Search results for: Financial Decision Support Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7231

Search results for: Financial Decision Support Systems

6481 Holistic Simulation-Based Impact Analysis Framework for Sustainable Manufacturing

Authors: Mijoh A. Gbededo, Kapila Liyanage, Sabuj Mallik

Abstract:

The emerging approaches to sustainable manufacturing are considered to be solution-oriented with the aim of addressing the environmental, economic and social issues holistically. However, the analysis of the interdependencies amongst the three sustainability dimensions has not been fully captured in the literature. In a recent review of approaches to sustainable manufacturing, two categories of techniques are identified: 1) Sustainable Product Development (SPD), and 2) Sustainability Performance Assessment (SPA) techniques. The challenges of the approaches are not only related to the arguments and misconceptions of the relationships between the techniques and sustainable development but also to the inability to capture and integrate the three sustainability dimensions. This requires a clear definition of some of the approaches and a road-map to the development of a holistic approach that supports sustainability decision-making. In this context, eco-innovation, social impact assessment, and life cycle sustainability analysis play an important role. This paper deployed an integrative approach that enabled amalgamation of sustainable manufacturing approaches and the theories of reciprocity and motivation into a holistic simulation-based impact analysis framework. The findings in this research have the potential to guide sustainability analysts to capture the aspects of the three sustainability dimensions into an analytical model. Additionally, the research findings presented can aid the construction of a holistic simulation model of a sustainable manufacturing and support effective decision-making.

Keywords: Life cycle sustainability analysis, sustainable manufacturing, sustainability performance assessment, sustainable product development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849
6480 Survey on Awareness, Knowledge and Practices: Managing Osteoporosis among Practitioners in a Tertiary Hospital, Malaysia

Authors: P. H. Tee, S. M. Zamri, K. M. Kasim, S. K. Tiew

Abstract:

This study evaluates the management of osteoporosis in a tertiary care government hospital in Malaysia. As the number of admitted patients having osteoporotic fractures is on the rise, osteoporotic medications are an increasing financial burden to government hospitals because they account for half of the orthopedic budget and expenditure. Comprehensive knowledge among practitioners is important to detect early and avoid this preventable disease and its serious complications. The purpose of this study is to evaluate the awareness, knowledge, and practices in managing osteoporosis among practitioners in Hospital Tengku Ampuan Rahimah (HTAR), Klang. A questionnaire from an overseas study in managing osteoporosis among primary care physicians is adapted to Malaysia’s Clinical Practice Guideline of Osteoporosis 2012 (revised 2015) and international guidelines were distributed to all orthopedic practitioners in HTAR Klang (including surgeons, orthopedic medical officers), endocrinologists, rheumatologists and geriatricians. The participants were evaluated on their expertise in the diagnosis, prevention, treatment decision and medications for osteoporosis. Collected data were analyzed for all descriptive and statistical analyses as appropriate. All 45 participants responded to the questionnaire. Participants scored highest on expertise in prevention, followed by diagnosis, treatment decision and lastly, medication. Most practitioners stated that own-initiated continuing professional education from articles and books was the most effective way to update their knowledge, followed by attendance in conferences on osteoporosis. This study confirms the importance of comprehensive training and education regarding osteoporosis among tertiary care physicians and surgeons, predominantly in pharmacotherapy, to deliver wholesome care for osteoporotic patients.

Keywords: Awareness, knowledge, osteoporosis, practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705
6479 A Multigranular Linguistic Additive Ratio Assessment Model in Group Decision Making

Authors: Wiem Daoud Ben Amor, Luis Martínez López, Jr., Hela Moalla Frikha

Abstract:

Most of the multi-criteria group decision making (MCGDM) problems dealing with qualitative criteria require consideration of the large background of expert information. It is common that experts have different degrees of knowledge for giving their alternative assessments according to criteria. So, it seems logical that they use different evaluation scales to express their judgment, i.e., multi granular linguistic scales. In this context, we propose the extension of the classical additive ratio assessment (ARAS) method to the case of a hierarchical linguistics term for managing multi granular linguistic scales in uncertain context where uncertainty is modeled by means in linguistic information. The proposed approach is called the extended hierarchical linguistics-ARAS method (ELH-ARAS). Within the ELH-ARAS approach, the decision maker (DMs) can diagnose the results (the ranking of the alternatives) in a decomposed style i.e., not only at one level of the hierarchy but also at the intermediate ones. Also, the developed approach allows a feedback transformation i.e., the collective final results of all experts are able to be transformed at any level of the extended linguistic hierarchy that each expert has previously used. Therefore, the ELH-ARAS technique makes it easier for decision-makers to understand the results. Finally, an MCGDM case study is given to illustrate the proposed approach.

Keywords: Additive ratio assessment, extended hierarchical linguistic, multi-criteria group decision making problems, multi granular linguistic contexts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362
6478 A Method for Improving Dental Crown Fit-Increasing the Robustness

Authors: Kero T., Söderberg R., Andersson M., Lindkvist L.

Abstract:

The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.

Keywords: Bio-medicine, Dentistry, Mass-customization, Optimization and Robust design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
6477 Kernel’s Parameter Selection for Support Vector Domain Description

Authors: Mohamed EL Boujnouni, Mohamed Jedra, Noureddine Zahid

Abstract:

Support Vector Domain Description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. As all kernel-based learning algorithms its performance depends heavily on the proper choice of the kernel parameter. This paper proposes a new approach to select kernel's parameter based on maximizing the distance between both gravity centers of normal and abnormal classes, and at the same time minimizing the variance within each class. The performance of the proposed algorithm is evaluated on several benchmarks. The experimental results demonstrate the feasibility and the effectiveness of the presented method.

Keywords: Gravity centers, Kernel’s parameter, Support Vector Domain Description, Variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
6476 A Study on the Relation between Auditor Rotation and Audit Quality in Iranian Firms

Authors: Bita Mashayekhi, Marjan Fayyazi, Parisa Sefati

Abstract:

Audit quality is a popular topic in accounting and auditing research because recent decades’ financial crises reduce the reliability of financial reports to public investors and cause significant doubt about the audit profession. Therefore, doing research to identify effective factors in improving audit quality is necessary for bringing back public investors’ trust to financial statements as well as audit reports. In this study, we explore the relationship between audit rotation and audit quality. For this purpose, we employ the Duff (2009) model of audit quality to measure audit quality and use a questionnaire survey of 27 audit service quality attributes. Our results show that there is a negative relationship between auditor’s rotation and audit quality as we consider the auditor’s reputation, capability, assurance, experience, and responsiveness as surrogates for audit quality. There is no evidence for verifying a same relationship when we use the auditor’s independence and expertise for measuring audit quality.

Keywords: Audit quality, auditor’s rotation, reputation, capability, assurance, experience, responsiveness, independence, expertise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
6475 The Optimization of Decision Rules in Multimodal Decision-Level Fusion Scheme

Authors: Andrey V. Timofeev, Dmitry V. Egorov

Abstract:

This paper introduces an original method of parametric optimization of the structure for multimodal decisionlevel fusion scheme which combines the results of the partial solution of the classification task obtained from assembly of the mono-modal classifiers. As a result, a multimodal fusion classifier which has the minimum value of the total error rate has been obtained.

Keywords: Сlassification accuracy, fusion solution, total error rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
6474 Logistics Outsourcing: Performance Models and Financial and Operational Indicators

Authors: Carlos Sanchís-Pedregosa, José A. D. M achuca, María del Mar González-Zamora

Abstract:

The growing outsourcing of logistics services resulting from the ongoing current in firms of costs reduction/increased efficiency means that it is becoming more and more important for the companies doing the outsourcing to carry out a proper evaluation. The multiple definitions and measures of logistics service performance found in research on the topic create a certain degree of confusion and do not clear the way towards the proper measurement of their performance. Do a model and a specific set of indicators exist that can be considered appropriate for measuring the performance of logistics services outsourcing in industrial environments? Are said indicators in keeping with the objectives pursued by outsourcing? We aim to answer these and other research questions in the study we have initiated in the field within the framework of the international High Performance Manufacturing (HPM) project of which this paper forms part. As the first stage of this research, this paper reviews articles dealing with the topic published in the last 15 years with the aim of detecting the models most used to make this measurement and determining which performance indicators are proposed as part of said models and which are most used. The first steps are also taken in determining whether these indicators, financial and operational, cover the aims that are being pursued when outsourcing logistics services. The findings show there is a wide variety of both models and indicators used. This would seem to testify to the need to continue with our research in order to try to propose a model and a set of indicators for measuring the performance of logistics services outsourcing in industrial environments.

Keywords: Logistics, objectives, outsourcing, performancemeasurement systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
6473 Power System Security Assessment using Binary SVM Based Pattern Recognition

Authors: S Kalyani, K Shanti Swarup

Abstract:

Power System Security is a major concern in real time operation. Conventional method of security evaluation consists of performing continuous load flow and transient stability studies by simulation program. This is highly time consuming and infeasible for on-line application. Pattern Recognition (PR) is a promising tool for on-line security evaluation. This paper proposes a Support Vector Machine (SVM) based binary classification for static and transient security evaluation. The proposed SVM based PR approach is implemented on New England 39 Bus and IEEE 57 Bus systems. The simulation results of SVM classifier is compared with the other classifier algorithms like Method of Least Squares (MLS), Multi- Layer Perceptron (MLP) and Linear Discriminant Analysis (LDA) classifiers.

Keywords: Static Security, Transient Security, Pattern Recognition, Classifier, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
6472 An ensemble of Weighted Support Vector Machines for Ordinal Regression

Authors: Willem Waegeman, Luc Boullart

Abstract:

Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM-s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach is comparable to state of the art kernel methods for ordinal regression. The ensemble method, which is straightforward to implement, provides a very good sensitivity-specificity trade-off for the highest and lowest rank.

Keywords: Ordinal regression, support vector machines, ensemblelearning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
6471 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features

Authors: Birmohan Singh, V. K. Jain

Abstract:

Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.

Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
6470 Designing for Sustainable Public Housing from Property Management and Financial Feasibility Perspectives

Authors: Kung-Jen Tu

Abstract:

Many public housing properties developed by local governments in Taiwan in the 1980s have deteriorated severely as these rental apartment buildings aged. The lack of building maintainability considerations during project design phase as well as insufficient maintenance funds have made it difficult and costly for local governments to maintain and keep public housing properties in good shape. In order to assist the local governments in achieving and delivering sustainable public housing, this paper intends to present a developed design evaluation method to be used to evaluate the presented design schemes from property management and financial feasibility perspectives during project design phase of public housing projects. The design evaluation results, i.e. the property management and financial implications of presented design schemes that could occur later during the building operation and maintenance phase, will be reported to the client (the government) and design schemes revised consequently. It is proposed that the design evaluation be performed from two main perspectives: (1) Operation and property management perspective: Three criteria such as spatial appropriateness, people and vehicle circulation and control, property management working spaces are used to evaluate the ‘operation and PM effectiveness’ of a design scheme. (2) Financial feasibility perspective: Four types of financial analyses are performed to assess the long term financial feasibility of a presented design scheme, such as operational and rental income analysis, management fund analysis, regular operational and property management service expense analysis, capital expense analysis. The ongoing Chung-Li Public Housing Project developed by the Taoyuan City Government will be used as a case to demonstrate how the presented design evaluation method is implemented. The results of property management assessment as well as the annual operational and capital expenses of a proposed design scheme are presented.

Keywords: Design evaluation method, management fund, operational and capital expenses, rental apartment buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
6469 Fusion of ETM+ Multispectral and Panchromatic Texture for Remote Sensing Classification

Authors: Mahesh Pal

Abstract:

This paper proposes to use ETM+ multispectral data and panchromatic band as well as texture features derived from the panchromatic band for land cover classification. Four texture features including one 'internal texture' and three GLCM based textures namely correlation, entropy, and inverse different moment were used in combination with ETM+ multispectral data. Two data sets involving combination of multispectral, panchromatic band and its texture were used and results were compared with those obtained by using multispectral data alone. A decision tree classifier with and without boosting were used to classify different datasets. Results from this study suggest that the dataset consisting of panchromatic band, four of its texture features and multispectral data was able to increase the classification accuracy by about 2%. In comparison, a boosted decision tree was able to increase the classification accuracy by about 3% with the same dataset.

Keywords: Internal texture; GLCM; decision tree; boosting; classification accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
6468 Shift Invariant Support Vector Machines Face Recognition System

Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas

Abstract:

In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.

Keywords: Face recognition, support vector machines, shiftinvariance, image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
6467 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates

Authors: David Boyajian, Tadeh Zirakian

Abstract:

Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.

Keywords: Plates, buckling, yielding, low yield point steel, steel plate shear walls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
6466 Info-participation of the Disabled Using the Mixed Preference Data in Improving Their Travel Quality

Authors: Y. Duvarci, S. Mizokami

Abstract:

Today, the preferences and participation of the TD groups such as the elderly and disabled is still lacking in decision-making of transportation planning, and their reactions to certain type of policies are not well known. Thus, a clear methodology is needed. This study aimed to develop a method to extract the preferences of the disabled to be used in the policy-making stage that can also guide to future estimations. The method utilizes the combination of cluster analysis and data filtering using the data of the Arao city (Japan). The method is a process that follows: defining the TD group by the cluster analysis tool, their travel preferences in tabular form from the household surveys by policy variableimpact pairs, zones, and by trip purposes, and the final outcome is the preference probabilities of the disabled. The preferences vary by trip purpose; for the work trips, accessibility and transit system quality policies with the accompanying impacts of modal shifts towards public mode use as well as the decreasing travel costs, and the trip rate increase; for the social trips, the same accessibility and transit system policies leading to the same mode shift impact, together with the travel quality policy area leading to trip rate increase. These results explain the policies to focus and can be used in scenario generation in models, or any other planning purpose as decision support tool.

Keywords: Transportation Disadvantaged, Disabled, Mixed Preference, Stated Preference Data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079
6465 Quantifying the Stability of Software Systems via Simulation in Dependency Networks

Authors: Weifeng Pan

Abstract:

The stability of a software system is one of the most important quality attributes affecting the maintenance effort. Many techniques have been proposed to support the analysis of software stability at the architecture, file, and class level of software systems, but little effort has been made for that at the feature (i.e., method and attribute) level. And the assumptions the existing techniques based on always do not meet the practice to a certain degree. Considering that, in this paper, we present a novel metric, Stability of Software (SoS), to measure the stability of object-oriented software systems by software change propagation analysis using a simulation way in software dependency networks at feature level. The approach is evaluated by case studies on eight open source Java programs using different software structures (one employs design patterns versus one does not) for the same object-oriented program. The results of the case studies validate the effectiveness of the proposed metric. The approach has been fully automated by a tool written in Java.

Keywords: Software stability, change propagation, design pattern, software maintenance, object-oriented (OO) software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
6464 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method

Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho

Abstract:

The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.

Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
6463 A Cognitive Model of Character Recognition Using Support Vector Machines

Authors: K. Freedman

Abstract:

In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition.

Keywords: Character recognition, cognitive model, support vector machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
6462 Multicriteria Decision Analysis for Development Ranking of Balkan Countries

Authors: C. Ardil

Abstract:

In this research, the Balkan peninsula countries' developmental integration into European Union represents the strategic economic development objectives of the countries in the region. In order to objectively analyze the level of economic development competition of Balkan Peninsula countries, the mathematical compromise programming technique of multicriteria evaluation is used in this ranking problem. The primary aim of this research is to explain the role and significance of the multicriteria method evaluation using a real example of compromise solutions. Using the mathematical compromise programming technique, twelve countries of the Balkan Peninsula are economically evaluated and mutually compared. The economic development evaluation of the countries is performed according to five evaluation criteria forming the basis for economic development evaluation. The multiattribute model is solved using the mathematical compromise programming technique for producing different Pareto solutions. The results obtained by the multicriteria evaluation gives the possibility of identification and evaluation of the most eminent economic development indicators for each country separately. Finally, in this way, the proposed method has proved to be a successful model for the evaluation of the Balkan peninsula countries' economic development competition.

Keywords: Balkan peninsula countries, standard deviation, multicriteria decision making, mathematical compromise programming, multicriteria decision making, multicriteria analysis, multicriteria decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
6461 Neuromarketing: Discovering the Somathyc Marker in the Consumer´s Brain

Authors: Mikel Alonso López, María Francisca Blasco López, Víctor Molero Ayala

Abstract:

The present study explains the somatic marker theory of Antonio Damasio, which indicates that when making a decision, the stored or possible future scenarios (future memory) images allow people to feel for a moment what would happen when they make a choice, and how this is emotionally marked. This process can be conscious or unconscious. The development of new Neuromarketing techniques such as functional magnetic resonance imaging (fMRI), carries a greater understanding of how the brain functions and consumer behavior. In the results observed in different studies using fMRI, the evidence suggests that the somatic marker and future memories influence the decision-making process, adding a positive or negative emotional component to the options. This would mean that all decisions would involve a present emotional component, with a rational cost-benefit analysis that can be performed later.

Keywords: Emotions, decision making, somatic marker, consumer´s brain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
6460 Instant Location Detection of Objects Moving at High-Speedin C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data of the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as «signaling parameters» (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of COTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources, but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as rule. This report contains describing of the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.

Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
6459 Development of Storm Water Quality Improvement Strategy Plan for Local City Councils in Western Australia

Authors: Ranjan Sarukkalige, Dinushi Gamage

Abstract:

The aim of this study was to develop a storm water quality improvement strategy plan (WQISP) which assists managers and decision makers of local city councils in enhancing their activities to improve regional water quality. City of Gosnells in Western Australia has been considered as a case study. The procedure on developing the WQISP consists of reviewing existing water quality data, identifying water quality issues in the study areas and developing a decision making tool for the officers, managers and decision makers. It was found that land use type is the main factor affecting the water quality. Therefore, activities, sources and pollutants related to different land use types including residential, industrial, agricultural and commercial are given high importance during the study. Semi-structured interviews were carried out with coordinators of different management sections of the regional councils in order to understand the associated management framework and issues. The issues identified from these interviews were used in preparing the decision making tool. Variables associated with the defined “value versus threat" decision making tool are obtained from the intensive literature review. The main recommendations provided for improvement of water quality in local city councils, include non-structural, structural and management controls and potential impacts of climate change.

Keywords: Storm water quality, Storm water Management, Land use, Strategy plan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
6458 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
6457 A Novel Approach for Scheduling Rescue Robot Mission Using Decision Analysis

Authors: Rana Soltani-Zarrin, Sohrab Khanmohammadi

Abstract:

In this paper, a new method for multi criteria decision making is represented whichspecifies a trajectory satisfying desired criteria including minimization of time. A rescue robot is defined to perform certain tasks before the arrival of rescue team, including evaluation of the probability of explosion in the area, detecting human-beings, and providing preliminary aidsin case of identifying signs of life, so that the security of the surroundings will have enhanced significantly for the individuals inside the disaster zone as well as the rescue team. The main idea behind our technique is using the Program Evaluation and Review Technique analysis along with Critical Path Method and use the Multi Criteria Decision Making (MCDM) method to decidewhich set of activities must be performed first. Since the disastrous event in one area may be well contagious to others, it is one of the robot's priorities to evaluate the relative adversity of the situation, using the above methods and prioritize its mission.

Keywords: PERT, CPM, MCDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
6456 Development of an Intelligent Decision Support System for Smart Viticulture

Authors: C. M. Balaceanu, G. Suciu, C. S. Bosoc, O. Orza, C. Fernandez, Z. Viniczay

Abstract:

The Internet of Things (IoT) represents the best option for smart vineyard applications, even if it is necessary to integrate the technologies required for the development. This article is based on the research and the results obtained in the DISAVIT project. For Smart Agriculture, the project aims to provide a trustworthy, intelligent, integrated vineyard management solution that is based on the IoT. To have interoperability through the use of a multiprotocol technology (being the future connected wireless IoT) it is necessary to adopt an agnostic approach, providing a reliable environment to address cyber security, IoT-based threats and traceability through blockchain-based design, but also creating a concept for long-term implementations (modular, scalable). The ones described above represent the main innovative technical aspects of this project. The DISAVIT project studies and promotes the incorporation of better management tools based on objective data-based decisions, which are necessary for agriculture adapted and more resistant to climate change. It also exploits the opportunities generated by the digital services market for smart agriculture management stakeholders. The project's final result aims to improve decision-making, performance, and viticulturally infrastructure and increase real-time data accuracy and interoperability. Innovative aspects such as end-to-end solutions, adaptability, scalability, security and traceability, place our product in a favorable situation over competitors. None of the solutions in the market meet every one of these requirements by a unique product being innovative.

Keywords: Blockchain, IoT, smart agriculture, vineyard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
6455 CAPWAP Status and Design Considerations for Seamless Roaming Support

Authors: M. Balfaqih, S. Haseeb, M. H. Mazlan, S. N. Hasnan, O. Mahmoud, A. Hashim

Abstract:

Wireless LAN technologies have picked up momentum in the recent years due to their ease of deployment, cost and availability. The era of wireless LAN has also given rise to unique applications like VOIP, IPTV and unified messaging. However, these real-time applications are very sensitive to network and handoff latencies. To successfully support these applications, seamless roaming during the movement of mobile station has become crucial. Nowadays, centralized architecture models support roaming in WLANs. They have the ability to manage, control and troubleshoot large scale WLAN deployments. This model is managed by Control and Provision of Wireless Access Point protocol (CAPWAP). This paper covers the CAPWAP architectural solution along with its proposals that have emerged. Based on the literature survey conducted in this paper, we found that the proposed algorithms to reduce roaming latency in CAPWAP architecture do not support seamless roaming. Additionally, they are not sufficient during the initial period of the network. This paper also suggests important design consideration for mobility support in future centralized IEEE 802.11 networks.

Keywords: 802.11, centralized Architecture, CAPWAP, Roaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
6454 A Multi-Criteria Decision Method for the Recruitment of Academic Personnel Based on the Analytical Hierarchy Process and the Delphi Method in a Neutrosophic Environment

Authors: Antonios Paraskevas, Michael Madas

Abstract:

For a university to maintain its international competitiveness in education, it is essential to recruit qualitative academic staff as it constitutes its most valuable asset. This selection demonstrates a significant role in achieving strategic objectives, particularly by emphasizing a firm commitment to exceptional student experience and innovative teaching and learning practices of high quality. In this vein, the appropriate selection of academic staff establishes a very important factor of competitiveness, efficiency and reputation of an academic institute. Within this framework, our work demonstrates a comprehensive methodological concept that emphasizes on the multi-criteria nature of the problem and on how decision makers could utilize our approach in order to proceed to the appropriate judgment. The conceptual framework introduced in this paper is built upon a hybrid neutrosophic method based on the Neutrosophic Analytical Hierarchy Process (N-AHP), which uses the theory of neutrosophy sets and is considered suitable in terms of significant degree of ambiguity and indeterminacy observed in decision-making process. To this end, our framework extends the N-AHP by incorporating the Neutrosophic Delphi Method (N-DM). By applying the N-DM, we can take into consideration the importance of each decision-maker and their preferences per evaluation criterion. To the best of our knowledge, the proposed model stands out within the realm of related literature as one of the few studies to employ N-DM in the context of academic staff selection. As a case study, it was decided to use our method to a real problem of academic personnel selection, having as main goal to enhance the algorithm proposed in previous scholars’ work, and thus taking care of the inherit ineffectiveness which becomes apparent in traditional multi-criteria decision-making methods when dealing with situations alike. As a further result, we prove that our method demonstrates greater applicability and reliability when compared to other decision models.

Keywords: Analytical Hierarchy Process, Delphi Method, Multi-criteria decision making methods, neutrosophic set theory, personnel recruitment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39
6453 Exploring the Effect of Accounting Information on Systematic Risk: An Empirical Evidence of Tehran Stock Exchange

Authors: Mojtaba Rezaei, Elham Heydari

Abstract:

This paper highlights the empirical results of analyzing the correlation between accounting information and systematic risk. This association is analyzed among financial ratios and systematic risk by considering the financial statement of 39 companies listed on the Tehran Stock Exchange (TSE) for five years (2014-2018). Financial ratios have been categorized into four groups and to describe the special features, as representative of accounting information we selected: Return on Asset (ROA), Debt Ratio (Total Debt to Total Asset), Current Ratio (current assets to current debt), Asset Turnover (Net sales to Total assets), and Total Assets. The hypotheses were tested through simple and multiple linear regression and T-student test. The findings illustrate that there is no significant relationship between accounting information and market risk. This indicates that in the selected sample, historical accounting information does not fully reflect the price of stocks.

Keywords: Accounting information, market risk, systematic risk, efficient market hypothesis, EMH, Tehran Stock Exchange, TSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
6452 Fuzzy Cost Support Vector Regression

Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati

Abstract:

In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.

Keywords: Support vector regression, Fuzzy input, Fuzzy cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372