Search results for: reversed roulette wheel selection algorithms.
1824 Implementation of Heuristics for Solving Travelling Salesman Problem Using Nearest Neighbour and Minimum Spanning Tree Algorithms
Authors: Fatma A. Karkory, Ali A. Abudalmola
Abstract:
The travelling salesman problem (TSP) is a combinatorial optimization problem in which the goal is to find the shortest path between different cities that the salesman takes. In other words, the problem deals with finding a route covering all cities so that total distance and execution time is minimized. This paper adopts the nearest neighbor and minimum spanning tree algorithm to solve the well-known travelling salesman problem. The algorithms were implemented using java programming language. The approach is tested on three graphs that making a TSP tour instance of 5-city, 10 –city, and 229–city. The computation results validate the performance of the proposed algorithm.
Keywords: Heuristics, minimum spanning tree algorithm, Nearest Neighbor, Travelling Salesman Problem (TSP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78211823 Routing Medical Images with Tabu Search and Simulated Annealing: A Study on Quality of Service
Authors: Mejía M. Paula, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
In telemedicine, the image repository service is important to increase the accuracy of diagnostic support of medical personnel. This study makes comparison between two routing algorithms regarding the quality of service (QoS), to be able to analyze the optimal performance at the time of loading and/or downloading of medical images. This study focused on comparing the performance of Tabu Search with other heuristic and metaheuristic algorithms that improve QoS in telemedicine services in Colombia. For this, Tabu Search and Simulated Annealing heuristic algorithms are chosen for their high usability in this type of applications; the QoS is measured taking into account the following metrics: Delay, Throughput, Jitter and Latency. In addition, routing tests were carried out on ten images in digital image and communication in medicine (DICOM) format of 40 MB. These tests were carried out for ten minutes with different traffic conditions, reaching a total of 25 tests, from a server of Universidad Militar Nueva Granada (UMNG) in Bogotá-Colombia to a remote user in Universidad de Santiago de Chile (USACH) - Chile. The results show that Tabu search presents a better QoS performance compared to Simulated Annealing, managing to optimize the routing of medical images, a basic requirement to offer diagnostic images services in telemedicine.
Keywords: Medical image, QoS, simulated annealing, Tabu search, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9561822 Design of a Robust Controller for AGC with Combined Intelligence Techniques
Authors: R. N. Patel, S. K. Sinha, R. Prasad
Abstract:
In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.
Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871821 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.
Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66331820 Stability Bound of Ruin Probability in a Reduced Two-Dimensional Risk Model
Authors: Zina Benouaret, Djamil Aissani
Abstract:
In this work, we introduce the qualitative and quantitative concept of the strong stability method in the risk process modeling two lines of business of the same insurance company or an insurance and re-insurance companies that divide between them both claims and premiums with a certain proportion. The approach proposed is based on the identification of the ruin probability associate to the model considered, with a stationary distribution of a Markov random process called a reversed process. Our objective, after clarifying the condition and the perturbation domain of parameters, is to obtain the stability inequality of the ruin probability which is applied to estimate the approximation error of a model with disturbance parameters by the considered model. In the stability bound obtained, all constants are explicitly written.Keywords: Markov chain, risk models, ruin probabilities, strong stability analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8871819 Microscopic Simulation of Toll Plaza Safety and Operations
Authors: Bekir O. Bartin, Kaan Ozbay, Sandeep Mudigonda, Hong Yang
Abstract:
The use of microscopic traffic simulation in evaluating the operational and safety conditions at toll plazas is demonstrated. Two toll plazas in New Jersey are selected as case studies and were developed and validated in Paramics traffic simulation software. In order to simulate drivers’ lane selection behavior in Paramics, a utility-based lane selection approach is implemented in Paramics Application Programming Interface (API). For each vehicle approaching the toll plaza, a utility value is assigned to each toll lane by taking into account the factors that are likely to impact drivers’ lane selection behavior, such as approach lane, exit lane and queue lengths. The results demonstrate that similar operational conditions, such as lane-by-lane toll plaza traffic volume can be attained using this approach. In addition, assessment of safety at toll plazas is conducted via a surrogate safety measure. In particular, the crash index (CI), an improved surrogate measure of time-to-collision (TTC), which reflects the severity of a crash is used in the simulation analyses. The results indicate that the spatial and temporal frequency of observed crashes can be simulated using the proposed methodology. Further analyses can be conducted to evaluate and compare various different operational decisions and safety measures using microscopic simulation models.
Keywords: Microscopic simulation, toll plaza, surrogate safety, application programming interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7881818 A Programmer’s Survey of the Quantum Computing Paradigm
Authors: Philippe Jorrand
Abstract:
Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws which govern the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. This paper starts with a short survey of the principles which underlie quantum computing, and of some of the major breakthroughs brought by the first ten to fifteen years of research in this domain; quantum algorithms and quantum teleportation are very biefly presented. The next sections are devoted to one among the many directions of current research in the quantum computation paradigm, namely quantum programming languages and their semantics. A few other hot topics and open problems in quantum information processing and communication are mentionned in few words in the concluding remarks, the most difficult of them being the physical implementation of a quantum computer. The interested reader will find a list of useful references at the end of the paper.
Keywords: Quantum information processing, quantum algorithms, quantum programming languages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041817 Low Cost Chip Set Selection Algorithm for Multi-way Partitioning of Digital System
Authors: Jae Young Park, Soongyu Kwon, Kyu Han Kim, Hyeong Geon Lee, Jong Tae Kim
Abstract:
This paper considers the problem of finding low cost chip set for a minimum cost partitioning of a large logic circuits. Chip sets are selected from a given library. Each chip in the library has a different price, area, and I/O pin. We propose a low cost chip set selection algorithm. Inputs to the algorithm are a netlist and a chip information in the library. Output is a list of chip sets satisfied with area and maximum partitioning number and it is sorted by cost. The algorithm finds the sorted list of chip sets from minimum cost to maximum cost. We used MCNC benchmark circuits for experiments. The experimental results show that all of chip sets found satisfy the multiple partitioning constraints.Keywords: lowest cost chip set, MCNC benchmark, multi-way partitioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15031816 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence
Authors: L. K. Davis
Abstract:
The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.Keywords: 14-3-3 docking genes, synthetic protein design, time based DNA codes, writing DNA code from scratch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6641815 The Development of Flying Type Moving Robot Using Image Processing
Authors: Suriyon Tansuriyavong, Yuuta Suzuki, Boonmee Choompol
Abstract:
Wheel-running type moving robot has the restriction on the moving range caused by obstacles or stairs. Solving this weakness, we studied the development of moving robot using airship. Our airship robot moves by recognizing arrow marks on the path. To have the airship robot recognize arrow marks, we used edge-based template matching. To control propeller units, we used PID and PD controller. The results of experiments demonstrated that the airship robot can move along the marks and can go up and down the stairs. It is shown the possibility that airship robot can become a robot which can move at wide range facilities.Keywords: Template matching, moving robot, airship robot, PID control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15351814 Project Portfolio Management Phases: A Technique for Strategy Alignment
Authors: Amaral, António, Araújo, Madalena
Abstract:
This paper seeks to give a general idea of the universe of project portfolio management, from its multidisciplinary nature, to the many challenges it raises, passing through the different techniques, models and tools used to solve the multiple problems known. It is intended to contribute to the clarification, with great depth, of the impacts and relationships involved in managing the projects- portfolio. It aims at proposing a technique for the project alignment with the organisational strategy, in order to select projects that later on will be considered in the analysis and selection of the portfolio. We consider the development of a methodology for assessing the project alignment index very relevant in the global market scenario. It can help organisations to gain a greater awareness of market dynamics, speed up the decision process and increase its consistency, thus enabling the strategic alignment and the improvement of the organisational performance.
Keywords: Project Portfolio Management Cycle, Project Portfolio Selection, Resource Assignment, Strategy Alignment technique
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34561813 Nuclear Medical Image Treatment System Based On FPGA in Real Time
Authors: B. Mahmoud, M.H. Bedoui, R. Raychev, H. Essabbah
Abstract:
We present in this paper an acquisition and treatment system designed for semi-analog Gamma-camera. It consists of a nuclear medical Image Acquisition, Treatment and Display chain(IATD) ensuring the acquisition, the treatment of the signals(resulting from the Gamma-camera detection head) and the scintigraphic image construction in real time. This chain is composed by an analog treatment board and a digital treatment board. We describe the designed systems and the digital treatment algorithms in which we have improved the performance and the flexibility. The digital treatment algorithms are implemented in a specific reprogrammable circuit FPGA (Field Programmable Gate Array).interface for semi-analog cameras of Sopha Medical Vision(SMVi) by taking as example SOPHY DS7. The developed system consists of an Image Acquisition, Treatment and Display (IATD) ensuring the acquisition and the treatment of the signals resulting from the DH. The developed chain is formed by a treatment analog board and a digital treatment board designed around a DSP [2]. In this paper we have presented the architecture of a new version of our chain IATD in which the integration of the treatment algorithms is executed on an FPGA (Field Programmable Gate Array)
Keywords: Nuclear medical image, scintigraphic image, digitaltreatment, linearity, spectrometry, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761812 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model
Authors: Nicolae Bold, Daniel Nijloveanu
Abstract:
The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.Keywords: Genetic algorithm, chromosomes, genes, cropping, agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16021811 Control Strategy for an Active Suspension System
Authors: C. Alexandru, P. Alexandru
Abstract:
The paper presents the virtual model of the active suspension system used for improving the dynamic behavior of a motor vehicle. The study is focused on the design of the control system, the purpose being to minimize the effect of the road disturbances (which are considered as perturbations for the control system). The analysis is performed for a quarter-car model, which corresponds to the suspension system of the front wheel, by using the DFC (Design for Control) software solution EASY5 (Engineering Analysis Systems) of MSC Software. The controller, which is a PIDbased device, is designed through a parametric optimization with the Matrix Algebra Tool (MAT), considering the gain factors as design variables, while the design objective is to minimize the overshoot of the indicial response.Keywords: Active suspension, Controller, Dynamics, Vehicle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22571810 A Matching Algorithm of Minutiae for Real Time Fingerprint Identification System
Authors: Shahram Mohammadi, Ali Frajzadeh
Abstract:
A lot of matching algorithms with different characteristics have been introduced in recent years. For real time systems these algorithms are usually based on minutiae features. In this paper we introduce a novel approach for feature extraction in which the extracted features are independent of shift and rotation of the fingerprint and at the meantime the matching operation is performed much more easily and with higher speed and accuracy. In this new approach first for any fingerprint a reference point and a reference orientation is determined and then based on this information features are converted into polar coordinates. Due to high speed and accuracy of this approach and small volume of extracted features and easily execution of matching operation this approach is the most appropriate for real time applications.
Keywords: Matching, Minutiae, Reference point, Reference orientation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24141809 MIBiClus: Mutual Information based Biclustering Algorithm
Authors: Neelima Gupta, Seema Aggarwal
Abstract:
Most of the biclustering/projected clustering algorithms are based either on the Euclidean distance or correlation coefficient which capture only linear relationships. However, in many applications, like gene expression data and word-document data, non linear relationships may exist between the objects. Mutual Information between two variables provides a more general criterion to investigate dependencies amongst variables. In this paper, we improve upon our previous algorithm that uses mutual information for biclustering in terms of computation time and also the type of clusters identified. The algorithm is able to find biclusters with mixed relationships and is faster than the previous one. To the best of our knowledge, none of the other existing algorithms for biclustering have used mutual information as a similarity measure. We present the experimental results on synthetic data as well as on the yeast expression data. Biclusters on the yeast data were found to be biologically and statistically significant using GO Tool Box and FuncAssociate.
Keywords: Biclustering, mutual information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311808 A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems
Authors: I. Abuiziah, N. Shakarneh
Abstract:
Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.
Keywords: Genetic Algorithm, optimization, pipeline systems, selection, cross over.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51001807 An Integrated Framework for the Realtime Investigation of State Space Exploration
Authors: Jörg Lassig, Stefanie Thiem
Abstract:
The objective of this paper is the introduction to a unified optimization framework for research and education. The OPTILIB framework implements different general purpose algorithms for combinatorial optimization and minimum search on standard continuous test functions. The preferences of this library are the straightforward integration of new optimization algorithms and problems as well as the visualization of the optimization process of different methods exploring the search space exclusively or for the real time visualization of different methods in parallel. Further the usage of several implemented methods is presented on the basis of two use cases, where the focus is especially on the algorithm visualization. First it is demonstrated how different methods can be compared conveniently using OPTILIB on the example of different iterative improvement schemes for the TRAVELING SALESMAN PROBLEM. A second study emphasizes how the framework can be used to find global minima in the continuous domain.Keywords: Global Optimization Heuristics, Particle Swarm Optimization, Ensemble Based Threshold Accepting, Ruin and Recreate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13831806 Feature Selection for Web Page Classification Using Swarm Optimization
Authors: B. Leela Devi, A. Sankar
Abstract:
The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.
Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32591805 Using Genetic Algorithms in Closed Loop Identification of the Systems with Variable Structure Controller
Authors: O.M. Mohamed vall, M. Radhi
Abstract:
This work presents a recursive identification algorithm. This algorithm relates to the identification of closed loop system with Variable Structure Controller. The approach suggested includes two stages. In the first stage a genetic algorithm is used to obtain the parameters of switching function which gives a control signal rich in commutations (i.e. a control signal whose spectral characteristics are closest possible to those of a white noise signal). The second stage consists in the identification of the system parameters by the instrumental variable method and using the optimal switching function parameters obtained with the genetic algorithm. In order to test the validity of this algorithm a simulation example is presented.
Keywords: Closed loop identification, variable structure controller, pseud-random binary sequence, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14401804 A Robust Visual Tracking Algorithm with Low-Rank Region Covariance
Authors: Songtao Wu, Yuesheng Zhu, Ziqiang Sun
Abstract:
Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.Keywords: Visual tracking, region covariance descriptor, lowrankregion covariance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841803 Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications
Authors: Waleed Abohamad, Amr Arisha
Abstract:
Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.Keywords: Complex Business Problems, Optimization, Selection Criteria, Software Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29101802 Pattern Matching Based on Regular Tree Grammars
Authors: Riad S. Jabri
Abstract:
Pattern matching based on regular tree grammars have been widely used in many areas of computer science. In this paper, we propose a pattern matcher within the framework of code generation, based on a generic and a formalized approach. According to this approach, parsers for regular tree grammars are adapted to a general pattern matching solution, rather than adapting the pattern matching according to their parsing behavior. Hence, we first formalize the construction of the pattern matches respective to input trees drawn from a regular tree grammar in a form of the so-called match trees. Then, we adopt a recently developed generic parser and tightly couple its parsing behavior with such construction. In addition to its generality, the resulting pattern matcher is characterized by its soundness and efficient implementation. This is demonstrated by the proposed theory and by the derived algorithms for its implementation. A comparison with similar and well-known approaches, such as the ones based on tree automata and LR parsers, has shown that our pattern matcher can be applied to a broader class of grammars, and achieves better approximation of pattern matches in one pass. Furthermore, its use as a machine code selector is characterized by a minimized overhead, due to the balanced distribution of the cost computations into static ones, during parser generation time, and into dynamic ones, during parsing time.
Keywords: Bottom-up automata, Code selection, Pattern matching, Regular tree grammars, Match trees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12691801 Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms
Authors: Muhammad Naeem, Syed Ismail Shah, Habibullah Jamal
Abstract:
In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.Keywords: Genetic Algorithm (GA), Multiple AccessInterference (MAI), Multistage Detectors (MSD), SuccessiveInterference Cancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20471800 Strength Optimization of Induction Hardened Splined Shaft – Material and Geometric Aspects
Authors: I. Barsoum, F. Khan
Abstract:
the current study presents a modeling framework to determine the torsion strength of an induction hardened splined shaft by considering geometry and material aspects with the aim to optimize the static torsion strength by selection of spline geometry and hardness depth. Six different spline geometries and seven different hardness profiles including non-hardened and throughhardened shafts have been considered. The results reveal that the torque that causes initial yielding of the induction hardened splined shaft is strongly dependent on the hardness depth and the geometry of the spline teeth. Guidelines for selection of the appropriate hardness depth and spline geometry are given such that an optimum static torsion strength of the component can be achieved.
Keywords: Static strength, splined shaft, torsion, induction hardening, hardness profile, finite element, optimization, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49701799 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8291798 On the Noise Distance in Robust Fuzzy C-Means
Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni
Abstract:
In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18221797 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs
Authors: Swapnil Gupta, C. Pandu Rangan
Abstract:
A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.Keywords: Uniquely restricted matching, interval graph, design and analysis of algorithms, matching, induced matching, witness counting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471796 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections
Authors: N. Zhang, J. S. Kuang, S. Mogili
Abstract:
To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.
Keywords: Large-scale tests, RC beam-column knee joints, seismic performance, shear strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12051795 Combine a Population-based Incremental Learning with Artificial Immune System for Intrusion Detection System
Authors: Jheng-Long Wu, Pei-Chann Chang, Hsuan-Ming Chen
Abstract:
This research focus on the intrusion detection system (IDS) development which using artificial immune system (AIS) with population based incremental learning (PBIL). AIS have powerful distinguished capability to extirpate antigen when the antigen intrude into human body. The PBIL is based on past learning experience to adjust new learning. Therefore we propose an intrusion detection system call PBIL-AIS which combine two approaches of PBIL and AIS to evolution computing. In AIS part we design three mechanisms such as clonal selection, negative selection and antibody level to intensify AIS performance. In experimental result, our PBIL-AIS IDS can capture high accuracy when an intrusion connection attacks.
Keywords: Artificial immune system, intrusion detection, population-based incremental learning, evolution computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929