Search results for: Genetic optimization
1546 Algorithm for Information Retrieval Optimization
Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran
Abstract:
When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (Keywords: Internet ranking,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14751545 Scheduling a Flexible Flow Shops Problem using DEA
Authors: Fatemeh Dadkhah, Hossein Ali Akbarpour
Abstract:
This paper considers a scheduling problem in flexible flow shops environment with the aim of minimizing two important criteria including makespan and cumulative tardiness of jobs. Since the proposed problem is known as an Np-hard problem in literature, we have to develop a meta-heuristic to solve it. We considered general structure of Genetic Algorithm (GA) and developed a new version of that based on Data Envelopment Analysis (DEA). Two objective functions assumed as two different inputs for each Decision Making Unit (DMU). In this paper we focused on efficiency score of DMUs and efficient frontier concept in DEA technique. After introducing the method we defined two different scenarios with considering two types of mutation operator. Also we provided an experimental design with some computational results to show the performance of algorithm. The results show that the algorithm implements in a reasonable time.Keywords: Data envelopment analysis, Efficiency, Flexible flow shops, Genetic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18141544 A Novel Pareto-Based Meta-Heuristic Algorithm to Optimize Multi-Facility Location-Allocation Problem
Authors: Vahid Hajipour, Samira V. Noshafagh, Reza Tavakkoli-Moghaddam
Abstract:
This article proposes a novel Pareto-based multiobjective meta-heuristic algorithm named non-dominated ranking genetic algorithm (NRGA) to solve multi-facility location-allocation problem. In NRGA, a fitness value representing rank is assigned to each individual of the population. Moreover, two features ranked based roulette wheel selection including select the fronts and choose solutions from the fronts, are utilized. The proposed solving methodology is validated using several examples taken from the specialized literature. The performance of our approach shows that NRGA algorithm is able to generate true and well distributed Pareto optimal solutions.
Keywords: Non-dominated ranking genetic algorithm, Pareto solutions, Multi-facility location-allocation problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21701543 An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data
Authors: M. Pandi, K. Premalatha
Abstract:
The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.
Keywords: Spread out, simplex, multi-minima, fitness function, optimization, search area, monocyte, solution, genomes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25581542 An Integrated Operational Research and System Dynamics Approach for Planning Decisions in Container Terminals
Authors: A. K. Abdel-Fattah, A. B. El-Tawil, N. A. Harraz
Abstract:
This paper focuses on the operational and strategic planning decisions related to the quayside of container terminals. We introduce an integrated operational research (OR) and system dynamics (SD) approach to solve the Berth Allocation Problem (BAP) and the Quay Crane Assignment Problem (QCAP). A BAP-QCAP optimization modeling approach which considers practical aspects not studied before in the integration of BAP and QCAP is discussed. A conceptual SD model is developed to determine the long-term effect of optimization on the system behavior factors like resource utilization, attractiveness to port, number of incoming vessels to port and port profits. The framework can be used for improving the operational efficiency of container terminals and providing a strategic view after applying optimization.
Keywords: Operational research, system dynamics, container terminal, quayside operational problems, strategic planning decisions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33231541 Implementation of Feed-in Tariffs into Multi-Energy Systems
Authors: M. Schulze, P. Crespo Del Granado
Abstract:
This paper considers the influence of promotion instruments for renewable energy sources (RES) on a multi-energy modeling framework. In Europe, so called Feed-in Tariffs are successfully used as incentive structures to increase the amount of energy produced by RES. Because of the stochastic nature of large scale integration of distributed generation, many problems have occurred regarding the quality and stability of supply. Hence, a macroscopic model was developed in order to optimize the power supply of the local energy infrastructure, which includes electricity, natural gas, fuel oil and district heating as energy carriers. Unique features of the model are the integration of RES and the adoption of Feed-in Tariffs into one optimization stage. Sensitivity studies are carried out to examine the system behavior under changing profits for the feed-in of RES. With a setup of three energy exchanging regions and a multi-period optimization, the impact of costs and profits are determined.Keywords: Distributed generation, optimization methods, power system modeling, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331540 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21591539 An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices
Authors: F. Djeffal, N. Lakhdar, T. Bendib
Abstract:
The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.Keywords: Particle Swarm, electron mobility, Si-based devices, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15381538 Application of Pattern Search Method to Power System Security Constrained Economic Dispatch
Authors: A. K. Al-Othman, K. M. EL-Nagger
Abstract:
Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED). Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using one system. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED).
Keywords: Security Constrained Economic Dispatch, Direct Search method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22071537 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.
Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24071536 Optimal Trailing Edge Flap Positions of Helicopter Rotor for Various Thrust Coefficients to Solidity (Ct/σ) Ratios
Authors: Saijal K. K., K. Prabhakaran Nair
Abstract:
This study aims to determine change in optimal locations of dual trailing-edge flaps for various thrust coefficient to solidity (Ct /σ) ratios of helicopter to achieve minimum hub vibration levels, with low penalty in terms of required trailing-edge flap control power. Polynomial response functions are used to approximate hub vibration and flap power objective functions. Single objective and multiobjective optimization is carried with the objective of minimizing hub vibration and flap power. The optimization result shows that the inboard flap location at low Ct /σ ratio move farther from the baseline value and at high Ct /σ ratio move towards the root of the blade for minimizing hub vibration.
Keywords: Helicopter rotor, Trailing-edge flap, Thrust coefficient to solidity (Ct /σ) ratio, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46361535 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building
Authors: Kittipob Kondee, Chutima Prommak
Abstract:
In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.
Keywords: Indoor positioning System, Optimization System design, Multi-Floor Building, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19831534 Evolutionary Approach for Automated Discovery of Censored Production Rules
Authors: Kamal K. Bharadwaj, Basheer M. Al-Maqaleh
Abstract:
In the recent past, there has been an increasing interest in applying evolutionary methods to Knowledge Discovery in Databases (KDD) and a number of successful applications of Genetic Algorithms (GA) and Genetic Programming (GP) to KDD have been demonstrated. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski & Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations, in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the 'If P Then D' part of the CPR expresses important information, while the Unless C part acts only as a switch and changes the polarity of D to ~D. This paper presents a classification algorithm based on evolutionary approach that discovers comprehensible rules with exceptions in the form of CPRs. The proposed approach has flexible chromosome encoding, where each chromosome corresponds to a CPR. Appropriate genetic operators are suggested and a fitness function is proposed that incorporates the basic constraints on CPRs. Experimental results are presented to demonstrate the performance of the proposed algorithm.Keywords: Censored Production Rule, Data Mining, MachineLearning, Evolutionary Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811533 Optimal Manufacturing Scheduling for Dependent Details Processing
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.Keywords: Optimal manufacturing scheduling, linear programming, metalworking machines production, dependant details processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14871532 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.
Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8001531 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5391530 Automatic Text Summarization
Authors: Mohamed Abdel Fattah, Fuji Ren
Abstract:
This work proposes an approach to address automatic text summarization. This approach is a trainable summarizer, which takes into account several features, including sentence position, positive keyword, negative keyword, sentence centrality, sentence resemblance to the title, sentence inclusion of name entity, sentence inclusion of numerical data, sentence relative length, Bushy path of the sentence and aggregated similarity for each sentence to generate summaries. First we investigate the effect of each sentence feature on the summarization task. Then we use all features score function to train genetic algorithm (GA) and mathematical regression (MR) models to obtain a suitable combination of feature weights. The proposed approach performance is measured at several compression rates on a data corpus composed of 100 English religious articles. The results of the proposed approach are promising.Keywords: Automatic Summarization, Genetic Algorithm, Mathematical Regression, Text Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23361529 Batch-Oriented Setting Time Optimisation in an Aerodynamic Feeding System
Authors: Jan Busch, Maurice Schmidt, Peter Nyhuis
Abstract:
The change of conditions for production companies in high-wage countries is characterized by the globalization of competition and the transition of a supplier´s to a buyer´s market. The companies need to face the challenges of reacting flexibly to these changes. Due to the significant and increasing degree of automation, assembly has become the most expensive production process. Regarding the reduction of production cost, assembly consequently offers a considerable rationalizing potential. Therefore, an aerodynamic feeding system has been developed at the Institute of Production Systems and Logistics (IFA), Leibniz Universitaet Hannover. This system has been enabled to adjust itself by using a genetic algorithm. The longer this genetic algorithm is executed the better is the feeding quality. In this paper, the relation between the system´s setting time and the feeding quality is observed and a function which enables the user to achieve the minimum of the total feeding time is presented.Keywords: Aerodynamic feeding system, batch size, optimisation, setting time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14531528 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
Authors: Huihai Wu, Xiaohui Liu
Abstract:
Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.
Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18861527 Heuristic Set-Covering-Based Postprocessing for Improving the Quine-McCluskey Method
Authors: Miloš Šeda
Abstract:
Finding the minimal logical functions has important applications in the design of logical circuits. This task is solved by many different methods but, frequently, they are not suitable for a computer implementation. We briefly summarise the well-known Quine-McCluskey method, which gives a unique procedure of computing and thus can be simply implemented, but, even for simple examples, does not guarantee an optimal solution. Since the Petrick extension of the Quine-McCluskey method does not give a generally usable method for finding an optimum for logical functions with a high number of values, we focus on interpretation of the result of the Quine-McCluskey method and show that it represents a set covering problem that, unfortunately, is an NP-hard combinatorial problem. Therefore it must be solved by heuristic or approximation methods. We propose an approach based on genetic algorithms and show suitable parameter settings.
Keywords: Boolean algebra, Karnaugh map, Quine-McCluskey method, set covering problem, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27921526 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9311525 Optimum Design of Trusses by Cuckoo Search
Authors: M. Saravanan, J. Raja Murugadoss, V. Jayanthi
Abstract:
Optimal design of structure has a main role in reduction of material usage which leads to deduction in the final cost of construction projects. Evolutionary approaches are found to be more successful techniques for solving size and shape structural optimization problem since it uses a stochastic random search instead of a gradient search. By reviewing the recent literature works the problem found was the optimization of weight. A new meta-heuristic algorithm called as Cuckoo Search (CS) Algorithm has used for the optimization of the total weight of the truss structures. This paper has used set of 10 bars and 25 bars trusses for the testing purpose. The main objective of this work is to reduce the number of iterations, weight and the total time consumption. In order to demonstrate the effectiveness of the present method, minimum weight design of truss structures is performed and the results of the CS are compared with other algorithms.
Keywords: Cuckoo search algorithm, levy’s flight, meta-heuristic, optimal weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21051524 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.
Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21541523 An Adaptive Fuzzy Clustering Approach for the Network Management
Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani
Abstract:
The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.
Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18831522 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force
Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh
Abstract:
This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.Keywords: Frame, grey wolf optimization algorithm, modal residual force, structural damage detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14951521 Networked Implementation of Milling Stability Optimization with Bayesian Learning
Authors: C. Ramsauer, J. Karandikar, D. Leitner, T. Schmitz, F. Bleicher
Abstract:
Machining instability, or chatter, can impose an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the TU Wien, Vienna, Austria. The recorded data from a milling test cut were used to classify the cut as stable or unstable based on a frequency analysis. The test cut result was used in a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculated the probability of stability as a function of axial depth of cut and spindle speed based on the test result and recommended parameters for the next test cut. The iterative process between two transatlantic locations was repeated until convergence to a stable optimal process parameter set was achieved.
Keywords: Bayesian learning, instrumented tool holder, machining stability, optimization strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5391520 Soft Computing Based Cluster Head Selection in Wireless Sensor Network Using Bacterial Foraging Optimization Algorithm
Authors: A. Rajagopal, S. Somasundaram, B. Sowmya, T. Suguna
Abstract:
Wireless Sensor Networks (WSNs) enable new applications and need non-conventional paradigms for the protocol because of energy and bandwidth constraints, In WSN, sensor node’s life is a critical parameter. Research on life extension is based on Low-Energy Adaptive Clustering Hierarchy (LEACH) scheme, which rotates Cluster Head (CH) among sensor nodes to distribute energy consumption over all network nodes. CH selection in WSN affects network energy efficiency greatly. This study proposes an improved CH selection for efficient data aggregation in sensor networks. This new algorithm is based on Bacterial Foraging Optimization (BFO) incorporated in LEACH.Keywords: Bacterial Foraging Optimization (BFO), Cluster Head (CH), Data-aggregation protocols, Low-Energy Adaptive Clustering Hierarchy (LEACH).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34791519 Investments Attractiveness via Combinatorial Optimization Ranking
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The paper proposes an approach to ranking a set of potential countries to invest taking into account the investor point of view about importance of different economic indicators. For the goal, a ranking algorithm that contributes to rational decision making is proposed. The described algorithm is based on combinatorial optimization modeling and repeated multi-criteria tasks solution. The final result is list of countries ranked in respect of investor preferences about importance of economic indicators for investment attractiveness. Different scenarios are simulated conforming to different investors preferences. A numerical example with real dataset of indicators is solved. The numerical testing shows the applicability of the described algorithm. The proposed approach can be used with any sets of indicators as ranking criteria reflecting different points of view of investors.
Keywords: Combinatorial optimization modeling, economics investment attractiveness, economics ranking algorithm, multi-criteria problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21071518 Fuzzy Based Particle Swarm Optimization Routing Technique for Load Balancing in Wireless Sensor Networks
Authors: S. Balaji, E. Golden Julie, M. Rajaram, Y. Harold Robinson
Abstract:
Network lifetime improvement and uncertainty in multiple systems are the issues of wireless sensor network routing. This paper presents fuzzy based particle swarm optimization routing technique to improve the network scalability. Significantly, in the cluster formation procedure, fuzzy based system is used to solve the uncertainty and network balancing. Cluster heads play an important role to reduce the energy consumption using particle swarm optimization algorithm, the cluster head sends its information along data packets to the heads with link. The simulation results show that the presented routing protocol can perform load balancing effectively and reduce the energy consumption of cluster heads.
Keywords: Wireless sensor networks, fuzzy logic, PSO, LEACH.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12831517 Mutation Rate for Evolvable Hardware
Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert
Abstract:
Evolvable hardware (EHW) refers to a selfreconfiguration hardware design, where the configuration is under the control of an evolutionary algorithm (EA). A lot of research has been done in this area several different EA have been introduced. Every time a specific EA is chosen for solving a particular problem, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade a lot of research has been carried out in order to identify the best parameters for the EA-s components for different “test-problems". However different researchers propose different solutions. In this paper the behaviour of mutation rate on (1+λ) evolution strategy (ES) for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies values of the logic cell inputs, the cell type (for example from AND to NOR) and the circuit output. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates used for the evolved circuits. The experimental results found provide the behaviour of the mutation rate to be used during evolution for the design and optimization of logic circuits. The researches on the best mutation rate during the last 40 years are also summarized.Keywords: Evolvable hardware, mutation rate, evolutionarycomputation, design of logic circuit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501