Search results for: Algorithms decision tree
2297 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review
Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough
Abstract:
The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.
Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752296 Implementation and Comparison between Two Algorithms of Three-Level Neutral Point Clamped Voltage Source Inverter
Authors: K. Benamrane, T. Abdelkrim, T. Benslimane, Aeh. Benkhelifa, B. Bezza
Abstract:
This paper presents a comparison between two Pulse Width Modulation (PWM) algorithms applied to a three-level Neutral Point Clamped (NPC) Voltage Source Inverter (VSI). The first algorithm applied is the triangular-sinusoidal strategy; the second is the Space Vector Pulse Width Modulation (SVPWM) strategy. In the first part, we present a topology of three-level NCP VSI. After that, we develop the two PWM strategies to control this converter. At the end the experimental results are presented.Keywords: Multilevel inverter, Space vector pulse width modulation (SVPWM), triangular-sinusoidal strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25112295 An Efficient Protocol for Cyclic Somatic Embryogenesis in Neem (Azadirachta indica A Juss.)
Authors: Mithilesh Singh, Rakhi Chaturvedi
Abstract:
Neem is a highly heterozygous and commercially important perennial plant. Conventionally, it is propagated by seeds which loose viability within two weeks. Strictly cross pollinating nature of the plant causes serious barrier to the genetic improvement by conventional methods. Alternative methods of tree improvement such as somatic hybridization, mutagenesis and genetic transformation require an efficient in vitro plant regeneration system. In this regard, somatic embryogenesis particularly secondary somatic embryogenesis may offer an effective system for large scale plant propagation without affecting the clonal fidelity of the regenerants. It can be used for synthetic seed production, which further bolsters conservation of this tree species which is otherwise very difficult The present report describes the culture conditions necessary to induce and maintain repetitive somatic embryogenesis, for the first time, in neem. Out of various treatments tested, the somatic embryos were induced directly from immature zygotic embryos of neem on MS + TDZ (0.1 μM) + ABA (4 μM), in more than 76 % cultures. Direct secondary somatic embryogenesis occurred from primary somatic embryos on MS + IAA (5 μM) + GA3 (5 μM) in 12.5 % cultures. Embryogenic competence of the explant as well as of the primary embryos was maintained for a long period by repeated subcultures at frequent intervals. A maximum of 10 % of these somatic embryos were converted into plantlets.Keywords: Azadirachta indica A. Juss., Cytokinin, Somatic embryogenesis, zygotic embryo culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14682294 Analytic Network Process in Location Selection and Its Application to a Real Life Problem
Authors: Eylem Koç, Hasan Arda Burhan
Abstract:
Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.
Keywords: Analytic Network Process, BOCR, location selection, multi-actor decision making, multi-criteria decision making, real life problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20912293 A Modified Fuzzy C-Means Algorithm for Natural Data Exploration
Authors: Binu Thomas, Raju G., Sonam Wangmo
Abstract:
In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.Keywords: Adaptive fuzzy clustering, clustering, fuzzy logic, fuzzy clustering, c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19952292 Efficient Pipelined Hardware Implementation of RIPEMD-160 Hash Function
Authors: H. E. Michail, V. N. Thanasoulis, G. A. Panagiotakopoulos, A. P. Kakarountas, C. E. Goutis
Abstract:
In this paper an efficient implementation of Ripemd- 160 hash function is presented. Hash functions are a special family of cryptographic algorithms, which is used in technological applications with requirements for security, confidentiality and validity. Applications like PKI, IPSec, DSA, MAC-s incorporate hash functions and are used widely today. The Ripemd-160 is emanated from the necessity for existence of very strong algorithms in cryptanalysis. The proposed hardware implementation can be synthesized easily for a variety of FPGA and ASIC technologies. Simulation results, using commercial tools, verified the efficiency of the implementation in terms of performance and throughput. Special care has been taken so that the proposed implementation doesn-t introduce extra design complexity; while in parallel functionality was kept to the required levels.Keywords: Hardware implementation, hash functions, Ripemd-160, security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18982291 DWM-CDD: Dynamic Weighted Majority Concept Drift Detection for Spam Mail Filtering
Authors: Leili Nosrati, Alireza Nemaney Pour
Abstract:
Although e-mail is the most efficient and popular communication method, unwanted and mass unsolicited e-mails, also called spam mail, endanger the existence of the mail system. This paper proposes a new algorithm called Dynamic Weighted Majority Concept Drift Detection (DWM-CDD) for content-based filtering. The design purposes of DWM-CDD are first to accurate the performance of the previously proposed algorithms, and second to speed up the time to construct the model. The results show that DWM-CDD can detect both sudden and gradual changes quickly and accurately. Moreover, the time needed for model construction is less than previously proposed algorithms.
Keywords: Concept drift, Content-based filtering, E-mail, Spammail.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19662290 Multi-Context Recurrent Neural Network for Time Series Applications
Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi
Abstract:
this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.
Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30512289 Effects of Reversible Watermarking on Iris Recognition Performance
Authors: Andrew Lock, Alastair Allen
Abstract:
Fragile watermarking has been proposed as a means of adding additional security or functionality to biometric systems, particularly for authentication and tamper detection. In this paper we describe an experimental study on the effect of watermarking iris images with a particular class of fragile algorithm, reversible algorithms, and the ability to correctly perform iris recognition. We investigate two scenarios, matching watermarked images to unmodified images, and matching watermarked images to watermarked images. We show that different watermarking schemes give very different results for a given capacity, highlighting the importance ofinvestigation. At high embedding rates most algorithms cause significant reduction in recognition performance. However, in many cases, for low embedding rates, recognition accuracy is improved by the watermarking process.
Keywords: Biometrics, iris recognition, reversible watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24052288 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic
Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam
Abstract:
In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.
Keywords: Decision support system, data mining, knowledge discovery, data discovery, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21362287 An Efficient Ant Colony Optimization Algorithm for Multiobjective Flow Shop Scheduling Problem
Authors: Ahmad Rabanimotlagh
Abstract:
In this paper an ant colony optimization algorithm is developed to solve the permutation flow shop scheduling problem. In the permutation flow shop scheduling problem which has been vastly studied in the literature, there are a set of m machines and a set of n jobs. All the jobs are processed on all the machines and the sequence of jobs being processed is the same on all the machines. Here this problem is optimized considering two criteria, makespan and total flow time. Then the results are compared with the ones obtained by previously developed algorithms. Finally it is visible that our proposed approach performs best among all other algorithms in the literature.Keywords: Scheduling, Flow shop, Ant colony optimization, Makespan, Flow time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24252286 Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry
Authors: A. Tellaeche, R. Arana
Abstract:
Injection molding is a very complicated process to monitor and control. With its high complexity and many process parameters, the optimization of these systems is a very challenging problem. To meet the requirements and costs demanded by the market, there has been an intense development and research with the aim to maintain the process under control. This paper outlines the latest advances in necessary algorithms for plastic injection process and monitoring, and also a flexible data acquisition system that allows rapid implementation of complex algorithms to assess their correct performance and can be integrated in the quality control process. This is the main topic of this paper. Finally, to demonstrate the performance achieved by this combination, a real case of use is presented.
Keywords: Plastic injection, machine learning, rapid complex algorithm prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21252285 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry
Authors: Nadia Belu, Laurentiu M. Ionescu, Agnieszka Misztal
Abstract:
In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.Keywords: Automotive industry, control plan, FMEA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28802284 Decision Support System for a Pilot Flash Flood Early Warning System in Central Chile
Authors: D. Pinto, L. Castro, M.L. Cruzat, S. Barros, J. Gironás, C. Oberli, M. Torres, C. Escauriaza, A. Cipriano
Abstract:
Flash Floods, together with landslides, are a common natural threat for people living in mountainous regions and foothills. One way to deal with this constant menace is the use of Early Warning Systems, which have become a very important mitigation strategy for natural disasters. In this work we present our proposal for a pilot Flash Flood Early Warning System for Santiago, Chile, the first stage of a more ambitious project that in a future stage shall also include early warning of landslides. To give a context for our approach, we first analyze three existing Flash Flood Early Warning Systems, focusing on their general architectures. We then present our proposed system, with main focus on the decision support system, a system that integrates empirical models and fuzzy expert systems to achieve reliable risk estimations.
Keywords: Decision Support System, Early Warning Systems, Flash Flood, Natural Hazard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25052283 Analysis of DNA Microarray Data using Association Rules: A Selective Study
Authors: M. Anandhavalli Gauthaman
Abstract:
DNA microarrays allow the measurement of expression levels for a large number of genes, perhaps all genes of an organism, within a number of different experimental samples. It is very much important to extract biologically meaningful information from this huge amount of expression data to know the current state of the cell because most cellular processes are regulated by changes in gene expression. Association rule mining techniques are helpful to find association relationship between genes. Numerous association rule mining algorithms have been developed to analyze and associate this huge amount of gene expression data. This paper focuses on some of the popular association rule mining algorithms developed to analyze gene expression data.
Keywords: DNA microarray, gene expression, association rule mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21532282 Minimal Residual Method for Adaptive Filtering with Finite Termination
Authors: Noor Atinah Ahmad, Shazia Javed
Abstract:
We present a discussion of three adaptive filtering algorithms well known for their one-step termination property, in terms of their relationship with the minimal residual method. These algorithms are the normalized least mean square (NLMS), Affine Projection algorithm (APA) and the recursive least squares algorithm (RLS). The NLMS is shown to be a result of the orthogonality condition imposed on the instantaneous approximation of the Wiener equation, while APA and RLS algorithm result from orthogonality condition in multi-dimensional minimal residual formulation. Further analysis of the minimal residual formulation for the RLS leads to a triangular system which also possesses the one-step termination property (in exact arithmetic)Keywords: Adaptive filtering, minimal residual method, projection method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15582281 Energy-Aware Scheduling in Real-Time Systems: An Analysis of Fair Share Scheduling and Priority-Driven Preemptive Scheduling
Authors: Su Xiaohan, Jin Chicheng, Liu Yijing, Burra Venkata Durga Kumar
Abstract:
Energy-aware scheduling in real-time systems aims to minimize energy consumption, but issues related to resource reservation and timing constraints remain challenges. This study focuses on analyzing two scheduling algorithms, Fair-Share Scheduling (FFS) and Priority-Driven Preemptive Scheduling (PDPS), for solving these issues and energy-aware scheduling in real-time systems. Based on research on both algorithms and the processes of solving two problems, it can be found that FFS ensures fair allocation of resources but needs to improve with an imbalanced system load. And PDPS prioritizes tasks based on criticality to meet timing constraints through preemption but relies heavily on task prioritization and may not be energy efficient. Therefore, improvements to both algorithms with energy-aware features will be proposed. Future work should focus on developing hybrid scheduling techniques that minimize energy consumption through intelligent task prioritization, resource allocation, and meeting time constraints.
Keywords: Energy-aware scheduling, fair-share scheduling, priority-driven preemptive scheduling, real-time systems, optimization, resource reservation, timing constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332280 Improving RBF Networks Classification Performance by using K-Harmonic Means
Authors: Z. Zainuddin, W. K. Lye
Abstract:
In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18522279 BDD Package Based on Boolean NOR Operation
Authors: M. Raseen, A.Assi, P.W. C. Prasad, A. Harb
Abstract:
Binary Decision Diagrams (BDDs) are useful data structures for symbolic Boolean manipulations. BDDs are used in many tasks in VLSI/CAD, such as equivalence checking, property checking, logic synthesis, and false paths. In this paper we describe a new approach for the realization of a BDD package. To perform manipulations of Boolean functions, the proposed approach does not depend on the recursive synthesis operation of the IF-Then-Else (ITE). Instead of using the ITE operation, the basic synthesis algorithm is done using Boolean NOR operation.Keywords: Binary Decision Diagram (BDD), ITE Operation, Boolean Function, NOR operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19552278 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images
Authors: I. Oloyede
Abstract:
The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8752277 Instance-Based Ontology Matching Using Different Kinds of Formalism
Authors: Katrin Zaiß, Tim Schlüter, Stefan Conrad
Abstract:
Ontology Matching is a task needed in various applica-tions, for example for comparison or merging purposes. In literature,many algorithms solving the matching problem can be found, butmost of them do not consider instances at all. Mappings are deter-mined by calculating the string-similarity of labels, by recognizinglinguistic word relations (synonyms, subsumptions etc.) or by ana-lyzing the (graph) structure. Due to the facts that instances are oftenmodeled within the ontology and that the set of instances describesthe meaning of the concepts better than their meta information,instances should definitely be incorporated into the matching process.In this paper several novel instance-based matching algorithms arepresented which enhance the quality of matching results obtainedwith common concept-based methods. Different kinds of formalismsare use to classify concepts on account of their instances and finallyto compare the concepts directly.KeywordsInstances, Ontology Matching, Semantic Web
Keywords: Instances, Ontology Matching, Semantic Web
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15272276 The Functional Magnetic Resonance Imaging and the Consumer Behaviour: Reviewing Recent Research
Authors: Mikel Alonso López
Abstract:
In the first decade of the twenty-first century, advanced imaging techniques began to be applied for neuroscience research. The Functional Magnetic Resonance Imaging (fMRI) is one of the most important and most used research techniques for the investigation of emotions, because of its ease to observe the brain areas that oxygenate when performing certain tasks. In this research, we make a review about the main research carried out on the influence of the emotions in the decision-making process that is exposed by using the fMRI.Keywords: Decision making, emotions, fMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14642275 Optimization of Proton Exchange Membrane Fuel Cell Parameters Based on Modified Particle Swarm Algorithms
Authors: M. Dezvarei, S. Morovati
Abstract:
In recent years, increasing usage of electrical energy provides a widespread field for investigating new methods to produce clean electricity with high reliability and cost management. Fuel cells are new clean generations to make electricity and thermal energy together with high performance and no environmental pollution. According to the expansion of fuel cell usage in different industrial networks, the identification and optimization of its parameters is really significant. This paper presents optimization of a proton exchange membrane fuel cell (PEMFC) parameters based on modified particle swarm optimization with real valued mutation (RVM) and clonal algorithms. Mathematical equations of this type of fuel cell are presented as the main model structure in the optimization process. Optimized parameters based on clonal and RVM algorithms are compared with the desired values in the presence and absence of measurement noise. This paper shows that these methods can improve the performance of traditional optimization methods. Simulation results are employed to analyze and compare the performance of these methodologies in order to optimize the proton exchange membrane fuel cell parameters.Keywords: Clonal algorithm, proton exchange membrane fuel cell, particle swarm optimization, real valued mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11822274 Persuasive Communication on Social Egg Freezing in California from a Framing Theory Perspective
Authors: Leila Mohammadi
Abstract:
This paper presents the impact of persuasive communication implemented by fertility clinics websites, and how this information influences women at their decision-making for undertaking this procedure. The influential factors for women decisions to do social egg freezing (SEF) are analyzed from a framing theory perspective, with a specific focus on the impact of persuasive information on women’s decision making. This study follows a quantitative approach. A two-phase survey has been conducted to examine the interest rate to undertake SEF. In the first phase, a questionnaire was available during a month (May 2015) to women to answer whether or not they knew enough information of this process, with a total of 230 answers. The second phase took place in the two last weeks of July 2015. All the respondents were invited to a seminars called ‘All about egg freezing’ and afretwards they were requested to answer the second questionnaire. After the seminar, in which they were given an extensive amount of information about egg freezing, a total of 115 women replied the questionnaire. The collected data during this process were analyzed using descriptive statistics. Most of the respondents changed their opinion in the second questionaire which was after receiving information. Although in the first questionnaire their self-evaluation of having knowledge about this process and the implemented technologies was very high, they realized that they still need to access more information from different sources in order to be able to make a decision. The study reached the conclusion that persuasive and framed information by clinics would affect the decisions of these women. Despite the reasons women have to do egg freezing and their motivations behind it, providing people necessary information and unprejudiced data about this process (such as its positive and negative aspects, requirements, suppositions, possibilities and consequences) would help them to make a more precise and reasonable decision about what they are buying.
Keywords: Decision making, fertility clinics, framing theory, persuasive information, social egg freezing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9722273 U.S. Supreme Court Decision Making in the Area of Religion, 1987-2011
Authors: Joseph Ignagni, Rebecca E. Deen
Abstract:
There are many views on how human decision makers behave. In this work, the Justices of the United States Supreme Court will be viewed in terms of constrained maximization and cognitivecybernetic theory. This paper will integrate research in such fields as law, political science, psychology, economics and decision making theory. It will be argued that due to its heavy workload, the Supreme Court is forced to make decisions in a boundedly rational manner. The ideas and theory put forward here will be tested in the area of the Court’s decisions involving religion. Therefore, the cases involving the U.S. Constitution’s Free Exercise Clause and Establishment Clause will be analyzed. Also, variables such as the U.S. government’s involvement in these cases will be considered. The years to be studied will be 1987-2011.
Keywords: Establishment Clause, Free Exercise Clause, U.S. Constitution, U.S. Supreme Court.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15652272 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach
Authors: Mukesh Kumar Shah, Tushar Gupta
Abstract:
An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.
Keywords: Economic dispatch, Gaussian selection operator, prohibited operating zones, ramp rate limits, upgraded cuckoo search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6902271 A Similarity Measure for Clustering and its Applications
Authors: Guadalupe J. Torres, Ram B. Basnet, Andrew H. Sung, Srinivas Mukkamala, Bernardete M. Ribeiro
Abstract:
This paper introduces a measure of similarity between two clusterings of the same dataset produced by two different algorithms, or even the same algorithm (K-means, for instance, with different initializations usually produce different results in clustering the same dataset). We then apply the measure to calculate the similarity between pairs of clusterings, with special interest directed at comparing the similarity between various machine clusterings and human clustering of datasets. The similarity measure thus can be used to identify the best (in terms of most similar to human) clustering algorithm for a specific problem at hand. Experimental results pertaining to the text categorization problem of a Portuguese corpus (wherein a translation-into-English approach is used) are presented, as well as results on the well-known benchmark IRIS dataset. The significance and other potential applications of the proposed measure are discussed.Keywords: Clustering Algorithms, Clustering Applications, Similarity Measures, Text Clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15752270 The Determination of Rating Points of Objects with Qualitative Characteristics and their Usagein Decision Making Problems
Authors: O. Poleshchuk, E. Komarov
Abstract:
The paper presents the method developed to assess rating points of objects with qualitative indexes. The novelty of the method lies in the fact that the authors use linguistic scales that allow to formalize the values of the indexes with the help of fuzzy sets. As a result it is possible to operate correctly with dissimilar indexes on the unified basis and to get stable final results. The obtained rating points are used in decision making based on fuzzy expert opinions.Keywords: complete orthogonal semantic space, qualitativecharacteristic, rating points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12112269 Maximum Common Substructure Extraction in RNA Secondary Structures Using Clique Detection Approach
Authors: Shih-Yi Chao
Abstract:
The similarity comparison of RNA secondary structures is important in studying the functions of RNAs. In recent years, most existing tools represent the secondary structures by tree-based presentation and calculate the similarity by tree alignment distance. Different to previous approaches, we propose a new method based on maximum clique detection algorithm to extract the maximum common structural elements in compared RNA secondary structures. A new graph-based similarity measurement and maximum common subgraph detection procedures for comparing purely RNA secondary structures is introduced. Given two RNA secondary structures, the proposed algorithm consists of a process to determine the score of the structural similarity, followed by comparing vertices labelling, the labelled edges and the exact degree of each vertex. The proposed algorithm also consists of a process to extract the common structural elements between compared secondary structures based on a proposed maximum clique detection of the problem. This graph-based model also can work with NC-IUB code to perform the pattern-based searching. Therefore, it can be used to identify functional RNA motifs from database or to extract common substructures between complex RNA secondary structures. We have proved the performance of this proposed algorithm by experimental results. It provides a new idea of comparing RNA secondary structures. This tool is helpful to those who are interested in structural bioinformatics.Keywords: Clique detection, labeled vertices, RNA secondary structures, subgraph, similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14592268 A Decision Matrix for the Evaluation of Triplestores for Use in a Virtual Research Environment
Authors: Tristan O’Neill, Trina Myers, Jarrod Trevathan
Abstract:
The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for cross-domain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.
Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705