Search results for: open queueing network
2771 A Trainable Neural Network Ensemble for ECG Beat Classification
Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour
Abstract:
This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22162770 Innovating and Disrupting Higher Education: The Evolution of Massive Open Online Courses
Authors: Nabil Sultan
Abstract:
A great deal has been written on Massive Open Online Courses (MOOCs) since 2012 (considered by some as the year of the MOOCs). The emergence of MOOCs caused a great deal of interest amongst academics and technology experts as well as ordinary people. Some of the authors who wrote on MOOCs perceived it as the next big thing that will disrupt education. Other authors saw it as another fad that will go away once it ran its course (as most fads often do). But MOOCs did not turn out to be a fad and it is still around. Most importantly, they evolved into something that is beginning to look like a viable business model. This paper explores this phenomenon within the theoretical frameworks of disruptive innovations and jobs to be done as developed by Clayton Christensen and his colleagues and its implications for the future of higher education (HE).
Keywords: MOOCs, disruptive innovations, higher education, jobs theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7592769 View-Point Insensitive Human Pose Recognition using Neural Network and CUDA
Authors: Sanghyeok Oh, Keechul Jung
Abstract:
Although lots of research work has been done for human pose recognition, the view-point of cameras is still critical problem of overall recognition system. In this paper, view-point insensitive human pose recognition is proposed. The aims of the proposed system are view-point insensitivity and real-time processing. Recognition system consists of feature extraction module, neural network and real-time feed forward calculation. First, histogram-based method is used to extract feature from silhouette image and it is suitable for represent the shape of human pose. To reduce the dimension of feature vector, Principle Component Analysis(PCA) is used. Second, real-time processing is implemented by using Compute Unified Device Architecture(CUDA) and this architecture improves the speed of feed-forward calculation of neural network. We demonstrate the effectiveness of our approach with experiments on real environment.Keywords: computer vision, neural network, pose recognition, view-point insensitive, PCA, CUDA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13392768 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation
Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro
Abstract:
More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.
Keywords: Utility-scale PV systems, reactive power control, solar irradiance, voltage fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12532767 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel
Authors: O. Zarrin, M. Ramezanshirazi
Abstract:
The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8162766 Analysis of Linked in Series Servers with Blocking, Priority Feedback Service and Threshold Policy
Authors: Walenty Oniszczuk
Abstract:
The use of buffer thresholds, blocking and adequate service strategies are well-known techniques for computer networks traffic congestion control. This motivates the study of series queues with blocking, feedback (service under Head of Line (HoL) priority discipline) and finite capacity buffers with thresholds. In this paper, the external traffic is modelled using the Poisson process and the service times have been modelled using the exponential distribution. We consider a three-station network with two finite buffers, for which a set of thresholds (tm1 and tm2) is defined. This computer network behaves as follows. A task, which finishes its service at station B, gets sent back to station A for re-processing with probability o. When the number of tasks in the second buffer exceeds a threshold tm2 and the number of task in the first buffer is less than tm1, the fed back task is served under HoL priority discipline. In opposite case, for fed backed tasks, “no two priority services in succession" procedure (preventing a possible overflow in the first buffer) is applied. Using an open Markovian queuing schema with blocking, priority feedback service and thresholds, a closed form cost-effective analytical solution is obtained. The model of servers linked in series is very accurate. It is derived directly from a twodimensional state graph and a set of steady-state equations, followed by calculations of main measures of effectiveness. Consequently, efficient expressions of the low computational cost are determined. Based on numerical experiments and collected results we conclude that the proposed model with blocking, feedback and thresholds can provide accurate performance estimates of linked in series networks.Keywords: Blocking, Congestion control, Feedback, Markov chains, Performance evaluation, Threshold-base networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12942765 A Dynamic Decision Model for Vertical Handoffs across Heterogeneous Wireless Networks
Authors: Pramod Goyal, S. K. Saxena
Abstract:
The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best" available network at “best" time to reduce the unnecessary handoffs. This paper proposes a dynamic decision model to decide the “best" network at “best" time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best" network at “best" time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)" of network and “velocity" of mobile station simultaneously with static factors like Usage Expense, Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improve the whole system performance by reducing the unnecessary handoffs.Keywords: Dynamic decision model, Seamless handoff, Vertical handoff, Wireless networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20502764 Restricted Pedestrian Flow Performance Measures during Egress from a Complex Facility
Authors: Luthful A. Kawsar, Noraida A. Ghani, Anton A. Kamil, Adli Mustafa
Abstract:
In this paper, we use an M/G/C/C state dependent queuing model within a complex network topology to determine the different performance measures for pedestrian traffic flow. The occupants in this network topology need to go through some source corridors, from which they can choose their suitable exiting corridors. The performance measures were calculated using arrival rates that maximize the throughputs of source corridors. In order to increase the throughput of the network, the result indicates that the flow direction of pedestrian through the corridors has to be restricted and the arrival rates to the source corridor need to be controlled.Keywords: Arrival rate, Multiple arrival sources, Probability of blocking, State dependent queuing networks, Throughput.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15752763 Modeling and Stability Analysis of Delayed Game Network
Authors: Zixin Liu, Jian Yu, Daoyun Xu
Abstract:
This paper aims to establish a delayed dynamical relationship between payoffs of players in a zero-sum game. By introducing Markovian chain and time delay in the network model, a delayed game network model with sector bounds and slope bounds restriction nonlinear function is first proposed. As a result, a direct dynamical relationship between payoffs of players in a zero-sum game can be illustrated through a delayed singular system. Combined with Finsler-s Lemma and Lyapunov stable theory, a sufficient condition guaranteeing the unique existence and stability of zero-sum game-s Nash equilibrium is derived. One numerical example is presented to illustrate the validity of the main result.
Keywords: Game networks, zero-sum game, delayed singular system, nonlinear perturbation, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14382762 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16262761 Energy Efficient In-Network Data Processing in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
The Sensor Network consists of densely deployed sensor nodes. Energy optimization is one of the most important aspects of sensor application design. Data acquisition and aggregation techniques for processing data in-network should be energy efficient. Due to the cross-layer design, resource-limited and noisy nature of Wireless Sensor Networks(WSNs), it is challenging to study the performance of these systems in a realistic setting. In this paper, we propose optimizing queries by aggregation of data and data redundancy to reduce energy consumption without requiring all sensed data and directed diffusion communication paradigm to achieve power savings, robust communication and processing data in-network. To estimate the per-node power consumption POWERTossim mica2 energy model is used, which provides scalable and accurate results. The performance analysis shows that the proposed methods overcomes the existing methods in the aspects of energy consumption in wireless sensor networks.Keywords: Data Aggregation, Directed Diffusion, Partial Aggregation, Packet Merging, Query Plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18332760 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: Video tracking, particle filter, greedy snake, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11932759 QoS Routing in Wired Sensor Networks with Partial Updates
Authors: Arijit Ghos, Tony Gigargis
Abstract:
QoS routing is an important component of Traffic Engineering in networks that provide QoS guarantees. QoS routing is dependent on the link state information which is typically flooded across the network. This affects both the quality of the routing and the utilization of the network resources. In this paper, we examine establishing QoS routes with partial state updates in wired sensor networks. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12062758 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20082757 Stealthy Network Transfer of Data
Authors: N. Veerasamy, C. J. Cheyne
Abstract:
Users of computer systems may often require the private transfer of messages/communications between parties across a network. Information warfare and the protection and dominance of information in the military context is a prime example of an application area in which the confidentiality of data needs to be maintained. The safe transportation of critical data is therefore often a vital requirement for many private communications. However, unwanted interception/sniffing of communications is also a possibility. An elementary stealthy transfer scheme is therefore proposed by the authors. This scheme makes use of encoding, splitting of a message and the use of a hashing algorithm to verify the correctness of the reconstructed message. For this proof-of-concept purpose, the authors have experimented with the random sending of encoded parts of a message and the construction thereof to demonstrate how data can stealthily be transferred across a network so as to prevent the obvious retrieval of data.Keywords: Construction, encode, interception, stealthy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11962756 HIV Modelling - Parallel Implementation Strategies
Authors: Dimitri Perrin, Heather J. Ruskin, Martin Crane
Abstract:
We report on the development of a model to understand why the range of experience with respect to HIV infection is so diverse, especially with respect to the latency period. To investigate this, an agent-based approach is used to extract highlevel behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A network of independent matrices mimics the chain of lymph nodes. Dealing with massively multi-agent systems requires major computational effort. However, parallelisation methods are a natural consequence and advantage of the multi-agent approach and, using the MPI library, are here implemented, tested and optimized. Our current focus is on the various implementations of the data transfer across the network. Three communications strategies are proposed and tested, showing that the most efficient approach is communication based on the natural lymph-network connectivity.Keywords: HIV, Immune modelling, MPI, Parallelisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15502755 Low Resolution Single Neural Network Based Face Recognition
Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum
Abstract:
This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17502754 Low Energy Method for Data Delivery in Ubiquitous Network
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Recent advances in wireless sensor networks have led to many routing methods designed for energy-efficiency in wireless sensor networks. Despite that many routing methods have been proposed in USN, a single routing method cannot be energy-efficient if the environment of the ubiquitous sensor network varies. We present the controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. When ubiquitous sensor networks are deployed in hostile environments, an adversary may compromise some sensor nodes and use them to inject false sensing reports. False reports can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. The interleaved hop-by-hop authentication scheme detects such false reports through interleaved authentication. This paper presents a LMDD (Low energy method for data delivery) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment.Keywords: Data delivery, routing, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13452753 Mobile Ad Hoc Networks and It’s Routing Protocols
Authors: Rakesh Kumar, Piush Verma, Yaduvir Singh
Abstract:
A mobile ad hoc network (MANET) is a self configuring network, without any centralized control. The topology of this network is not always defined. The main objective of this paper is to introduce the fundamental concepts of MANETs to the researchers and practitioners, who are involved in the work in the area of modeling and simulation of MANETs. This paper begins with an overview of mobile ad hoc networks. Then it proceeds with the overview of routing protocols used in the MANETS, their properties and simulation methods. A brief tabular comparison between the routing protocols is also given in this paper considering different routing protocol parameters. This paper introduces a new routing scheme developed by the use of evolutionary algorithms (EA) and analytical hierarchy process (AHP) which will be used for getting the optimized output of MANET. In this paper cryptographic technique, ceaser cipher is also employed for making the optimized route secure.
Keywords: AHP, AODV, Cryptography, EA, MANET, Optimized output.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40202752 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification
Authors: Essam Al-Daoud
Abstract:
Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20202751 A Unique Solution for Designing Low-Cost, Heterogeneous Sensor Networks Using a Middleware Integration Platform
Authors: Jarrod Trevathan, Trina Myers
Abstract:
Proprietary sensor network systems are typically expensive, rigid and difficult to incorporate technologies from other vendors. When using competing and incompatible technologies, a non-proprietary system is complex to create because it requires significant technical expertise and effort, which can be more expensive than a proprietary product. This paper presents the Sensor Abstraction Layer (SAL) that provides middleware architectures with a consistent and uniform view of heterogeneous sensor networks, regardless of the technologies involved. SAL abstracts and hides the hardware disparities and specificities related to accessing, controlling, probing and piloting heterogeneous sensors. SAL is a single software library containing a stable hardware-independent interface with consistent access and control functions to remotely manage the network. The end-user has near-real-time access to the collected data via the network, which results in a cost-effective, flexible and simplified system suitable for novice users. SAL has been used for successfully implementing several low-cost sensor network systems.
Keywords: Sensor networks, hardware abstraction, middleware integration platform, sensor web enablement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20762750 Combined Effect of Moving and Open Boundary Conditions in the Simulation of Inland Inundation Due to Far Field Tsunami
Authors: M. Ashaque Meah, Md. Fazlul Karim, M. Shah Noor, Nazmun Nahar Papri, M. Khalid Hossen, M. Ismoen
Abstract:
Tsunami and inundation modelling due to far field tsunami propagation in a limited area is a very challenging numerical task because it involves many aspects such as the formation of various types of waves and the irregularities of coastal boundaries. To compute the effect of far field tsunami and extent of inland inundation due to far field tsunami along the coastal belts of west coast of Malaysia and Southern Thailand, a formulated boundary condition and a moving boundary condition are simultaneously used. In this study, a boundary fitted curvilinear grid system is used in order to incorporate the coastal and island boundaries accurately as the boundaries of the model domain are curvilinear in nature and the bending is high. The tsunami response of the event 26 December 2004 along the west open boundary of the model domain is computed to simulate the effect of far field tsunami. Based on the data of the tsunami source at the west open boundary of the model domain, a boundary condition is formulated and applied to simulate the tsunami response along the coastal and island boundaries. During the simulation process, a moving boundary condition is initiated instead of fixed vertical seaside wall. The extent of inland inundation and tsunami propagation pattern are computed. Some comparisons are carried out to test the validation of the simultaneous use of the two boundary conditions. All simulations show excellent agreement with the data of observation.Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20552749 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).
Keywords: Feature extraction, heart rate variability, hypertension, residual networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952748 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8262747 Tree Based Data Fusion Clustering Routing Algorithm for Illimitable Network Administration in Wireless Sensor Network
Authors: Y. Harold Robinson, M. Rajaram, E. Golden Julie, S. Balaji
Abstract:
In wireless sensor networks, locality and positioning information can be captured using Global Positioning System (GPS). This message can be congregated initially from spot to identify the system. Users can retrieve information of interest from a wireless sensor network (WSN) by injecting queries and gathering results from the mobile sink nodes. Routing is the progression of choosing optimal path in a mobile network. Intermediate node employs permutation of device nodes into teams and generating cluster heads that gather the data from entity cluster’s node and encourage the collective data to base station. WSNs are widely used for gathering data. Since sensors are power-constrained devices, it is quite vital for them to reduce the power utilization. A tree-based data fusion clustering routing algorithm (TBDFC) is used to reduce energy consumption in wireless device networks. Here, the nodes in a tree use the cluster formation, whereas the elevation of the tree is decided based on the distance of the member nodes to the cluster-head. Network simulation shows that this scheme improves the power utilization by the nodes, and thus considerably improves the lifetime.
Keywords: WSN, TBDFC, LEACH, PEGASIS, TREEPSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11162746 Investigating Quality Metrics for Multimedia Traffic in OLSR Routing Protocol
Authors: B. Prabhakara Rao, M. V. H. Bhaskara Murthy
Abstract:
An Ad hoc wireless network comprises of mobile terminals linked and communicating with each other sans the aid of traditional infrastructure. Optimized Link State Protocol (OLSR) is a proactive routing protocol, in which routes are discovered/updated continuously so that they are available when needed. Hello messages generated by a node seeks information about its neighbor and if the latter fails to respond to a specified number of hello messages regulated by neighborhood hold time, the node is forced to assume that the neighbor is not in range. This paper proposes to evaluate OLSR routing protocol in a random mobility network having various neighborhood hold time intervals. The throughput and delivery ratio are also evaluated to learn about its efficiency for multimedia loads.Keywords: Ad hoc Network, Optimized Link State Routing, Multimedia traffic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19482745 Modified Fuzzy ARTMAP and Supervised Fuzzy ART: Comparative Study with Multispectral Classification
Authors: F.Alilat, S.Loumi, H.Merrad, B.Sansal
Abstract:
In this article a modification of the algorithm of the fuzzy ART network, aiming at returning it supervised is carried out. It consists of the search for the comparison, training and vigilance parameters giving the minimum quadratic distances between the output of the training base and those obtained by the network. The same process is applied for the determination of the parameters of the fuzzy ARTMAP giving the most powerful network. The modification consist in making learn the fuzzy ARTMAP a base of examples not only once as it is of use, but as many time as its architecture is in evolution or than the objective error is not reached . In this way, we don-t worry about the values to impose on the eight (08) parameters of the network. To evaluate each one of these three networks modified, a comparison of their performances is carried out. As application we carried out a classification of the image of Algiers-s bay taken by SPOT XS. We use as criterion of evaluation the training duration, the mean square error (MSE) in step control and the rate of good classification per class. The results of this study presented as curves, tables and images show that modified fuzzy ARTMAP presents the best compromise quality/computing time.
Keywords: Neural Networks, fuzzy ART, fuzzy ARTMAP, Remote sensing, multispectral Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13642744 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach
Authors: A. Pajaziti, H. Cana
Abstract:
In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.
Keywords: Robotic Arm, Neural Network, Genetic Algorithm, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35952743 Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection
Authors: D. Naga Ravi Kiran, C. G. Dethe
Abstract:
Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.Keywords: Wireless Sensor Network (WSN), LEACH, Clustering, Tabu Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20272742 PP-FSM: Peer to Peer File Share for Multimedia
Authors: Arsalan Ali Shah, Zafar I. Malik, Shaukat Ali
Abstract:
Peer-to-Peer (P2P) is a self-organizing resource sharing network with no centralized authority or infrastructure, which makes it unpredictable and vulnerable. In this paper, we propose architecture to make the peer-to-peer network more centralized, predictable, and safer to use by implementing trust and stopping free riding.
Keywords: File Share, Free Riding, Peer-to-Peer, Trust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047