Search results for: Comprehensive CFD model
138 The Opinions of Nursing Students Regarding Humanized Care through Volunteer Activities at Boromrajonani College of Nursing, Chonburi
Authors: P. Phenpun, S. Wareewan
Abstract:
This qualitative study aimed to describe the opinions in relation to humanized care emerging from the volunteer activities of nursing students at Boromarajonani College of Nursing, Chonburi, Thailand. One hundred and twenty-seven second-year nursing students participated in this study. The volunteer activity model was composed of preparation, implementation, and evaluation through a learning log, in which students were encouraged to write their daily activities after completing practical training at the healthcare center. The preparation content included three main categories: service minded, analytical thinking, and client participation. The preparation process took over three days that accumulates up to 20 hours only. The implementation process was held over 10 days, but with a total of 70 hours only, with participants taking part in volunteer work activities at a healthcare center. A learning log was used for evaluation and data were analyzed using content analysis. The findings were as follows. With service minded, there were two subcategories that emerged from volunteer activities, which were service minded towards patients and within themselves. There were three categories under service minded towards patients, which were rapport, compassion, and empathy service behaviors, and there were four categories under service minded within themselves, which were self-esteem, self-value, management potential, and preparedness in providing good healthcare services. In line with analytical thinking, there were two components of analytical thinking, which were analytical skill for their works and analytical thinking for themselves. There were four subcategories under analytical thinking for their works, which were evidence based thinking, real situational thinking, cause analysis thinking, and systematic thinking, respectively. There were four subcategories under analytical thinking for themselves, which were comparative between themselves, towards their clients that leads to the changing of their service behaviors, open-minded thinking, modernized thinking, and verifying both verbal and non-verbal cues. Lastly, there were three categories under participation, which were mutual rapport relationship; reconsidering client’s needs services and providing useful health care information.
Keywords: Humanized care service, volunteer activity, nursing student, and learning log.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579137 Food for Thought: Preparing the Brain to Eat New Foods through “Messy” Play
Authors: L. Bernabeo, T. Loftus
Abstract:
Many children often experience phases of picky eating, food aversions and/or avoidance. For families with children who have special needs, these experiences are often exacerbated, which can lead to feelings that negatively impact a caregiver’s relationship with their child. Within the scope of speech language pathology practice, knowledge of both emotional and feeding development is key. This paper will explore the significance of “messy play” within typical feeding development, and the challenges that may arise if a child does not have the opportunity to engage in this type of exploratory play. This paper will consider several contributing factors that can result in a “picky eater.” Further, research has shown that individuals with special needs, including autism, possess a neurological makeup that differs from that of a typical individual. Because autism is a disorder of relating and communicating due to differences in the limbic system, an individual with special needs may respond to a typical feeding experience as if it is a traumatic event. As a result, broadening one’s dietary repertoire may seem to be an insurmountable challenge. This paper suggests that introducing new foods through exploratory play can help broaden and strengthen diets, as well as improve the feeding experience, of individuals with autism. The DIRFloortimeⓇ methodology stresses the importance of following a child's lead. Within this developmental model, there is a special focus on a person’s individual differences, including the unique way they process the world around them, as well as the significance of therapy occurring within the context of a strong and motivating relationship. Using this child-centered approach, we can support our children in expanding their diets, while simultaneously building upon their cognitive and creative development through playful and respectful interactions that include exposure to foods that differ in color, texture, and smell. Further, this paper explores the importance of exploration, self-feeding and messy play on brain development, both in the context of typically developing individuals and those with disordered development.
Keywords: Autism, development, exploration, feeding, play.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590136 Multidimensional Performance Tracking
Authors: C. Ardil
Abstract:
In this study, a model, together with a software tool that implements it, has been developed to determine the performance ratings of employees in an organization operating in the information technology sector using the indicators obtained from employees' online study data. Weighted Sum (WS) Method and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method based on multidimensional decision making approach were used in the study. WS and TOPSIS methods provide multidimensional decision making (MDDM) methods that allow all dimensions to be evaluated together considering specific weights, allowing employees to objectively evaluate the problem of online performance tracking. The application of WS and TOPSIS mathematical methods, which can combine alternatives with a large number of dimensions and reach simultaneous solution, has been implemented through an online performance tracking software. In the application of WS and TOPSIS methods, objective dimension weights were calculated by using entropy information (EI) and standard deviation (SD) methods from the data obtained by employees' online performance tracking method, decision matrix was formed by using performance scores for each employee, and a single performance score was calculated for each employee. Based on the calculated performance score, employees were given a performance evaluation decision. The results of Pareto set evidence and comparative mathematical analysis validate that employees' performance preference rankings in WS and TOPSIS methods are closely related. This suggests the compatibility, applicability, and validity of the proposed method to the MDDM problems in which a large number of alternative and dimension types are taken into account. With this study, an objective, realistic, feasible and understandable mathematical method, together with a software tool that implements it has been demonstrated. This is considered to be preferable because of the subjectivity, limitations and high cost of the methods traditionally used in the measurement and performance appraisal in the information technology sector.Keywords: Weighted sum, entropy ınformation, standard deviation, online performance tracking, performance evaluation, performance management, multidimensional decision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120135 Assessing the Impact of Quinoa Cultivation Adopted to Produce a Secure Food Crop and Poverty Reduction by Farmers in Rural Pakistan
Authors: Ejaz Ashraf, Raheel Babar, Muhammad Yaseen, Hafiz Khurram Shurjeel, Nosheen Fatima
Abstract:
Main purpose of this study was to assess adoption level of farmers for quinoa cultivation after they had been taught through training and visit extension approach. At this time of the 21st century, population structure, climate change, food requirements and eating habits of people are changing rapidly. In this scenario, farmers must play their key role in sustainable crop development and production through adoption of new crops that may also be helpful to overcome the issue of food insecurity as well as reducing poverty in rural areas. Its cultivation in Pakistan is at the early stages and there is a need to raise awareness among farmers to grow quinoa crops. In the middle of the 2015, a training and visit extension approach was used to raise awareness and convince farmers to grow quinoa in the area. During training and visit extension program, 80 farmers were randomly selected for the training of quinoa cultivation. Later on, these farmers trained 60 more farmers living into their neighborhood. After six months, a survey was conducted with all 140 farmers to assess the impact of the training and visit program on adoption level of respondents for the quinoa crop. The survey instrument was developed with the help of literature review and other experts of the crop. Validity and reliability of the instrument were checked before complete data collection. The data were analyzed by using SPSS. Multiple regression analysis was used for interpretation of the results from the survey, which indicated that factors like information/ training, change in agronomic and plant protection practices play a key role in the adoption of quinoa cultivation by respondents. In addition, the model explains more than 50% of variation in the adoption level of respondents. It is concluded that farmers need timely information for improved knowledge of agronomic and plant protection practices to adopt cultivation of the quinoa crop in the area.
Keywords: Farmers, quinoa, adoption, contact, training and visit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924134 Neuropalliative Care in Patients with Progressive Neurological Disease in Czech Republic: Study Protocol
Authors: R. Bužgová, R. Kozáková, M. Škutová, M. Bar, P. Ressner, P. Bártová
Abstract:
Introduction: Currently, there has been an increasing concern about the provision of palliative care in non-oncological patients in both professional literature and clinical practice. However, there is not much scientific information on how to provide neurological and palliative care together. The main objective of the project is to create and to verify a concept of neuro-palliative and rehabilitative care for patients with selected neurological diseases in an advanced stage of the disease and also to evaluate bio-psychosocial and spiritual needs of these patients and their caregivers related to the quality of life using created standardized tools. Methodology: Triangulation of research methods (qualitative and quantitative) will be used. A concept of care and assessment tools will be developed by analyzing interviews and focus groups. Qualitative data will be analyzed using grounded theory. The concept of care will be tested in the context of the intervention study. Using quantitative analysis, we will assess the effect of an intervention provided on the saturation of needs, quality of life, and quality of care. A research sample will be made up of the patients with selected neurological diseases (Parkinson´s syndrome, motor neuron disease, multiple sclerosis, Huntington’s disease), together with patients´ family members. Based on the results, educational materials and a certified course for health care professionals will be created. Findings: Based on qualitative data analysis, we will propose the concept of integrated care model combining neurological, rehabilitative and specialist palliative care for patients with selected neurological diseases in different settings of care and services. Patients´ needs related to quality of life will be described by newly created and validated measuring tools before the start of intervention (application of neuro-palliative and palliative approach) and then in the time interval. Conclusion: Based on the results, educational materials and a certified course for doctors and health care professionals will be created.
Keywords: Multidisciplinary approach, neuropalliative care, research, quality of life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907133 Modeling Stress-Induced Regulatory Cascades with Artificial Neural Networks
Authors: Maria E. Manioudaki, Panayiota Poirazi
Abstract:
Yeast cells live in a constantly changing environment that requires the continuous adaptation of their genomic program in order to sustain their homeostasis, survive and proliferate. Due to the advancement of high throughput technologies, there is currently a large amount of data such as gene expression, gene deletion and protein-protein interactions for S. Cerevisiae under various environmental conditions. Mining these datasets requires efficient computational methods capable of integrating different types of data, identifying inter-relations between different components and inferring functional groups or 'modules' that shape intracellular processes. This study uses computational methods to delineate some of the mechanisms used by yeast cells to respond to environmental changes. The GRAM algorithm is first used to integrate gene expression data and ChIP-chip data in order to find modules of coexpressed and co-regulated genes as well as the transcription factors (TFs) that regulate these modules. Since transcription factors are themselves transcriptionally regulated, a three-layer regulatory cascade consisting of the TF-regulators, the TFs and the regulated modules is subsequently considered. This three-layer cascade is then modeled quantitatively using artificial neural networks (ANNs) where the input layer corresponds to the expression of the up-stream transcription factors (TF-regulators) and the output layer corresponds to the expression of genes within each module. This work shows that (a) the expression of at least 33 genes over time and for different stress conditions is well predicted by the expression of the top layer transcription factors, including cases in which the effect of up-stream regulators is shifted in time and (b) identifies at least 6 novel regulatory interactions that were not previously associated with stress-induced changes in gene expression. These findings suggest that the combination of gene expression and protein-DNA interaction data with artificial neural networks can successfully model biological pathways and capture quantitative dependencies between distant regulators and downstream genes.
Keywords: gene modules, artificial neural networks, yeast, stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472132 Effect of Urea Deep Placement Technology Adoption on the Production Frontier: Evidence from Irrigation Rice Farmers in the Northern Region of Ghana
Authors: Shaibu Baanni Azumah, William Adzawla
Abstract:
Rice is an important staple crop, with current demand higher than the domestic supply in Ghana. This has led to a high and unfavourable import bill. Therefore, recent policies and interventions in the agricultural sub-sector aim at promoting various improved agricultural technologies in order to improve domestic production and reduce the importation of rice. In this study, we examined the effect of the adoption of Urea Deep Placement (UDP) technology by rice farmers on the position of the production frontier. This involved 200 farmers selected through a multi stage sampling technique in the Northern region of Ghana. A Cobb-Douglas stochastic frontier model was fitted. The result showed that the adoption of UDP technology shifts the output frontier outward and also move the farmers closer to the frontier. Farmers were also operating under diminishing returns to scale which calls for redress. Other factors that significantly influenced rice production were farm size, labour, use of certified seeds and NPK fertilizer. Although there was an opportunity for improvement, the farmers were highly efficient (92%), compared to previous studies. Farmers’ efficiency was improved through increased education, household size, experience, access to credit, and lack of extension service provision by MoFA. The study recommends the revision of Ghana’s agricultural policy to include the UDP technology. Agricultural Extension officers of the Ministry of Food and Agriculture (MoFA) should be trained on the UDP technology to support IFDC’s drive to improve adoption by rice farmers. Rice farmers are also encouraged to expand their farm lands, improve plant population, and also increase the usage of fertilizer to improve yields. Mechanisms through which credit can be made easily accessible and effectively utilised should be identified and promoted.Keywords: Efficiency, rice farmers, stochastic frontier, UDP technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979131 The Alliance for Grassland Renewal: A Model for Teaching Endophyte Technology
Authors: C. A. Roberts, J. G. Andrae, S. R. Smith, M. H. Poore, C. A. Young, D. W. Hancock, G. J. Pent
Abstract:
To the author’s best knowledge, there are no published reports of effective methods for teaching fescue toxicosis and grass endophyte technology in the USA. To address this need, a group of university scientists, industry representatives, government agents, and livestock producers formed an organization called the Alliance for Grassland Renewal. One goal of the Alliance was to develop a teaching method that could be employed across all regions in the USA and all sectors of the agricultural community. The first step in developing this method was identification of experts who were familiar with the science and management of fescue toxicosis. The second step was curriculum development. Experts wrote a curriculum that addressed all aspects of toxicosis and management, including toxicology, animal nutrition, pasture management, economics, and mycology. The curriculum was created for presentation in lectures, laboratories, and in the field. The curriculum was in that it could be delivered across state lines, regardless of peculiar, in-state recommendations. The curriculum was also unique as it was unanimously supported by private companies otherwise in competition with each other. The final step in developing this teaching method was formulating a delivery plan. All experts, including university, industry, government, and production, volunteered to travel from any state in the USA, converge in one location, teach a 1-day workshop, then travel to the next location. The results of this teaching method indicate widespread success. Since 2012, experts across the entire USA have converged to teach Alliance workshops in Kansas, Oklahoma, Missouri, Kentucky, Georgia, South Carolina, North Carolina, and Virginia, with ongoing workshops in Arkansas and Tennessee. Data from post-workshop surveys indicate that instruction has been effective, as at least 50% of the participants stated their intention to adopt the endophyte technology presented in these workshops. The teaching method developed by the Alliance for Grassland Renewal has proved to be effective, and the Alliance continues to expand across the USA.
Keywords: Endophyte, Epichloë coenophiala, ergot alkaloids, fescue toxicosis, tall fescue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792130 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare
Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl
Abstract:
Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.
Keywords: Average run length, Bernoulli CUSUM chart, beta binomial posterior predictive distribution, clinical indicator, health care organization, highest posterior density interval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888129 Personalizing Human Physical Life Routines Recognition over Cloud-Based Sensor Data Via Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS (Micro-Electro-Mechanical Systems) sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study presents state-of-the-art techniques for recognizing static and dynamic patterns and forecasting those challenging activities from multi-fused sensors. Furthermore, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, raw data were processed with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.
Keywords: Artificial intelligence, machine learning, gait analysis, local binary pattern, statistical features, micro-electro-mechanical systems, maximum relevance and minimum redundancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42128 Dynamic Analysis of Reduced Order Large Rotating Vibro-Impact Systems
Authors: Miroslav Byrtus
Abstract:
Large rotating systems, especially gear drives and gearboxes, occur as parts of many mechanical devices transmitting the torque with relatively small loss of power. With the increased demand for high speed machinery, mathematical modeling and dynamic analysis of gear drives gained importance. Mathematical description of such mechanical systems is a complex task evolving for several decades. In gear drive dynamic models, which include flexible shafts, bearings and gearing and use the finite elements, nonlinear effects due to gear mesh and bearings are usually ignored, for such models have large number of degrees of freedom (DOF) and it is computationally expensive to analyze nonlinear systems with large number of DOF. Therefore, these models are not suitable for simulation of nonlinear behavior with amplitude jumps in frequency response. The contribution uses a methodology of nonlinear large rotating system modeling which is based on degrees of freedom (DOF) number reduction using modal synthesis method (MSM). The MSM enables significant DOF number reduction while keeping the nonlinear behavior of the system in a specific frequency range. Further, the MSM with DOF number reduction is suitable for including detail models of nonlinear couplings (mainly gear and bearing couplings) into the complete gear drive models. Since each subsystem is modeled separately using different FEM systems, it is advantageous to parameterize models of subsystems and to use the parameterization for optimization of chosen design parameters. Final complex model of gear drive is assembled in MATLAB and MATLAB tools are used for dynamical analysis of the nonlinear system. The contribution is further focused on developing of a methodology for investigation of behavior of the system by Nonlinear Normal Modes with combination of the MSM using numerical continuation method. The proposed methodology will be tested using a two-stage gearbox including its housing.
Keywords: Vibro-impact system, rotating system, gear drive, modal synthesis method, numerical continuation method, periodic solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2407127 Wound Healing Effect of Ocimum sanctum Leaves Extract in Diabetic Rats
Authors: Manish Kumar Gautam, Raj Kumar Goel
Abstract:
Delayed wound healing in diabetes is primarily associated with hyperglycemia, over-expression of inflammatory marker, oxidative stress and delayed collagen synthesis. This unmanaged wound is producing high economic burden on the society. Thus research is required to develop new and effective treatment strategies to deal with this emerging issue. Our present study incorporates the evaluation of wound healing effects of 50% ethanol extract of Ocimum sanctum (OSE) in streptozotocin (45mg/kg)-induced diabetic rats with concurrent wound ulcer. The animals showing diabetes (Blood glucose level >140 and <250 mg/dL) will be selected for wound healing study using standard dead space wound model. Wounds were created by implanting two polypropylene tubes (0.5 x 2.5 cm2 each), one on either side in the lumbar region on the dorsal surface of each rat. On the 10th postwounding day, the animals were sacrificed and granulation tissue formed on the implanted tubes was carefully dissected out and study the status of antioxidants (Superoxide dismutase, SOD and Glutathione, GSH) free radicals (Lipid peroxidation, LPO and nitric oxide, NO) acute inflammatory marker (myeloperoxidase, MPO) connective tissue determinants, hydroxyproline, hexosamine and hexuronic acid, which play a major role in wound healing and diabetes. Besides the anti-diabetic parameters (estimation of serum blood glucose, triglycerides and total cholesterol), the above parameters for wound healing were studied both in normal, untreated and OSE treated diabetic rats. The effects of extract on above parameters will be compared with known standard antioxidant (Vitamin E) and anti-diabetic (Glybenclamide) drugs. OSE 400 mg/kg substantiated by significantly decreased serum blood glucose, triglycerides and total cholesterol. OSE also decrease granulation tissue free radicals (LPO, 58.1% and NO, 52.7%) and myeloperoxidase (MPO, 63.3%), and enhanced antioxidants (GSH, 116.4% and SOD, 201.1%)
Keywords: Wound healing, diabetes, Ocimum sanctum, Antioxidant, Free radical, Myeloperoxidase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164126 Milling Simulations with a 3-DOF Flexible Planar Robot
Authors: Hoai Nam Huynh, Edouard Rivière-Lorphèvre, Olivier Verlinden
Abstract:
Manufacturing technologies are becoming continuously more diversified over the years. The increasing use of robots for various applications such as assembling, painting, welding has also affected the field of machining. Machining robots can deal with larger workspaces than conventional machine-tools at a lower cost and thus represent a very promising alternative for machining applications. Furthermore, their inherent structure ensures them a great flexibility of motion to reach any location on the workpiece with the desired orientation. Nevertheless, machining robots suffer from a lack of stiffness at their joints restricting their use to applications involving low cutting forces especially finishing operations. Vibratory instabilities may also happen while machining and deteriorate the precision leading to scrap parts. Some researchers are therefore concerned with the identification of optimal parameters in robotic machining. This paper continues the development of a virtual robotic machining simulator in order to find optimized cutting parameters in terms of depth of cut or feed per tooth for example. The simulation environment combines an in-house milling routine (DyStaMill) achieving the computation of cutting forces and material removal with an in-house multibody library (EasyDyn) which is used to build a dynamic model of a 3-DOF planar robot with flexible links. The position of the robot end-effector submitted to milling forces is controlled through an inverse kinematics scheme while controlling the position of its joints separately. Each joint is actuated through a servomotor for which the transfer function has been computed in order to tune the corresponding controller. The output results feature the evolution of the cutting forces when the robot structure is deformable or not and the tracking errors of the end-effector. Illustrations of the resulting machined surfaces are also presented. The consideration of the links flexibility has highlighted an increase of the cutting forces magnitude. This proof of concept will aim to enrich the database of results in robotic machining for potential improvements in production.Keywords: Control, machining, multibody, robotic, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373125 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study
Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho
Abstract:
The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693124 Vocational Skills, Recognition of Prior Learning and Technology: The Future of Higher Education
Authors: Shankar Subramanian Iyer
Abstract:
The vocational education, enhanced by technology and Recognition of Prior Learning (RPL) is going to be the main ingredient of the future of education. This is coming from the various issues of the current educational system like cost, time, type of course, type of curriculum, unemployment, to name the major reasons. Most millennials like to perform and learn rather than learning how to perform. This is the essence of vocational education be it any field from cooking, painting, plumbing to modern technologies using computers. Even a more theoretical course like entrepreneurship can be taught as to be an entrepreneur and learn about its nuances. The best way to learn accountancy is actually keeping accounts for a small business or grocer and learn the ropes of accountancy and finance. The purpose of this study is to investigate the relationship between vocational skills, RPL and new technologies with future employability. This study implies that individual's knowledge and skills are essential aspects to be emphasized in future education and to give credit for prior experience for future employability. Virtual reality can be used to stimulate workplace situations for vocational learning for fields like hospitality, medical emergencies, healthcare, draughtsman ship, building inspection, quantity surveying, estimation, to name a few. All disruptions in future education, especially vocational education, are going to be technology driven with the advent of AI, ML, IoT, VR, VI etc. Vocational education not only helps institutes cut costs drastically, but allows all students to have hands-on experiences, rather than to be observers. The earlier experiential learning theory and the recent theory of knowledge and skills-based learning modified and applied to the vocational education and development of skills is the proposed contribution of this paper. Apart from secondary research study on major scholarly articles, books, primary research using interviews, questionnaire surveys have been used to validate and test the reliability of the suggested model using Partial Least Square- Structural Equation Method (PLS-SEM), the factors being assimilated using an existing literature review. Major findings have been that there exists high relationship between the vocational skills, RPL, new technology to the future employability through mediation of future employability skills.
Keywords: Vocational education, vocational skills, competencies, modern technologies, Recognition of Prior Learning, RPL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796123 Assessing Overall Thermal Conductance Value of Low-Rise Residential Home Exterior Above-Grade Walls Using Infrared Thermography Methods
Authors: Matthew D. Baffa
Abstract:
Infrared thermography is a non-destructive test method used to estimate surface temperatures based on the amount of electromagnetic energy radiated by building envelope components. These surface temperatures are indicators of various qualitative building envelope deficiencies such as locations and extent of heat loss, thermal bridging, damaged or missing thermal insulation, air leakage, and moisture presence in roof, floor, and wall assemblies. Although infrared thermography is commonly used for qualitative deficiency detection in buildings, this study assesses its use as a quantitative method to estimate the overall thermal conductance value (U-value) of the exterior above-grade walls of a study home. The overall U-value of exterior above-grade walls in a home provides useful insight into the energy consumption and thermal comfort of a home. Three methodologies from the literature were employed to estimate the overall U-value by equating conductive heat loss through the exterior above-grade walls to the sum of convective and radiant heat losses of the walls. Outdoor infrared thermography field measurements of the exterior above-grade wall surface and reflective temperatures and emissivity values for various components of the exterior above-grade wall assemblies were carried out during winter months at the study home using a basic thermal imager device. The overall U-values estimated from each methodology from the literature using the recorded field measurements were compared to the nominal exterior above-grade wall overall U-value calculated from materials and dimensions detailed in architectural drawings of the study home. The nominal overall U-value was validated through calendarization and weather normalization of utility bills for the study home as well as various estimated heat loss quantities from a HOT2000 computer model of the study home and other methods. Under ideal environmental conditions, the estimated overall U-values deviated from the nominal overall U-value between ±2% to ±33%. This study suggests infrared thermography can estimate the overall U-value of exterior above-grade walls in low-rise residential homes with a fair amount of accuracy.
Keywords: Emissivity, heat loss, infrared thermography, thermal conductance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844122 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves
Abstract:
In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.
Keywords: Lamb waves, industry 4.0, process control, elasticity, acoustoelasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104121 Aircraft Gas Turbine Engines Technical Condition Identification System
Authors: A. M. Pashayev, C. Ardil, D. D. Askerov, R. A. Sadiqov, P. S. Abdullayev
Abstract:
In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients' changes. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-bystage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.
Keywords: Gas turbine engines, neural networks, fuzzy logic, fuzzy statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910120 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The modern Artificial Narrow Intelligence (ANI) models cannot: a) independently, situationally, and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, and cognize under uncertainty and changing of the environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU). This system uses a neural network as its computational memory, and activates functions of the perception, identification of real objects, fuzzy situational control, and forming images of these objects. These images and objects are used for modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision Making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, and Wisdom. In doing so are performed analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge of the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of situational control, fuzzy logic, psycholinguistics, informatics, and modern possibilities of data science were applied. The proposed self-controlled system of brain and mind is oriented on use as a plug-in in multilingual subject applications.
Keywords: Computational psycholinguistic cognitive brain and mind system, situational fuzzy control, uncertainty, AI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 427119 Religion versus Secularism on Women’s Liberation: The Question of Women Liberation and Modern Education
Authors: Kinda AlSamara
Abstract:
The nineteenth century was characterized by major educational reforms in the Arab World. One of the unintended outcomes of colonization in Arab countries was the initiation of women liberation as well as the introduction of modern education and its application in sensitizing people on the rights of women and their liberation. The reforms were often attributed to various undercurrents that took place at different levels within the Ottoman Empire, and particularly the arrival and influence of the Christian missionaries were supported by the American and European governments. These trends were also significantly attributed to the increase in the presence of Europeans in the region, as well as the introduction of secular ideas and approaches related to the meaning of modernity. Using literary analysis as a method, this paper examines the role of an important male figure like the political activist and writer Qāsim Amīn and the religious reformer Muḥammad ʻAbduh in starting this discourse and shows their impact on the emancipation of women movement (Taḥrīr), and how later women led the movement with their published work. This paper explores Arab Salons and the initiation of women’s literary circles. Women from wealthy families in Egypt and Syria who had studied in Europe or interacted with European counterparts began these circles. These salons acted as central locations where people could meet and hold discussions on political, social, and literary trends as they happened each day. The paper concludes with a discussion of current debates between the Islamist and the secularist branches of the movement today. While the Islamists believe that adhering to the core of Islam with some of its contested position on women is a modern ideology of liberation that fits the current culture of modern time Egypt; the secularists argue that the influence that Islam has on the women’s liberation movement in Egypt has been a threat to the natural success and progress of the movement, which was initiated in the early nineteenth century independent of the more recent trends towards religiosity in the country.
Keywords: Educational model, crisis of terminologies, Arab awakening, nineteenth century.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639118 Analyzing the Historical Ayazma Bath within the Scope of Integrated Preservation and Specifying the Criteria for Reuse
Authors: Meryem Elif Çelebi Yakartepe, Ayşe Betül Gökarslan
Abstract:
Today, preservation of the historical constructions in "single construction" scale creates an inadequate preservation model in terms of the integrity of the historical environment in which they are located. However, in order to preserve these structures forming this integrity with a holistic approach, the structures either need to continue their unique functions or to be reshaped for function conforming to today's comfort conditions brought by the modern life.
In this work, the preservation of Ayazma Social Complex located in Ayazma Neighborhood of Üsküdar, one of the most important historical districts of İstanbul, with integrated preservation method has been discussed. In the conventional Turkish architecture, the social complex is a structure complex formed via constructing the public buildings required for the daily life of the people living in a settlement. Thus, the preservation of the social complexes within the scope of "integrated preservation" has gained importance. Ayazma Social Complex that forms the examination area of this work consists of a mosque in its center and structures around this mosque such as sultan mansion, time assignment center, primary school, stores, bath and water reservoirs. Mosque, sultan mansion and the water reservoirs survived to today as mostly preserved status. However, time assignment center, primary school and the stores didn't survive to today and new structures were built on their plots. The bath was mostly damaged and only the wall residues survive to today. Thus, it's urgent and crucial especially carry out the preservation restoration of the bath in accordance with integrated preservation principles. The preservation problems of the bath based on the social complex were determined as a working method and preservation suggestions were made to overcome these problems and to include the bath into daily life. Furthermore, it was suggested that the bath should be reshaped for a different function in order to be preserved with the social complex.
Keywords: Üsküdar, Ayazma Complex, Ayazma Bath, Conservation, Restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827117 Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies
Authors: Harshit Vallecha, Prabha Bhola
Abstract:
‘Energy for all’, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions.
Keywords: Climate change, decentralized generation, electricity access, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017116 A Review on Building Information Modelling in Nigeria and Its Potentials
Authors: Mansur Hamma-Adama, Tahar Kouider
Abstract:
Construction Industry has been evolving since the development of Building Information Modelling (BIM). This technological process is unstoppable; it is out to the market with remarkable case studies of solving the long industry’s history of fragmentation. This industry has been changing over time; United States has recorded the most significant development in construction digitalization, Australia, United Kingdom and some other developed nations are also amongst promoters of BIM process and its development. Recently, a developing country like China and Malaysia are keying into the industry’s digital shift, while very little move is seen in South Africa whose development is considered higher and perhaps leader in the digital transition amongst the African countries. To authors’ best knowledge, Nigerian construction industry has never engaged in BIM discussions hence has no attention at national level. Consequently, Nigeria has no “Noteworthy BIM publications.” Decision makers and key stakeholders need to be informed on the current trend of the industry’s development (BIM in specific) and the opportunities of adopting this digitalization trend in relation to the identified challenges. BIM concept can be traced mostly in Architectural practices than engineering practices in Nigeria. A superficial BIM practice is found to be at organisational level only and operating a model based - “BIM stage 1.” Research to adopting this innovation has received very little attention. This piece of work is literature review based, aimed at exploring BIM in Nigeria and its prospects. The exploration reveals limitations in the literature availability as to extensive research in the development of BIM in the country. Numerous challenges were noticed including building collapse, inefficiencies, cost overrun and late project delivery. BIM has potentials to overcome the above challenges and even beyond. Low level of BIM adoption with reasonable level of awareness is noticed. However, lack of policy and guideline as well as serious lack of experts in the field are amongst the major barriers to BIM adoption. The industry needs to embrace BIM to possibly compete with its global counterpart.
Keywords: Adoption, BIM, CAD, construction industry, Nigeria, opportunities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387115 The Effect of Nutrition Education on Adherence to the Mediterranean Diet and Sustainable Healthy Eating Behaviors in University Students
Authors: Tuba Tekin, Nurcan Baglam, Emine Dincer
Abstract:
This study aimed to examine the effects of nutrition education received by university students on sustainable healthy eating behaviors and adherence to the Mediterranean diet. The 2nd, 3rd, and 4th-grade university students studying at the Faculty of Health Sciences, Nutrition and Dietetics, Midwifery, Nursing, Physical Therapy, and Rehabilitation departments of universities in Turkey were included in the study. Students' adherence to the Mediterranean diet was evaluated using the Mediterranean Diet Adherence Scale, and their sustainable and healthy eating behaviors were evaluated using the Sustainable and Healthy Eating Behaviors Scale. In addition, the body weight and height of the students were measured by the researchers, and the Body Mass Index (BMI) value was calculated. A total of 181 students, 85 of whom were studying in the Department of Nutrition and Dietetics and 96 of whom were educated in other departments, were included in the study; 75.7% of the students in the sample are female, while 24.3% are male. The average body weight of the students was 61.17 ± 10.87 kg, and the average BMI was 22.04 ± 3.40 kg/m2. While the mean score of the Mediterranean Diet Adherence Scale was 6.72 ± 1.84, in the evaluation of adherence to the Mediterranean diet, it was determined that 25.4% of the students had poor adherence and 66.9% needed improvement. When the adherence scores of students who received and did not receive nutrition education were compared, it was discovered that the students who received nutrition education had a higher score (p < 0.05). Students who received nutrition education had a higher total score on the Sustainable and Healthy Eating Behaviors scale (p < 0.05). A moderately positive correlation was found between the Sustainable and Healthy Eating Behaviors scale total score and the Mediterranean Diet Adherence scores (p < 0.05). As a result of the linear regression analysis, it was revealed that a 1-unit increase in the Mediterranean diet adherence score would result in a 1.3-point increase in the total score of the Sustainable and Healthy Eating Behaviors scale. Sustainable and healthy diets are important for improving and developing health and the prevention of diseases. The Mediterranean diet is defined as a sustainable diet model. The findings revealed the relationship between the Mediterranean diet and sustainable nutrition and showed that nutrition education increased knowledge and awareness about sustainable nutrition and increased adherence to the Mediterranean diet. For this reason, courses or seminars on sustainable nutrition can be organized during educational periods.
Keywords: Healthy eating, Mediterranean diet, nutrition education, sustainable nutrition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 387114 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities
Authors: Kung-Jen Tu, Danny Vernatha
Abstract:
To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.Keywords: Sensor, electricity sub-meters, database, energy anomaly detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294113 Measuring the Effect of Ventilation on Cooking in Indoor Air Quality by Low-Cost Air Sensors
Authors: Andres Gonzalez, Adam Boies, Jacob Swanson, David Kittelson
Abstract:
The concern of the indoor air quality (IAQ) has been increasing due to its risk to human health. The smoking, sweeping, and stove and stovetop use are the activities that have a major contribution to the indoor air pollution. Outdoor air pollution also affects IAQ. The most important factors over IAQ from cooking activities are the materials, fuels, foods, and ventilation. The low-cost, mobile air quality monitoring (LCMAQM) sensors, is reachable technology to assess the IAQ. This is because of the lower cost of LCMAQM compared to conventional instruments. The IAQ was assessed, using LCMAQM, during cooking activities in a University of Minnesota graduate-housing evaluating different ventilation systems. The gases measured are carbon monoxide (CO) and carbon dioxide (CO2). The particles measured are particle matter (PM) 2.5 micrometer (µm) and lung deposited surface area (LDSA). The measurements are being conducted during April 2019 in Como Student Community Cooperative (CSCC) that is a graduate housing at the University of Minnesota. The measurements are conducted using an electric stove for cooking. The amount and type of food and oil using for cooking are the same for each measurement. There are six measurements: two experiments measure air quality without any ventilation, two using an extractor as mechanical ventilation, and two using the extractor and windows open as mechanical and natural ventilation. 3The results of experiments show that natural ventilation is most efficient system to control particles and CO2. The natural ventilation reduces the concentration in 79% for LDSA and 55% for PM2.5, compared to the no ventilation. In the same way, CO2 reduces its concentration in 35%. A well-mixed vessel model was implemented to assess particle the formation and decay rates. Removal rates by the extractor were significantly higher for LDSA, which is dominated by smaller particles, than for PM2.5, but in both cases much lower compared to the natural ventilation. There was significant day to day variation in particle concentrations under nominally identical conditions. This may be related to the fat content of the food. Further research is needed to assess the impact of the fat in food on particle generations.Keywords: Cooking, indoor air quality, low-cost sensor, ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024112 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.
Keywords: Agriculture 4.0, agri-food supply chain, Industry 4.0, voluntary traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362111 An AI-Generated Semantic Communication Platform in Human-Computer Interaction Course
Authors: Yi Yang, Jiasong Sun
Abstract:
Almost every aspect of our daily lives is now intertwined with some degree of Human-Computer Interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology and more. The HCI courses in the Department of Electronics at Tsinghua University, known as the Media and Cognition course, is constantly updated to reflect the most advanced technological advances, such as virtual reality, augmented reality and artificial intelligence-based interaction. For more than a decade, this course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which has gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. The latest version of the HCI course practices a semantic communication platform based on AI-generated techniques. We explored a student-centered model and proposed an interest-based teaching method. Students are no longer just recipients of knowledge, but become active participants in the learning process driven by personal interests, thereby encouraging students to take responsibility for their own education. One of the latest results of this teaching approach in the course "Media and Cognition" is a student proposal to develop a semantic communication platform rooted in artificial intelligence generative technologies. The platform solves a key challenge in communications technology: the ability to preserve visual signals. The interest-based approach emphasizes personal curiosity and active participation, and the proposal of an artificial intelligence-generated semantic communication platform is an example and successful result of how students can exert greater creativity when they have the power to control their own learning.
Keywords: Human-computer interaction, media and cognition course, semantic communication, retain ability, prompts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212110 Development and Validation of Cylindrical Linear Oscillating Generator
Authors: Sungin Jeong
Abstract:
This paper presents a linear oscillating generator of cylindrical type for hybrid electric vehicle application. The focus of the study is the suggestion of the optimal model and the design rule of the cylindrical linear oscillating generator with permanent magnet in the back-iron translator. The cylindrical topology is achieved using equivalent magnetic circuit considering leakage elements as initial modeling. This topology with permanent magnet in the back-iron translator is described by number of phases and displacement of stroke. For more accurate analysis of an oscillating machine, it will be compared by moving just one-pole pitch forward and backward the thrust of single-phase system and three-phase system. Through the analysis and comparison, a single-phase system of cylindrical topology as the optimal topology is selected. Finally, the detailed design of the optimal topology takes the magnetic saturation effects into account by finite element analysis. Besides, the losses are examined to obtain more accurate results; copper loss in the conductors of machine windings, eddy-current loss of permanent magnet, and iron-loss of specific material of electrical steel. The considerations of thermal performances and mechanical robustness are essential, because they have an effect on the entire efficiency and the insulations of the machine due to the losses of the high temperature generated in each region of the generator. Besides electric machine with linear oscillating movement requires a support system that can resist dynamic forces and mechanical masses. As a result, the fatigue analysis of shaft is achieved by the kinetic equations. Also, the thermal characteristics are analyzed by the operating frequency in each region. The results of this study will give a very important design rule in the design of linear oscillating machines. It enables us to more accurate machine design and more accurate prediction of machine performances.
Keywords: Equivalent magnetic circuit, finite element analysis, hybrid electric vehicle, free piston engine, cylindrical linear oscillating generator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377109 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1063