Search results for: heat convection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1342

Search results for: heat convection

592 Application of Lattice Boltzmann Methods in Heat and Moisture Transfer in Frozen Soil

Authors: Wenyu Song, Bingxi Li, Zhongbin Fu, Bo Zhang

Abstract:

Although water only takes a little percentage in the total mass of soil, it indeed plays an important role to the strength of structure. Moisture transfer can be carried out by many different mechanisms which may involve heat and mass transfer, thermodynamic phase change, and the interplay of various forces such as viscous, buoyancy, and capillary forces. The continuum models are not well suited for describing those phenomena in which the connectivity of the pore space or the fracture network, or that of a fluid phase, plays a major role. However, Lattice Boltzmann methods (LBMs) are especially well suited to simulate flows around complex geometries. Lattice Boltzmann methods were initially invented for solving fluid flows. Recently, fluid with multicomponent and phase change is also included in the equations. By comparing the numerical result with experimental result, the Lattice Boltzmann methods with phase change will be optimized.

Keywords: Frozen soil, Lattice Boltzmann method, Phase change, Test rig.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
591 Early Melt Season Variability of Fast Ice Degradation Due to Small Arctic Riverine Heat Fluxes

Authors: Grace E. Santella, Shawn G. Gallaher, Joseph P. Smith

Abstract:

In order to determine the importance of small-system riverine heat flux on regional landfast sea ice breakup, our study explores the annual spring freshet of the Sagavanirktok River from 2014-2019. Seasonal heat cycling ultimately serves as the driving mechanism behind the freshet; however, as an emerging area of study, the extent to which inland thermodynamics influence coastal tundra geomorphology and connected landfast sea ice has not been extensively investigated in relation to small-scale Arctic river systems. The Sagavanirktok River is a small-to-midsized river system that flows south-to-north on the Alaskan North Slope from the Brooks mountain range to the Beaufort Sea at Prudhoe Bay. Seasonal warming in the spring rapidly melts snow and ice in a northwards progression from the Brooks Range and transitional tundra highlands towards the coast and when coupled with seasonal precipitation, results in a pulsed freshet that propagates through the Sagavanirktok River. The concentrated presence of newly exposed vegetation in the transitional tundra region due to spring melting results in higher absorption of solar radiation due to a lower albedo relative to snow-covered tundra and/or landfast sea ice. This results in spring flood runoff that advances over impermeable early-season permafrost soils with elevated temperatures relative to landfast sea ice and sub-ice flow. We examine the extent to which interannual temporal variability influences the onset and magnitude of river discharge by analyzing field measurements from the United States Geological Survey (USGS) river and meteorological observation sites. Rapid influx of heat to the Arctic Ocean via riverine systems results in a noticeable decay of landfast sea ice independent of ice breakup seaward of the shear zone. Utilizing MODIS imagery from NASA’s Terra satellite, interannual variability of river discharge is visualized, allowing for optical validation that the discharge flow is interacting with landfast sea ice. Thermal erosion experienced by sediment fast ice at the arrival of warm overflow preconditions the ice regime for rapid thawing. We investigate the extent to which interannual heat flux from the Sagavanirktok River’s freshet significantly influences the onset of local landfast sea ice breakup. The early-season warming of atmospheric temperatures is evidenced by the presence of storms which introduce liquid, rather than frozen, precipitation into the system. The resultant decreased albedo of the transitional tundra supports the positive relationship between early-season precipitation events, inland thermodynamic cycling, and degradation of landfast sea ice. Early removal of landfast sea ice increases coastal erosion in these regions and has implications for coastline geomorphology which stress industrial, ecological, and humanitarian infrastructure.

Keywords: Albedo, freshet, landfast sea ice, riverine heat flux, seasonal heat cycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457
590 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: Fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
589 Evaluation of the Microbiological, Chemical and Sensory Quality of Carp Processed by the Sous Vide Method

Authors: Özlem Pelin Can

Abstract:

This study evaluated the microbiological quality and the sensory characteristics of carp fillets processed by the sousvide method when stored at 2 and 10 °C. Four different combinations of sauced–storage were studied then stored at 2 or 10 °C was evaluate periodically sensory, microbiological and chemical quality. Batches stored at 2 °C had lower growth rates of mesophiles and psychrotrophs. Moreover, these counts decreased by increasing the heating temperature and time. Staphylococcus aureus, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes were not found in any of the samples. The heat treatment of 90 °C for 15 min and sauced was the most effective to ensure the safety and extend the shelf-life of sousvide carp preserving its sensory characteristics. This study establishes the microbiological quality of sous vide carp and emphasizes the relevance of the raw materials, heat treatment and storage temperature to ensure the safety of the product.

Keywords: Sous- vide methods, carp, sauce, microbiological, chemical and sensory quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
588 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement

Authors: Maatoug Hassine, Mourad Hrizi

Abstract:

In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.

Keywords: Geometric inverse source problem, heat equation, topological sensitivity, topological optimization, Kohn-Vogelius formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
587 An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System

Authors: Vikram Jeganathan, A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: Adaptive fuzzy controller, Hydronic heating system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
586 Comparative Studies on Dissimilar Metals thin Sheets Using Laser Beam Welding - A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Laser beam welding for the dissimilar Titanium and Aluminium thin sheets is an emerging area which is having wider applications in aerospace, aircraft, automotive, electronics and in other industries due to its high speed, non-contact, precision with low heat effects, least welding distortion, low labor costs and convenient operation. Laser beam welding of dissimilar metal combinations are increasingly demanded due to high energy densities with small fusion and heat affected zones. Furthermore, no filler or electrode material is required and contamination of weld is also very small. The present study is to reviews the influence of different parameters like laser power, welding speed, power density, beam diameter, focusing distance and type of shielding gas on the mechanical properties of dissimilar metal combinations like SS/Al, Cu/Al and Ti/Al focusing on aluminum to other materials. Research findings reveal that Ti/Al combination gives better metallurgical and mechanical properties than other combinations such as SS/Al and Cu/Al.

Keywords: Laser Beam Welding, dissimilar metals, SS/Al, Cu/Al and Ti/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
585 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: Direct steam generation, parabolic trough collectors, pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
584 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
583 Creeping Insulation - Hong Kong Green Wall

Authors: X. L. Zhang, K. L. Li, R. M. Skitmore

Abstract:

Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing.

The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.

Keywords: Case studies, experiment, green wall, Hong Kong.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
582 Analysis on Spatiotemporal Pattern of Land Surface Temperature in Kunming City, China

Authors: Jinrui Ren, Li Wu

Abstract:

Anthropogenic activities and changes of underlying surface affect the temporal and spatial distribution of surface temperature in Kunming. Taking Kunming city as the research area, the surface temperature in 2000, 2010 and 2020 as the research object, using ENVI 5.3 and ArcGIS 10.8 as auxiliary tools, and based on the spatial autocorrelation method, this paper devoted to exploring the interactions among the changes of surface temperature, urban heat island effect and land use type, so as to provide theoretical basis and scientific basis for mitigating climate change. The results showed that: (1) The heat island effect was obvious in Kunming City, the high temperature area increased from 604 km2 in 2000 to 1269 km2 in 2020, and the sub-high temperature area reached 1099 km2 in 2020; (2) In terms of space, the spatial distribution of LST was significantly different with the change of underlying surface. The high temperature zone extended in three directions: south, north and east. The overall spatial distribution pattern of LST was high in the east and low in the west. (3) The inter-annual fluctuation of land surface temperature (LST) was large, and the growth rate was faster, from 2000 to 2010. The lowest temperature in 2000 was 13.45 ℃, which raised to 19.71 ℃ in 2010, and the temperature difference in 10 years was 6.26 ℃. (4) The land use/land cover type has a strong effect on the change of LST: the man-made land made a great contribution to the increase of LST, followed by grassland and farmland, while forest and water have a significant cooling effect on LST. To sum up, the variation of surface temperature in Kunming is the result of the interactions of human activities and climate change.

Keywords: Surface temperature, urban heat island effect, land use cover type, spatiotemporal variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
581 Thermal Performance of an Air Heating Storing System

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.

Keywords: Solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
580 Effect of Hartmann Number on Free Convective Flow in a Square Cavity with Different Positions of Heated Square Block

Authors: Abdul Halim Bhuiyan, M. A. Alim, Md. Nasir Uddin

Abstract:

This paper is concerned with the effect of Hartmann number on the free convective flow in a square cavity with different positions of heated square block. The two-dimensional Physical and mathematical model have been developed, and mathematical model includes the system of governing mass, momentum and energy equations are solved by the finite element method. The calculations have been computed for Prandtl number Pr = 0.71, the Rayleigh number Ra = 1000 and the different values of Hartmann number. The results are illustrated with the streamlines, isotherms, velocity and temperature fields as well as local Nusselt number.

Keywords: Finite element method, free convection, Hartmann number, square cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986
579 Preparation and Characterization of Pure PVA and PVA/MMT Matrix: Effect of Thermal Treatment

Authors: Albana Hasimi, Edlira Tako, Partizan Malkaj, Elvin Çomo, Blerina Papajani, Mirela Ndrita, Ledjan Malaj

Abstract:

Many endeavors have been exerted during the last years for developing new artificial polymeric membranes, which fulfill the demanded conditions for biomedical uses. One of the most tested polymers is Poly(vinyl alcohol) [PVA]. Our teams are based on the possibility of using PVA for personal protective equipment against COVID-19. In personal protective equipment, we explore the possibility of modifying the properties of the polymer by adding Montmorillonite [MMT]. Heat-treatment above the glass transition temperature is used to improve mechanical properties mainly by increasing the crystallinity of the polymer, which acts as a physical network. Temperature-Modulated Differential Scanning Calorimetry (TMDSC) measurements indicated that the presence of 0.5% MMT in PVA causes a higher Tg value and shaped peak of crystallinity. Decomposition is observed at two of the melting points of the crystals during heating 25-240 oC and overlap of the recrystallization ridges during cooling 240-25 oC. This is indicative of the presence of two types (quality or structure) of polymer crystals. On the other hand, some indication of improvement of the quality of the crystals by heat-treatment is given by the distinct non-reversing contribution to melting. Data on sorption and transport of water in PVA films: PVA pure and PVA/MMT matrix, modified by thermal treatment are presented. The membranes become more rigid as a result of the heat treatment and because of this the water uptake is significantly lower in membranes. That is indicated by analysis of the resulting water uptake kinetics. The presence of 0.5% w/w of MMT has no significant impact on the properties of PVA membranes. Water uptake kinetics deviate from Fick’s law due to slow relaxation of glassy polymer matrix for all types of membranes.

Keywords: Crystallinity, montmorillonite, nanocomposite, poly(vinyl alcohol).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 226
578 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.

Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
577 Operation Strategies of Residential Micro Combined Heat and Power Technologies

Authors: Omar A Shaneb, Adell S. Amer

Abstract:

Reduction of CO2 emissions has become a priority for several countries due to increasing concerns about global warming and climate change, especially in the developed countries. Residential sector is considered one of the most important sectors for considerable reduction of CO2 emissions since it represents a significant amount of the total consumed energy in those countries. A significant CO2 reduction cannot be achieved unless some initiatives have been adopted in the policy of these countries. Introducing micro combined heat and power (!CHP) systems into residential energy systems is one of these initiatives, since such a technology offers several advantages. Moreover, !CHP technology has the opportunity to be operated not only by natural gas but it could also be operated by renewable fuels. However, this technology can be operated by different operation strategies. Each strategy has some advantages and disadvantages. This paper provides a review of different operation strategies of such a technology used for residential energy systems, especially for single dwellings. The review summarizes key points that outline the trend of previous research carried out in this field.

Keywords: Energy management, !CHP systems, residential energy systems, sustainable houses, operation strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
576 Performance Analysis Model Development for Mae Moh Coal-Fired Power Plant

Authors: Thitiporn Supasri, Natanee Vorayos, Piriya Thongchiew

Abstract:

Electrification is a complex process and governed by various parameters.  Modeling of power plant’s target efficiency or target heat rate is often formulated and compared with the actual values. This comparison not only implies the performance of the power plant but also reflects the energy losses possibly inherited in some of related equipment and processes. The current modeling of Coal-fired Mae Moh power plant was formulated at the first commissioning. Some of equipments were replaced due to its life time. Relatively outdated for 20 years, the utilization of the model is not accomplished. This work has focused on the development of the performance analysis model of aforementioned power plant according to the most updated and current working conditions. The model is more appropriate and shows accuracy in its analysis.  Losses are detected and measures are introduced such that reduction in energy consumption, related cost, and also environment impacts can be anticipated.

Keywords: Performance analysis model, Power plant modeling, Target heat rate, Target efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
575 Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer

Authors: El-Ghalia Filali, Cherif Gadouche, Mohamed Tahar

Abstract:

A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 m in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter.

Keywords: Heat transfer, hydrodynamics, micro-channel, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
574 Mobile Robot Path Planning in a 2-Dimentional Mesh

Authors: Doraid Dalalah

Abstract:

A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.

Keywords: Mobile robot, Path Planning, Mesh, Potential field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
573 Laboratory Evaluation of the Airborne Sound Insulation of Plasterboard Sandwich Panels Filled with Recycled Textile Material

Authors: Svetlana T. Djambova, Natalia B. Ivanova, Roumiana A. Zaharieva

Abstract:

Small size acoustic chamber test method has been applied to experimentally evaluate and compare the airborne sound insulation provided by plasterboard sandwich panels filled with mineral wool and with its alternative from recycled textile material (produced by two different technologies). An original small-size acoustic chamber is used as a sound source room. It has been specially built in a real-size room, which is utilized as a sound receiving room. The experimental results of one of the recycled textile material specimens have demonstrated sound insulation properties similar to those of the mineral wool specimen and even superior in the 1600-3150 Hz frequency range. This study contributes to the improvement of recycled textile material production, as well as to the synergy of heat insulation and sound insulation performances of building materials.

Keywords: Airborne sound insulation, heat insulation products, mineral wool, recycled textile material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161
572 Measurement and Analysis of Temperature Effects on Box Girders of Continuous Rigid Frame Bridges

Authors: Bugao Wang, Weifeng Wang, Xianwei Zeng

Abstract:

Researches on the general rules of temperature field changing and their effects on the bridge in construction are necessary. This paper investigated the rules of temperature field changing and its effects on bridge using onsite measurement and computational analysis. Guanyinsha Bridge was used as a case study in this research. The temperature field was simulated in analyses. The effects of certain boundary conditions such as sun radiance, wind speed, and model parameters such as heat factor and specific heat on temperature field are investigated. Recommended values for these parameters are proposed. The simulated temperature field matches the measured observations with high accuracy. At the same time, the stresses and deflections of the bridge computed with the simulated temperature field matches measured values too. As a conclusion, the temperature effect analysis of reinforced concrete box girder can be conducted directly based on the reliable weather data of the concerned area.

Keywords: continuous rigid frame bridge, temperature effectanalysis, temperature field, temperature field simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2580
571 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform

Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy

Abstract:

A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.

Keywords: Exosomes, gold nano-islands, microfluidics, plasmonic biosensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
570 Modeling and Simulation of Delaminations in FML Using Step Pulsed Active Thermography

Authors: S. Sundaravalli, M. C. Majumder, G. K. Vijayaraghavan

Abstract:

The study focuses to investigate the thermal response of delaminations and develop mathematical models using numerical results to obtain the optimum heat requirement and time to identify delaminations in GLARE type of Fibre Metal Laminates (FML) in both reflection mode and through-transmission (TT) mode of step pulsed active thermography (SPAT) method in the type of nondestructive testing and evaluation (NDTE) technique. The influence of applied heat flux and time on various sizes and depth of delaminations in FML is analyzed to investigate the thermal response through numerical simulations. A finite element method (FEM) is applied to simulate SPAT through ANSYS software based on 3D transient heat transfer principle with the assumption of reflection mode and TT mode of observation individually.

The results conclude that the numerical approach based on SPAT in reflection mode is more suitable for analysing smaller size of near-surface delaminations located at the thermal stimulator side and TT mode is more suitable for analysing smaller size of deeper delaminations located far from thermal stimulator side or near thermal detector/Infrared camera side. The mathematical models provide the optimum q and T at the required MRTD to identify unidentified delamination 7 with 25015.0022W/m2 at 2.531sec and delamination 8 with 16663.3356 W/m2 at 1.37857sec in reflection mode. In TT mode, the delamination 1 with 34954W/m2 at 13.0399sec, delamination 2 with 20002.67W/m2 at 1.998sec and delamination 7 with 20010.87 W/m2 at 0.6171sec could be identified.

Keywords: Step pulsed active thermography (SPAT), NDTE, FML, Delaminations, Finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
569 Simulation Method for Determining the Thermally Induced Displacement of Machine Tools – Experimental Validation and Utilization in the Design Process

Authors: G. Kehl, P. Wagner

Abstract:

A novel simulation method to determine the displacements of machine tools due to thermal factors is presented. The specific characteristic of this method is the employment of original CAD data from the design process chain, which is interpreted by an algorithm in terms of geometry-based allocation of convection and radiation parameters. Furthermore analogous models relating to the thermal behaviour of machine elements are automatically implemented, which were gained by extensive experimental testing with thermography imaging. With this a transient simulation of the thermal field and in series of the displacement of the machine tool is possible simultaneously during the design phase. This method was implemented and is already used industrially in the design of machining centres in order to improve the quality of herewith manufactured workpieces.

Keywords: Accuracy, design process, finite element analysis, machine tools, thermal simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
568 Adsorption Refrigeration Working Pairs: The State-of-the-Art in the Application

Authors: Ahmed N. Shmroukh, Ahmed Hamza H. Ali, Ali K. Abel-Rahman

Abstract:

Adsorption refrigeration working pair is a vital and is the main component in the adsorption refrigeration machine. Therefore the development key is laying on the adsorption pair that leads to the improvement of the adsorption refrigeration machine. In this study the state-of-the-art in the application of the adsorption refrigeration working pairs in both classical and modern adsorption pairs are presented, compared and summarized. It is found that the maximum adsorption capacity for the classical working pairs was 0.259kg/kg for activated carbon/methanol and that for the modern working pairs was 2kg/kg for maxsorb III/R-134a. The study concluded that, the performances of the adsorption working pairs of adsorption cooling systems are still need further investigations as well as developing adsorption pairs having higher sorption capacity with low or no impact on environmental, to build compact, efficient, reliable and long life performance adsorption chillier. Also, future researches need to be focused on designing the adsorption system that provide efficient heating and cooling for the adsorbent materials through distributing the adsorbent material over heat exchanger surface, to allow good heat and mass transfer between the adsorbent and the refrigerant.

Keywords: Adsorption, Adsorbent/Adsorbate Pairs, Refrigeration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4776
567 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology

Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen

Abstract:

Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.

Keywords: Absorption chillers, turbine inlet air cooling, power purchase agreement, multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
566 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures

Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková

Abstract:

This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.

Keywords: Expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594
565 Effect of Gamma Irradiation on the Crystalline Structure of Poly(Vinylidene Fluoride)

Authors: Adriana Souza M. Batista, Cláubia Pereira, Luiz O. Faria

Abstract:

The irradiation of polymeric materials has received much attention because it can produce diverse changes in chemical structure and physical properties. Thus, studying the chemical and structural changes of polymers is important in practice to achieve optimal conditions for the modification of polymers. The effect of gamma irradiation on the crystalline structure of poly(vinylidene fluoride) (PVDF) has been investigated using differential scanning calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma irradiation was carried out in atmosphere air with doses between 100 kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of the samples irradiated can be seen a bimodal melting endotherm is detected with two melting temperature. The lower melting temperature is attributed to melting of crystals originally present and the higher melting peak due to melting of crystals reorganized upon heat treatment. These results are consistent with those obtained by XRD technique showing increasing crystallinity with increasing irradiation dose, although the melting latent heat is decreasing.

Keywords: Differential scanning calorimetry, gamma irradiation, PVDF, X-ray diffraction technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
564 Concentrated Solar Power Utilization in Space Vehicles Propulsion and Power Generation

Authors: Maged A. Mossallam

Abstract:

The objective from this paper is to design a solar thermal engine for space vehicles orbital control and electricity generation. A computational model is developed for the prediction of the solar thermal engine performance for different design parameters and conditions in order to enhance the engine efficiency. The engine is divided into two main subsystems. First, the concentrator dish which receives solar energy from the sun and reflects them to the cavity receiver. The second one is the cavity receiver which receives the heat flux reflected from the concentrator and transfers heat to the fluid passing over. Other subsystems depend on the application required from the engine. For thrust application, a nozzle is introduced to the system for the fluid to expand and produce thrust. Hydrogen is preferred as a working fluid in the thruster application. Results model developed is used to determine the thrust for a concentrator dish 4 meters in diameter (provides 10 kW of energy), focusing solar energy to a 10 cm aperture diameter cavity receiver. The cavity receiver outer length is 50 cm and the internal cavity is 47 cm in length. The suggested design material of the internal cavity is tungsten to withstand high temperature. The thermal model and analysis shows that the hydrogen temperature at the plenum reaches 2000oK after about 250 seconds for hot start operation for a flow rate of 0.1 g/sec.Using solar thermal engine as an electricity generation device on earth is also discussed. In this case a compressor and turbine are used to convert the heat gained by the working fluid (air) into mechanical power. This mechanical power can be converted into electrical power by using a generator.

Keywords: Concentrated Solar Energy, Orbital Control, Power Generation, Solar Thermal Engine, Space Vehicles Propulsion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
563 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh

Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter

Abstract:

Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.

Keywords: Land cover change, land surface temperature, normalized difference vegetation index, urban heat island.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458