Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30174
Information Entropy of Isospectral Hydrogen Atom

Authors: Anil Kumar, C. Nagaraja Kumar

Abstract:

The position and momentum space information entropies of hydrogen atom are exactly evaluated. Using isospectral Hamiltonian approach, a family of isospectral potentials is constructed having same energy eigenvalues as that of the original potential. The information entropy content is obtained in position space as well as in momentum space. It is shown that the information entropy content in each level can be re-arranged as a function of deformation parameter.

Keywords: Information Entropy, BBM inequality, Isospectral Potential.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1327786

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705

References:


[1] I.I. Hirchman, "A note on entropy," Am. J. Math., vol. 79, 1957, pp. 152-156.
[2] H. Everett, The Many Worlds Interpretation of Quantum Mechanics, Princeton University Press, Princeton, NJ, 1973.
[3] I. Bialinicki-Birula and J. Mycielski, "Uncertainty relations for information entropy in wave mechanics," Commun. Math. Phys., vol. 44, 1975, pp. 129-132.
[4] R. Atre, A. Kumar, C.N. Kumar and P.K. Panigrahi, "Quantuminformation Entropies of the Eigenstates and the Coherent State of the Poschl-Teller Potential," Phys. Rev. A, vol. 69, 2004, pp. 052107(1-6).
[5] D. Deutsch, "Uncertainty in quantum measurements," Phys. Rev. Lett., vol. 50, 1983, pp. 631-633.
[6] I. Bialinicki-Birula, "Entropic uncertainty relations" Phys. Lett. A, vol. 103, 1984, pp. 253-254.
[7] S. Abe and A.K. Rajagopal, "Information theoretic approach to statistical properties of multivariate Cauchy-Lorentz distributions," J. Phys. A: Math Gen., vol. 34, 2001, pp. 8727-8731.
[8] H. Massen and J.B.M. Uffink, "Generalized entropic uncertainty relations," Phys. Rev. Lett., vol. 60, 1990, pp. 1103-1106.
[9] J. Sanchez-Ruiz, "Massen-Uffink entropic uncertainty relation for angular momentum observables," Phys. Lett. A, vol. 181, 1993, pp. 193-198.
[10] M. Krishna and K.R. Parthasarthy, "An entropic uncertainty principle for quantum measurement," arXiv:quant-ph/0110025.
[11] S.E. Massen and C.P. Panos, "Universal property of the information entropy in atoms, nuclei and atomic clusters," Phys Lett. A, vol. 246, 1998, 530-532.
[12] S.R. Gadre and R.D. Bendale, "Regorous relationships among quantum mechanical kinetic energy and atomic information entropies: Upper and lower bound," Phys. Rev. A, vol. 36, 1987, pp. 1932-1935.
[13] S.R. Gadre and R.D. Bendale, "Some novel charactristics of atomic information entropies," Phys. Rev. A, vol. 32, 1995, pp. 2602-2606.
[14] R.J. Yanez, W.V. Assche and J.S. Dehesa, "Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom," Phys. Rev. A, vol. 50, 1994, pp. 3065-3079.
[15] W.V. Assche, R.J. Yang and J.S. Dehesa, "Entropy of orthogonal polynomials with freud weights and information entropies of harmonic oscillator potentials," J. Math. Phys. 36, 1995, pp. 4106-4118.
[16] C.P. Panos and S.E. Massen, "Quantum entropy for nuclei," J. Mod. Phys. E, vol. 6, 1997, pp. 497-505.
[17] V. Majernik and T. Opatrny, "Entropic uncertainty relations for a quantum oscillator," J. Phys. A: Math. Gen., vol. 29, 1996, pp. 2187- 2197.
[18] V. Majernik and L. Richterek, "Entropic uncertainty relations for the infinite well," J. Phys A: Math. Gen., vol. 30, 1997, pp. L49-L54.
[19] E. Aydiner, C. Orta and R. Sever, "Quantum information entropies for the Morse potential," Turk. J. Phys., vol. 30, 2006, pp. 407-410.
[20] K.D. Sen and J. Katriel, "Information entropies for eigendensities of homogeneous potentials," J. Chem. Phys., vol. 125, 2006, pp. 074117(1- 4).
[21] G.C. Ghirardi, L. Marinatto and R. Romano, "An optimal entropic uncertainty relation in a two dimensional Hilbert space," Phys. Lett. A, vol. 317, 2003, pp. 32-36.
[22] V.S. Buyarov, P. Lopez-Artes, A. Martinez-Finkelshtein and W.V. Assche, "Information entropy of Gegenbauer polynomials," J. Phys. A: Math. Gen., vol. 33, 2000, pp. 6549-6560.
[23] G.S. Agarwal and J. Benerji, "Spatial coherence and information entropy in optical vortex fields," Opt. Lett., vol. 27, 2002, pp. 800-802.
[24] S. Abe, "Information entropic uncertainty in the measurement of photon number and phase in optical states," Phys. Lett. A, vol. 166, 1992, pp. 163-167.
[25] M.W. Coffey, "Semiclassical position entropy for Hydrogen like atoms," J. Phys. A: Math. Gen., vol. 36, 2003, pp. 7441-7448.
[26] D.L. Pursey, "New families of isospectral Hamiltonians" Phys. Rev. D, vol. 33, 1986, pp. 1048-1055.
[27] P.B. Abraham and H.E. Moses, "Changes in potentials due to change in the point spectram: Anharmonic oscillators with exact solutionss," Phys. Rev. A, 22, 1980, pp. 1333-1340.
[28] A. Khare and U. Sukhatme, "Phase equivalent potentials obtained from supersymmetry," J. Phys. A: Math. Gen., vol. 22, 1989, pp. 2847-2860.
[29] B. Mielnik, "Factorization method and new potentials with the oscillator spectrum," J. Math. Phys. vol. 25, 1984, pp. 3387-3389.
[30] M.M. Neito, "Relationship between supersymmetry and the inverse methods in quantum mechanics," Phys. Lett. B, vol. 145, 1984, pp. 208- 210.
[31] F. Cooper, A. Khare and U. Sukhatme, "Supersymmetry and quantum mechanics," Phys. Rep., vol. 251, 1995, pp. 267-385.
[32] B. Chakrabarti, "Use of supersymmetric isospectral formalism to realistic quantum many body problems," Pramana: J. Phys., vol. 73, 2009, pp. 405-416.
[33] C.N. Kumar, "Isospectral Hamiltonians: Generation of the soliton profile," J. Phys. A, vol. 20, 1987, pp. 5397-5401.
[34] B. Dey and C.N. Kumar, "New set of kink bearing Hamiltonians," Int. J. Mod. Phys. A, vol. 9, 1994, pp. 2699-2705.
[35] A. Khare and C.N. Kumar, "Landau level spectrum for charged particle in a class of non-uniform magnetic fields," Mod. Phys. Lett. A, vol. 8, 1993, pp. 523-530.
[36] R. Loudon, "One-dimensional hydrogen atom," Am. J. Phys., vol. 27, 1959, 649-655.
[37] G. Palma and U Raff, "The one-dimensional hydrogen atom revisited," Can. J. Phys., vol. 84, 2006, pp. 787-800.