focus is on shape sensing and identifying potential 
damage for the thin-walled cylinders acting as columns to such 
structures. The study is based on the shape sensing formulation 
recently developed by Nedelcu [1] for thin-walled cylinders, 
which relies on the iFEM originally developed by Tessler and 
Spangler [2], [3], combined with the GBT [4]. GBT is a bar 
theory that has the capability to describe the complex 
deformation of any thin-walled beam member as a linear 
combination of pre-determined cross section deformation 
modes. iFEM can find the degrees of freedom (DOF) and 
consequently reconstruct the displacement/strain field, by 
minimizing the differences between measured and theoretical 
strains. The iFEM/GBT formulation significantly reduces the 
DOF number and as a result, the strain measurement points, as 
evidenced in [1]. Furthermore, Li et al. [5] developed a 
technique for detecting damage that takes into account the 
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differences between the strains reconstructed from undamaged 
and damaged structures. This proposed damage parameter will 
be employed in this study, in combination with the iFEM/GBT 
approach. In this study, the effects of noisy strain measurements 
on the accuracy of the iFEM solution, initially studied by Kefal 
et al. [6], is also examined, using strain measurements affected 
by random noise. Finally, three numerical examples are 
presented to validate the proposed theory. For these, the 
measured strains will be simulated using a shell FE analysis. 

II. GENERALIZED BEAM THEORY FOR CYLINDRICAL SHELLS 

Fig. 1 shows the configuration of a cylindrical element, 
characterized by its length (L), its radius (r) and its thickness 
(t). The coordinate systems include the global and local 
coordinate systems (X, Y, Z) and (x, θ, z) respectively. By 
employing Kirchhoff's thin plate assumption, the displacements 
of the shell are derived from the mid-surface displacements. 
Specifically, the meridional, circumferential and transversal 
displacements along the local axes are represented by u, v and 
w respectively. 

 

 

Fig. 1 The components of displacements in the local and global 
coordinate system 

A.  Linear Kinematic Relations 

According to the Love-Timoshenko theory, the linear 
kinematic relations in the case of cylindrical shells are [1]: 
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According to GBT, the mid-surface displacements u, v and 

w are expressed as a linear combination of orthogonal functions 
as in (2), where uk(θ), vk(θ), wk(θ) are the cross-section 
displacement functions for mode k while 𝜙𝑘(𝑥) is the 
corresponding modal amplitude function defined along the 
length [1]. 

 

𝑢 ∑ 𝑢 𝜃 𝜙 , 𝑥 ,  
 

 𝑣 ∑ 𝑣 𝜃 𝜙 𝑥        (2) 
 

𝑤 ∑ 𝑤 𝜃 𝜙 𝑥   

B. Shell-Type Deformation Modes 

The conventional GBT commonly supposes that membrane 
shear strains (𝛾𝑥𝜃𝑀 , and transverse strains (𝜀𝜃𝜃𝑀  have 
negligible effect, as mentioned in [7]. Thus, considering them 
null and using (1), the displacement components of the cross-
section, vk(θ) and wk(θ) can be obtained based on the warping 
component, uk(θ).  

 

 𝑣 , ;   𝑤 𝑣 ,  ,      (3) 

 
In the case of circular closed cross-sections, two independent 

sets of trigonometric functions, which are given in (4), have 
been widely used in previous research papers [1], [7]. There, n 
represents the number of shell modes that are considered.  

 

𝑢
 𝑟sin 𝑚𝜃 , 𝑚 , 𝑘 1,3,5, … 𝑛 1 

𝑟cos 𝑚𝜃 , 𝑚 , 𝑘 2, 4, 6, … 𝑛 
   (4) 

 
Fig. 2 shows the in-plane shapes of the first 12 shell-type 

deformation modes. 
 

 

Fig. 2 The shell-type deformation modes (in-plane shapes) 

C. Shear Deformation Modes 

During the previous research [1], [7], it was found that 
Vlasov's hypothesis (𝛾 0) has certain limitations that can 
lead to significant errors because the shell-type deformation 
modes are not capable to capture the membrane shear effect on 
the member deformation (especially for short members). For 

this reason, Nedelcu [1] considered the next shear modes, which 
will be adopted here as well: 
 "Shear v-w" modes: uk = 0; vk and wk remain as described 

for shell-type modes (see (3) and (4)). 

D. Additional Deformation Modes 

Due to the assumptions used (𝛾 0 and 𝜀𝜃𝜃𝑀 0 , the 
previously presented deformation modes cannot represent three 
fundamental deformation types and for this reason, the 
following additional deformation modes are introduced [1]-[7]: 
• Axial extension mode: ue = 1, ve = 0, we = 0;     
• Axisymmetric extension mode: ua = 0, va = 0, wa = 1;  
• Torsion mode: ut = 0, vt = r, wt = 0.  

 

 

Fig. 3 The additional modes: (a) axial extension, (b) axisymmetric 
extension, (c) torsion 

E. GBT Finite Element Formulation  

To find the displacement field, it is necessary to use 
amplitude functions, defined as 𝜙𝑘(𝑥), associated with the 
deformation modes of the known cross section. To approximate 
these amplitude functions, Nedelcu [1] used the polynomial 
shape functions proposed by Silvestre and Camotim [8] and 
Basaglia et al. [9] involving Lagrange and Hermite cubic 
polynomial primitives. These shape functions were 
successfully adopted in this paper as well. 

By incorporating the shape functions in the kinematic 
relations given in (1), the relations between the strain 
components and the DOF vector (qe) at the FE level, are found 
as in (5): 

 

 
𝜀
𝜀
𝛾

𝐵
𝐵
𝐵

𝑞          (5) 

 
where Bxx, Bθθ, Bxθ are the “strain-DOF” matrices. 

III. IFEM/GBT FORMULATION 

The determination of DOF in iFEM involves the 
minimization of differences between theoretical strains e(q) = 
{εxx, εθθ, γxθ}T and the measured strains eε. This optimization is 
realized through the minimization of a weighted least-squares 
functional Ф with respect to the nodal DOF. 

 
 Φ 𝒒 ‖𝐞 𝒒 𝐞𝜺‖        (6) 

 
The thin-walled cylinder is discretized into longitudinal 1D 

inverse finite elements. For each finite element, a distinct 
functional Φe(qe) is formulated in the following manner: 
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 Φ 𝒒𝒆 ∑   𝜔 𝜀𝒙𝒙 𝒒𝒆
𝒊 𝜀𝒙𝒙 𝒊  𝜔 𝜀 𝒒𝒆

𝒊

𝜀 𝒊  𝜔 𝛾𝒙 𝒒𝒆
𝒊 𝛾𝒙 𝒊  (7) 

 
In (7), nε is the number of strain points within the FE and ωxx, 

ωθθ and ωxθ are the weighting coefficients associated with the 
strain components (in this study, they are all equal to 1).  

The least squares functional is minimized with respect to the 
DOF, resulting in the following expression (where 𝒌𝑒 is the 
coefficient matrix and 𝒇𝑒 is the constant terms vector depending 
on the measured strains): 

 
 𝑘 𝑞 𝑓            (8) 

 

𝒌 ∑ 𝐵 𝒊 𝐵 𝒊 𝐵 𝒊 𝐵 𝒊 𝐵 𝒊 𝐵 𝒊  (9) 
 

𝒇 ∑ 𝜀𝒙𝒙 𝒊 𝐵 𝒊 𝜀 𝒊 𝐵 𝒊 𝛾𝒙 𝒊 𝐵 𝒊 (10) 
 

The comprehensive set of equations, Kq = F, is subsequently 
constructed for the entire model. Here, K is a non-singular 
matrix that remains constant for a given distribution of FEs and 
strain points. The F vector is dependent on the measured strains 
and needs to be updated for each new measurement.  

IV. GBT MODAL IDENTIFICATION 

The modal identification, developed for the first time by 
Nedelcu [1] for cylindrical members, has the role of identifying 
the deformation modes with a substantial influence on the 
behavior of the element, under different loads and support. This 
method is based on the orthogonality properties of the 
deformation modes (for example, ∮ 𝑢𝑘𝑢𝑖 𝑑𝜃 = 0, for any k ≠ i). 

A large number of deformation modes are initially proposed, 
after which the integral of the product of the cross-section 
displacement functions is calculated for each shell-type and 
additional mode as follows: 

 
 𝐼 ∮ 𝑢 𝑢 𝑑𝜃,  𝐼 ∮ 𝑣 𝑣 𝑑𝜃,  𝐼 ∮ 𝑤 𝑤 𝑑𝜃   (11) 

 
Next, an FE shell model is performed and after the analysis, 

the displacement field is extracted in the global coordinate 
system (UFE, VFE, WFE). This is later transformed into the local 
coordinate system resulting in uFE(θ, x), vFE(θ,x), wFE(θ,x). 

Numerical integration is then performed to find the 
amplitude modal functions 𝜙(𝑥) and their derivatives 𝜙𝑘,𝑥(𝑥) in 
any cross-section j, as in (12): 

 

𝜙 , 𝑥
∮ ,

  

 

 𝜙 𝑥
∮ ,

                       (12) 

 

 𝜙 𝑥  
∮ ,

  

V. OPTIMIZING THE SENSOR/FE CONFIGURATION 

The optimization process for determining the number and 

positions of sensor points, corroborated with the configuration 
of the 1D finite element (FE) mesh, can be strategically 
improved according to the following steps: 
1. An analysis utilizing shell-type finite elements is realized 

to extract strain and displacement fields; 
2. Modal identification is executed based on the displacement 

field, leading to the discovery of significant GBT 
deformation modes; 

3. An initial configuration of sensor points and a 1D FE mesh 
is proposed; 

4. Simulated measured strains eε are extracted in the sensor 
locations; 

5. The iFEM/GBT analysis employs the relevant GBT 
deformation modes and the simulated measured strains eε 
to reconstruct the displacement field (Uinv). 

6. A comparison is made between the reconstructed 
displacements (Uinv) and the displacements obtained from 
the FE shell analysis (UFE) using the total displacements 
𝑈 √𝑈 𝑉 𝑊 ; 

7. The error indicator is the maximum relative error. If this 
indicator falls below a predetermined tolerance, the final 
sensor configuration is considered optimal. If the error 
indicator exceeds the tolerance, a new sensor/FE 
configuration is proposed, and the analysis recommences 
from step 4. 

VI. DAMAGE DETECTION 

The primary aim of this paper is to identify potential areas of 
damage within the analyzed cylindrical structure. This damage 
detection process involves a comparison between the 
distributions of von Mises strains in the undamaged state 
(εundamaged) and the damaged state (εdamaged) of the member. The 
evaluation of damage is quantified using the parameter D, 
introduced by Li et al. [5], which is computed as in (13). There, 
μ is Poisson’s ratio. 

 

 𝐷
ɛ  ɛ 

ɛ 
        (13) 

 

 ɛ 
ɛ ɛ ɛ ɛ ɛ ɛ

√
    (14) 

 
 ɛ  ɛ ɛ        (15) 

VII. THE EFFECTS OF NOISY STRAIN MEASUREMENTS ON THE 

ACCURACY OF THE IFEM SOLUTION  

An important aspect that should not be overlooked in the case 
of measurements with strain rosettes, is the influence of noise 
that can appear in the circuits and can disturb the desired signal. 

Kefal et al. [6] took into account the influence of noise on the 
measurements, using the SNR parameter. SNR (Signal-to-
Noise Ratio) represents the ratio between the power of the 
desired signal and the power of the background noise in 
measurement. Essentially, SNR characterizes how clear or 
distinct the signal is in comparison to the level of noise present. 
A higher SNR value indicates that the signal is stronger 
compared to the noise. A lower SNR value indicates that the 
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signal is less dominant compared to the noise. 
 

 𝑆𝑁𝑅  10𝑙𝑜𝑔        (16) 

 
where Psignal and Pnoise are respectively the average power of the 
signal and noise [6]. 

In this paper, the influence of noise on measurements was 
studied for two SNR values (13.01 db and 6.91db), as described 
in the next chapter. The presence of noise in the measurements 
was simulated by introducing white Gaussian noise, using the 
"awgn" function in MATLAB [11]. White Gaussian noise is a 
type of random signal with zero mean and following a Gaussian 
(normal) probability distribution. 

VIII. NUMERICAL EXAMPLES 

To validate the proposed theory, three numerical examples 
were made, using Abaqus [10] and MATLAB [11]. These 
include the same geometry for the cylinder (L = 300 mm, r = 50 
mm and t = 1 mm) and the same material properties (Young's 
modulus E = 210 GPa and Poisson ratio μ = 0.3). All three 
elements are fixed at one end and free at the opposite end. Each 
example has different loading conditions, as will be presented 
later. 

The main objective was damage detection, using the 
parameter D, described in Chapter IV. Moreover, the influence 
of noise on the measurements was included, both for shape 
sensing and damage detection.  

The next three steps were followed for all numerical 
examples: 
1) For each example, modeling was performed in Abaqus 

[10], using shell S4R linear quadrilateral finite elements. 
There are 60 nodes on cross-section and 64 on the 
meridian. The damage is induced in the FE shell model at 
different positions by reducing Young's modulus in the 
damaged region. This region covers a very small area given 
by four connected shell FEs. There are two cases of 
damage, first a major reduction (E = 0.21 MPa) and then a 
minor reduction (E = 190 000 MPa). 

2) After analysis, the simulated strains are extracted at the 

positions of the fictitious strain sensors. To take into 
account the effect of noise, white Gaussian noise was 
introduced over these "measurements" using the SNR 
parameter described in (16). Using (16), the SNR values 
corresponding to 5% noise and 15% noise, can be 
calculated as 13.01 dB and 6.91 dB respectively, as in (17) 
and (18):  

 

 𝑆𝑁𝑅   10𝑙𝑜𝑔 
.

.
  6.91 𝑑𝑏     (17) 

 

 𝑆𝑁𝑅   10𝑙𝑜𝑔 
.

.
  13.01 𝑑𝑏     (18) 

 
3) The iFEM/GBT formulation, modal identification and 

damage detection procedure are implemented using a 
MATLAB application [11]. A tolerance value of 1% for 
maximum relative error was chosen for modal 
identification. The sensor/FE configuration was optimized 
using a tolerance value of 5%. 

The proposed number of strain rosettes for which the 
deformed shape was successfully reconstructed is shown for 
each case. The agreement between the total shell FE 
displacements and the reconstructed displacements, both in the 
presence of noise and without noise, are highlighted. 
Subsequently, the damage parameter D is presented on the 
entire surface using the strains reconstructed based on the 
iFEM/GBT methods, with and without noise. 

B. Member under Uniformly Distributed Axial Load  

Resultant of the distributed load, P = 50 kN; number of 
sensors = 40. 

 

 

Fig. 4 Member under uniformly distributed axial load 
 

 

 

Fig. 5 Sensor configuration and contour plots of Ut displacements (FEM vs. iFEM/GBT) - without noise  
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Fig. 6 Comparison of the strain measurements (γxθ) with 0%, 5% and 15% noise 
 

 

Fig. 7 Contour plots of Ut displacements (iFEM/GBT) - with 5% and 15% noise 
 

 

Fig. 8 Proposed damaged location 
 

 

Fig. 9 Damage detection (iFEM/GBT) - with 0%, 5% and 15% noise (E-damaged = 0.21MPa) 
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Fig. 10 Damage detection (iFEM/GBT) - with 0%, 5% and 15% noise (E-damaged = 190 GPa) 
 

B. Member under Uniformly Distributed Transverse Load 

Load: q = 4 kN/m; because of the symmetry plane of this 
structure (Oxy), it is possible to conduct iFEM/GBT analysis 
on only one half of the cylinder. Thus, 35 sensors (for shape 
sensing) and 77 sensors (for damage detection) were placed on 
half of the geometry. 

 
 
 
 
 
 
 
 

 

Fig. 11 Member under uniformly distributed transverse load 
 

 

Fig. 12 Sensor configuration for shape sensing 
 

 

Fig. 13 Contour plots of Ut displacements (FEM vs. iFEM/GBT) - without noise 
 

 

Fig. 14 Comparison of the strain measurements (εθθ) with 0%, 5% and 15% noise 
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Fig. 15 Contour plots of Ut displacements (iFEM/GBT) - with 5% and 15% noise 

 

 

Fig. 16 Sensor configuration and proposed location for damage detection 
 

 

Fig. 17 Damage detection (iFEM/GBT) - with 0%, 5% and 15% noise (E-damaged = 0.21 MPa) 
 

 

Fig. 18 Damage detection (iFEM/GBT) - with 0%, 5% and 15% noise (E-damaged = 190 GPa) 
 

C. Member under End Loads 

F - loads: Fx = -0.5 kN; Fy = 0.5 kN; Fz = 1 kN; M - loads: 
Mx = -0.5 kNm; My = 1 kNm; Mz = 0.5 kNm; Number of 
sensors = 56. 

 

Fig. 19 Member under end loads 
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Fig. 20 Sensor configuration and contour plots of Ut displacements (FEM vs. iFEM/GBT) - without noise 
 

 

Fig. 21 Comparison of the strain measurements (εxx) with 0%, 5% and 15% noise 
 

 

Fig. 22 Contour plots of Ut displacements (iFEM/GBT) - with 5% and 15% noise 
 

 

Fig. 23 Proposed damaged location 
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Fig. 24 Damage detection (iFEM/GBT) - with 0%, 5% and 15% noise (E-damaged = 0.21 MPa) 
 

 

Fig. 25 Damage detection (iFEM/GBT) - with 0%, 5% and 15% noise (E-damaged = 190 GPa) 
 

IX. CONCLUSIONS 

Analyzing the obtained results, we can see that the proposed 
iFEM/GBT method, together with the damage parameter D, 
offers satisfactory results in terms of detecting potential damage 
that can occur to a cylindrical element. For the case of 
uniformly distributed axial load and the case of loads 
concentrated at the end, the number of sensors required for 
damage detection is the same as that required for shape sensing 
(40 and 56, respectively). For the case of uniformly distributed 
transverse load, an increase in the number of sensors is required 
for the proper detection of damage: from 35 (for shape sensing) 
to 77. It should be noted that for all cases, a very small damaged 
area (approximately 2 cm2) was well detected. Also, the damage 
was correctly detected both for a drastic reduction of Young's 
modulus (E = 0.21 MPa) and for a small reduction (E = 190,000 
MPa). 

Another important aspect that was analyzed refers to the 
influence of noise on the measurement signal. The SNR values 
of 6.91 db and 13.01 db were entered into the analysis, which 
represents a noise contribution of 15% and 5% respectively, 
relative to the unaffected signal. Through the illustrations 
representing the variation of the strains with and without noise, 
it can be seen that the noise influences the measurements, 
especially for a low SNR (6.91 db). But even so, the desired 
results are still obtained. The differences are small between the 
element analyzed without noise and the element analyzed in the 
presence of noise, both for shape sensing and damage detection. 
The best results were obtained with an SNR of 13.01 db, which 
was expected, and it can be said that this SNR value is a good 
estimate of the real noise level. 
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