**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**32912

##### Information Entropy of Isospectral Hydrogen Atom

**Authors:**
Anil Kumar,
C. Nagaraja Kumar

**Abstract:**

**Keywords:**
Information Entropy,
BBM inequality,
Isospectral Potential.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1327786

**References:**

[1] I.I. Hirchman, "A note on entropy," Am. J. Math., vol. 79, 1957, pp. 152-156.

[2] H. Everett, The Many Worlds Interpretation of Quantum Mechanics, Princeton University Press, Princeton, NJ, 1973.

[3] I. Bialinicki-Birula and J. Mycielski, "Uncertainty relations for information entropy in wave mechanics," Commun. Math. Phys., vol. 44, 1975, pp. 129-132.

[4] R. Atre, A. Kumar, C.N. Kumar and P.K. Panigrahi, "Quantuminformation Entropies of the Eigenstates and the Coherent State of the Poschl-Teller Potential," Phys. Rev. A, vol. 69, 2004, pp. 052107(1-6).

[5] D. Deutsch, "Uncertainty in quantum measurements," Phys. Rev. Lett., vol. 50, 1983, pp. 631-633.

[6] I. Bialinicki-Birula, "Entropic uncertainty relations" Phys. Lett. A, vol. 103, 1984, pp. 253-254.

[7] S. Abe and A.K. Rajagopal, "Information theoretic approach to statistical properties of multivariate Cauchy-Lorentz distributions," J. Phys. A: Math Gen., vol. 34, 2001, pp. 8727-8731.

[8] H. Massen and J.B.M. Uffink, "Generalized entropic uncertainty relations," Phys. Rev. Lett., vol. 60, 1990, pp. 1103-1106.

[9] J. Sanchez-Ruiz, "Massen-Uffink entropic uncertainty relation for angular momentum observables," Phys. Lett. A, vol. 181, 1993, pp. 193-198.

[10] M. Krishna and K.R. Parthasarthy, "An entropic uncertainty principle for quantum measurement," arXiv:quant-ph/0110025.

[11] S.E. Massen and C.P. Panos, "Universal property of the information entropy in atoms, nuclei and atomic clusters," Phys Lett. A, vol. 246, 1998, 530-532.

[12] S.R. Gadre and R.D. Bendale, "Regorous relationships among quantum mechanical kinetic energy and atomic information entropies: Upper and lower bound," Phys. Rev. A, vol. 36, 1987, pp. 1932-1935.

[13] S.R. Gadre and R.D. Bendale, "Some novel charactristics of atomic information entropies," Phys. Rev. A, vol. 32, 1995, pp. 2602-2606.

[14] R.J. Yanez, W.V. Assche and J.S. Dehesa, "Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom," Phys. Rev. A, vol. 50, 1994, pp. 3065-3079.

[15] W.V. Assche, R.J. Yang and J.S. Dehesa, "Entropy of orthogonal polynomials with freud weights and information entropies of harmonic oscillator potentials," J. Math. Phys. 36, 1995, pp. 4106-4118.

[16] C.P. Panos and S.E. Massen, "Quantum entropy for nuclei," J. Mod. Phys. E, vol. 6, 1997, pp. 497-505.

[17] V. Majernik and T. Opatrny, "Entropic uncertainty relations for a quantum oscillator," J. Phys. A: Math. Gen., vol. 29, 1996, pp. 2187- 2197.

[18] V. Majernik and L. Richterek, "Entropic uncertainty relations for the infinite well," J. Phys A: Math. Gen., vol. 30, 1997, pp. L49-L54.

[19] E. Aydiner, C. Orta and R. Sever, "Quantum information entropies for the Morse potential," Turk. J. Phys., vol. 30, 2006, pp. 407-410.

[20] K.D. Sen and J. Katriel, "Information entropies for eigendensities of homogeneous potentials," J. Chem. Phys., vol. 125, 2006, pp. 074117(1- 4).

[21] G.C. Ghirardi, L. Marinatto and R. Romano, "An optimal entropic uncertainty relation in a two dimensional Hilbert space," Phys. Lett. A, vol. 317, 2003, pp. 32-36.

[22] V.S. Buyarov, P. Lopez-Artes, A. Martinez-Finkelshtein and W.V. Assche, "Information entropy of Gegenbauer polynomials," J. Phys. A: Math. Gen., vol. 33, 2000, pp. 6549-6560.

[23] G.S. Agarwal and J. Benerji, "Spatial coherence and information entropy in optical vortex fields," Opt. Lett., vol. 27, 2002, pp. 800-802.

[24] S. Abe, "Information entropic uncertainty in the measurement of photon number and phase in optical states," Phys. Lett. A, vol. 166, 1992, pp. 163-167.

[25] M.W. Coffey, "Semiclassical position entropy for Hydrogen like atoms," J. Phys. A: Math. Gen., vol. 36, 2003, pp. 7441-7448.

[26] D.L. Pursey, "New families of isospectral Hamiltonians" Phys. Rev. D, vol. 33, 1986, pp. 1048-1055.

[27] P.B. Abraham and H.E. Moses, "Changes in potentials due to change in the point spectram: Anharmonic oscillators with exact solutionss," Phys. Rev. A, 22, 1980, pp. 1333-1340.

[28] A. Khare and U. Sukhatme, "Phase equivalent potentials obtained from supersymmetry," J. Phys. A: Math. Gen., vol. 22, 1989, pp. 2847-2860.

[29] B. Mielnik, "Factorization method and new potentials with the oscillator spectrum," J. Math. Phys. vol. 25, 1984, pp. 3387-3389.

[30] M.M. Neito, "Relationship between supersymmetry and the inverse methods in quantum mechanics," Phys. Lett. B, vol. 145, 1984, pp. 208- 210.

[31] F. Cooper, A. Khare and U. Sukhatme, "Supersymmetry and quantum mechanics," Phys. Rep., vol. 251, 1995, pp. 267-385.

[32] B. Chakrabarti, "Use of supersymmetric isospectral formalism to realistic quantum many body problems," Pramana: J. Phys., vol. 73, 2009, pp. 405-416.

[33] C.N. Kumar, "Isospectral Hamiltonians: Generation of the soliton profile," J. Phys. A, vol. 20, 1987, pp. 5397-5401.

[34] B. Dey and C.N. Kumar, "New set of kink bearing Hamiltonians," Int. J. Mod. Phys. A, vol. 9, 1994, pp. 2699-2705.

[35] A. Khare and C.N. Kumar, "Landau level spectrum for charged particle in a class of non-uniform magnetic fields," Mod. Phys. Lett. A, vol. 8, 1993, pp. 523-530.

[36] R. Loudon, "One-dimensional hydrogen atom," Am. J. Phys., vol. 27, 1959, 649-655.

[37] G. Palma and U Raff, "The one-dimensional hydrogen atom revisited," Can. J. Phys., vol. 84, 2006, pp. 787-800.