Search results for: hybrid systems and recurrent neural networks.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6828

Search results for: hybrid systems and recurrent neural networks.

6108 An Improved Construction Method for MIHCs on Cycle Composition Networks

Authors: Hsun Su, Yuan-Kang Shih, Shin-Shin Kao

Abstract:

Many well-known interconnection networks, such as kary n-cubes, recursive circulant graphs, generalized recursive circulant graphs, circulant graphs and so on, are shown to belong to the family of cycle composition networks. Recently, various studies about mutually independent hamiltonian cycles, abbreviated as MIHC-s, on interconnection networks are published. In this paper, using an improved construction method, we obtain MIHC-s on cycle composition networks with a much weaker condition than the known result. In fact, we established the existence of MIHC-s in the cycle composition networks and the result is optimal in the sense that the number of MIHC-s we constructed is maximal.

Keywords: Hamiltonian cycle, k-ary n-cube, cycle composition networks, mutually independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
6107 Location Management in Cellular Networks

Authors: Bhavneet Sidhu, Hardeep Singh

Abstract:

Cellular networks provide voice and data services to the users with mobility. To deliver services to the mobile users, the cellular network is capable of tracking the locations of the users, and allowing user movement during the conversations. These capabilities are achieved by the location management. Location management in mobile communication systems is concerned with those network functions necessary to allow the users to be reached wherever they are in the network coverage area. In a cellular network, a service coverage area is divided into smaller areas of hexagonal shape, referred to as cells. The cellular concept was introduced to reuse the radio frequency. Continued expansion of cellular networks, coupled with an increasingly restricted mobile spectrum, has established the reduction of communication overhead as a highly important issue. Much of this traffic is used in determining the precise location of individual users when relaying calls, with the field of location management aiming to reduce this overhead through prediction of user location. This paper describes and compares various location management schemes in the cellular networks.

Keywords: Cellular Networks, Location Area, MobilityManagement, Paging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4022
6106 Peer-to-Peer Epidemic Algorithms for Reliable Multicasting in Ad Hoc Networks

Authors: Zülküf Genç, Öznur Özkasap

Abstract:

Characteristics of ad hoc networks and even their existence depend on the nodes forming them. Thus, services and applications designed for ad hoc networks should adapt to this dynamic and distributed environment. In particular, multicast algorithms having reliability and scalability requirements should abstain from centralized approaches. We aspire to define a reliable and scalable multicast protocol for ad hoc networks. Our target is to utilize epidemic techniques for this purpose. In this paper, we present a brief survey of epidemic algorithms for reliable multicasting in ad hoc networks, and describe formulations and analytical results for simple epidemics. Then, P2P anti-entropy algorithm for content distribution and our prototype simulation model are described together with our initial results demonstrating the behavior of the algorithm.

Keywords: Ad hoc networks, epidemic, peer-to-peer, reliablemulticast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
6105 Multimode Dynamics of the Beijing Road Traffic System

Authors: Zundong Zhang, Limin Jia, Xiaoliang Sun

Abstract:

The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phases

Keywords: Dynamic Network Models, Structural Randomness, Scale-free Property, Multi-mode character

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
6104 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)

Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi

Abstract:

An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.

Keywords: genetic algorithm, nanofluids, neural network, viscosity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
6103 Efficient Scheduling Algorithm for QoS Support in High Speed Downlink Packet Access Networks

Authors: MohammadReza HeidariNezhad, Zuriati Ahmad Zukarnain, Nur Izura Udzir, Mohamed Othman

Abstract:

In this paper, we propose APO, a new packet scheduling scheme with Quality of Service (QoS) support for hybrid of real and non-real time services in HSDPA networks. The APO scheduling algorithm is based on the effective channel anticipation model. In contrast to the traditional schemes, the proposed method is implemented based on a cyclic non-work-conserving discipline. Simulation results indicated that proposed scheme has good capability to maximize the channel usage efficiency in compared to another exist scheduling methods. Simulation results demonstrate the effectiveness of the proposed algorithm.

Keywords: Scheduling Algorithm, Quality of Service, HSDPA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
6102 Improved Back Propagation Algorithm to Avoid Local Minima in Multiplicative Neuron Model

Authors: Kavita Burse, Manish Manoria, Vishnu P. S. Kirar

Abstract:

The back propagation algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a training algorithm consisting of a learning rate and a momentum factor. The major drawbacks of above learning algorithm are the problems of local minima and slow convergence speeds. The addition of an extra term, called a proportional factor reduces the convergence of the back propagation algorithm. We have applied the three term back propagation to multiplicative neural network learning. The algorithm is tested on XOR and parity problem and compared with the standard back propagation training algorithm.

Keywords: Three term back propagation, multiplicative neuralnetwork, proportional factor, local minima.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2815
6101 Prediction of Location of High Energy Shower Cores using Artificial Neural Networks

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Artificial Neural Network (ANN)s can be modeled for High Energy Particle analysis with special emphasis on shower core location. The work describes the use of an ANN based system which has been configured to predict locations of cores of showers in the range 1010.5 to 1020.5 eV. The system receives density values as inputs and generates coordinates of shower events recorded for values captured by 20 core positions and 80 detectors in an area of 100 meters. Twenty ANNs are trained for the purpose and the positions of shower events optimized by using cooperative ANN learning. The results derived with variations of input upto 50% show success rates in the range of 90s.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
6100 A Hybrid Approach for Thread Recommendation in MOOC Forums

Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard

Abstract:

Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.

Keywords: Association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
6099 Predicting Oil Content of Fresh Palm Fruit Using Transmission-Mode Ultrasonic Technique

Authors: Sutthawee Suwannarat, Thanate Khaorapapong, Mitchai Chongcheawchamnan

Abstract:

In this paper, an ultrasonic technique is proposed to predict oil content in a fresh palm fruit. This is accomplished by measuring the attenuation based on ultrasonic transmission mode. Several palm fruit samples with known oil content by Soxhlet extraction (ISO9001:2008) were tested with our ultrasonic measurement. Amplitude attenuation data results for all palm samples were collected. The Feedforward Neural Networks (FNNs) are applied to predict the oil content for the samples. The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of the FNN model for predicting oil content percentage are 7.6186 and 5.2287 with the correlation coefficient (R) of 0.9193.

Keywords: Non-destructive, ultrasonic testing, oil content, fresh palm fruit, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
6098 Hybrid TOA/AOA Schemes for Mobile Location in Cellular Communication Systems

Authors: Chien-Sheng Chen, Szu-Lin Su, Chuan-Der Lu

Abstract:

Wireless location is to determine the mobile station (MS) location in a wireless cellular communications system. When fewer base stations (BSs) may be available for location purposes or the measurements with large errors in non-line-of-sight (NLOS) environments, it is necessary to integrate all available heterogeneous measurements to achieve high location accuracy. This paper illustrates a hybrid proposed schemes that combine time of arrival (TOA) at three BSs and angle of arrival (AOA) information at the serving BS to give a location estimate of the MS. The proposed schemes mitigate the NLOS effect simply by the weighted sum of the intersections between three TOA circles and the AOA line without requiring a priori information about the NLOS error. Simulation results show that the proposed methods can achieve better accuracy when compare with Taylor series algorithm (TSA) and the hybrid lines of position algorithm (HLOP).

Keywords: Time of arrival (TOA), angle of arrival (AOA), non-line-of-sight (NLOS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
6097 Overview of Development of a Digital Platform for Building Critical Infrastructure Protection Systems in Smart Industries

Authors: Bruno Vilić Belina, Ivan Župan

Abstract:

Smart industry concepts and digital transformation are very popular in many industries. They develop their own digital platforms, which have an important role in innovations and transactions. The main idea of smart industry digital platforms is central data collection, industrial data integration and data usage for smart applications and services. This paper presents the development of a digital platform for building critical infrastructure protection systems in smart industries. Different service contraction modalities in Service Level Agreements (SLAs), Customer Relationship Management (CRM) relations, trends and changes in business architectures (especially process business architecture) for the purpose of developing infrastructural production and distribution networks, information infrastructure meta-models and generic processes by critical infrastructure owner demanded by critical infrastructure law, satisfying cybersecurity requirements and taking into account hybrid threats are researched.

Keywords: Cybersecurity, critical infrastructure, smart industries, digital platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228
6096 The Study of the Variability of Anticipatory Postural Adjustments in Recurrent Non-specific LBP Patients

Authors: Rosita Hedayati , Sedighe Kahrizi , Mohammad Parnianpour , Fariba Bahrami , Anoshirvan Kazemnejad

Abstract:

The study of the variability of the postural strategies in low back pain patients, as a criterion in evaluation of the adaptability of this system to the environmental demands is the purpose of this study. A cross-sectional case-control study was performed on 21 recurrent non-specific low back pain patients and 21 healthy volunteers. The electromyography activity of Deltoid, External Oblique (EO), Transverse Abdominis/Internal Oblique (TrA/IO) and Erector Spine (ES) muscles of each person was recorded in 75 rapid arm flexion with maximum acceleration. Standard deviation of trunk muscles onset relative to deltoid muscle onset were statistically analyzed by MANOVA . The results show that chronic low back pain patients exhibit less variability in their anticipatory postural adjustments (APAs) in comparison with the control group. There is a decrease in variability of postural control system of recurrent non-specific low back pain patients that can result in the persistence of pain and chronicity by decreasing the adaptability to environmental demands.

Keywords: EMG Onset Latency, Variability, Posture, Non - specific Low Back Pain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
6095 Do Persistent and Transitory Hybrid Entrepreneurs Differ?

Authors: Anmari H. Viljamaa, Elina M. Varamäki

Abstract:

In this study, we compare the profiles of transitory hybrid entrepreneurs and persistent hybrid entrepreneurs to determine how they differ. Hybrid entrepreneurs (HEs) represent a significant share of entrepreneurial activity yet little is known about them. We define HEs as individuals who are active as entrepreneurs but do no support themselves primarily by their enterprise. Persistent HEs (PHEs) are not planning to transition to fulltime entrepreneurship whereas transitory HEs (THEs) consider it probable. Our results show that THEs and PHEs are quite similar in background. THEs are more interested in increasing their turnover than PHEs, as expected, but also emphasize self-fulfillment as a motive for entrepreneurship more than PHEs. The clearest differences between THEs and PHEs are found in their views on how well their immediate circle supports full-time entrepreneurship, and their views of their own entrepreneurial abilities and the market potential of their firm. Our results support earlier arguments that hybrids should be considered separately in research on entrepreneurial entry and self-employment.

Keywords: Hybrid entrepreneurship, part-time entrepreneurship, self-employment, Theory of Planned Behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087
6094 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization

Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif

Abstract:

Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.

Keywords: Routing protocols, energy optimization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902
6093 Irreversibility and Electrochemical Modeling of GT-SOFC Hybrid System and Parametric Analysis on Performance of Fuel Cell

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

Since the heart of the hybrid system is the fuel cell and it has vital impact on efficiency and performance of cycle, in this study, the major modeling of electrochemical reaction within the fuel cell is analyzed. Also, solid oxide fuel cell is integrated with the gas turbine and thermodynamic analysis on different elements of hybrid system is applied. Next, in predefined operational points of hybrid cycle, the simulation results are obtained. Then, different source of irreversibility in fuel cell is modeled and influence of different major parameters on different irreversibility is computed and applied. Then, the effect of important parameters such as thickness and surface of electrolyte fuel cell are simulated in fuel cell and its dependency to these parameters is explained. At the end of the paper, different impact of parameters on fuel cell with a gas turbine and current density and voltage of fuel cell are simulated.

Keywords: Electrochemical analysis, Gas turbine, Hybrid system, Irreversibility analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
6092 Effects of Initial State on Opinion Formation in Complex Social Networks with Noises

Authors: Yi Yu, Vu Xuan Nguyen, Gaoxi Xiao

Abstract:

Opinion formation in complex social networks may exhibit complex system dynamics even when based on some simplest system evolution models. An interesting and important issue is the effects of the initial state on the final steady-state opinion distribution. By carrying out extensive simulations and providing necessary discussions, we show that, while different initial opinion distributions certainly make differences to opinion evolution in social systems without noises, in systems with noises, given enough time, different initial states basically do not contribute to making any significant differences in the final steady state. Instead, it is the basal distribution of the preferred opinions that contributes to deciding the final state of the systems. We briefly explain the reasons leading to the observed conclusions. Such an observation contradicts with a long-term belief on the roles of system initial state in opinion formation, demonstrating the dominating role that opinion mutation can play in opinion formation given enough time. The observation may help to better understand certain observations of opinion evolution dynamics in real-life social networks.

Keywords: Opinion formation, Deffuant model, opinion mutation, consensus making.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673
6091 Unscented Transformation for Estimating the Lyapunov Exponents of Chaotic Time Series Corrupted by Random Noise

Authors: K. Kamalanand, P. Mannar Jawahar

Abstract:

Many systems in the natural world exhibit chaos or non-linear behavior, the complexity of which is so great that they appear to be random. Identification of chaos in experimental data is essential for characterizing the system and for analyzing the predictability of the data under analysis. The Lyapunov exponents provide a quantitative measure of the sensitivity to initial conditions and are the most useful dynamical diagnostic for chaotic systems. However, it is difficult to accurately estimate the Lyapunov exponents of chaotic signals which are corrupted by a random noise. In this work, a method for estimation of Lyapunov exponents from noisy time series using unscented transformation is proposed. The proposed methodology was validated using time series obtained from known chaotic maps. In this paper, the objective of the work, the proposed methodology and validation results are discussed in detail.

Keywords: Lyapunov exponents, unscented transformation, chaos theory, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
6090 Blockchain Security in MANETs

Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara

Abstract:

The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.

Keywords: Ad hoc networks, blockchain, MPR, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
6089 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1170
6088 Modeling the Hybrid Battery/Super-Storage System for a Solar Standalone Microgrid

Authors: Astiaj Khoramshahi, Hossein Ahmadi Danesh Ashtiani, Ahmad Khoshgard, Hamidreza Damghani, Leila Damghani

Abstract:

Solar energy systems using various storages are required to be evaluated based on energy requirements and applications. Also, modeling and analysis of storage systems are necessary to increase the effectiveness of combinations of these systems. In this paper, analysis based on the MATLAB software has been analyzed to evaluate the response of the hybrid energy system considering various technologies of renewable energy and energy storage. In the present study, three different simulation scenarios are presented. Simulation output results using software for the first scenario show that the battery is effective in smoothing the overall power demand to the consumer studied during a day, but temporary loads on the grid with high frequencies, effectively cannot be canceled due to the limited response speed of battery control. Simulation outputs for the second scenario using the energy storage system show that sudden changes in demand power are paved by super saving. The majority of these sudden changes in power demand are caused by sewing consumers and receiving variable solar power (due to clouds passing through the solar array). Simulation outputs for the third scenario show the effects of the hybrid system for the same consumer and the output of the solar array, leading to the smallest amount of power demand fed into the grid, as well as demand at peak times. According to the "battery only" scenario, the displacement technique of the peak load has been significantly reduced.

Keywords: Storage system, super storage, standalone, microgrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 335
6087 Study of the Vertical Handoff in Heterogeneous Networks and Implement Based On Opnet

Authors: W. Benaatou, A. Latif

Abstract:

In this document we studied more in detail the Performances of the vertical handover in the networks WLAN, WiMAX, UMTS before studying of it the Procedure of Handoff Vertical, the whole buckled by simulations putting forward the performances of the handover in the heterogeneous networks. The goal of Vertical Handover is to carry out several accesses in real-time in the heterogeneous networks. This makes it possible a user to use several networks (such as WLAN UMTS andWiMAX) in parallel, and the system to commutate automatically at another basic station, without disconnecting itself, as if there were no cut and with little loss of data as possible.

Keywords: Vertical handoff, WLAN, UMTS, WIMAX, Heterogeneous.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
6086 Sociological Impact on Education An Analytical Approach Through Artificial Neural network

Authors: P. R. Jayathilaka, K.L. Jayaratne, H.L. Premaratne

Abstract:

This research presented in this paper is an on-going project of an application of neural network and fuzzy models to evaluate the sociological factors which affect the educational performance of the students in Sri Lanka. One of its major goals is to prepare the grounds to device a counseling tool which helps these students for a better performance at their examinations, especially at their G.C.E O/L (General Certificate of Education-Ordinary Level) examination. Closely related sociological factors are collected as raw data and the noise of these data are filtered through the fuzzy interface and the supervised neural network is being utilized to recognize the performance patterns against the chosen social factors.

Keywords: Education, Fuzzy, neural network, prediction, Sociology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
6085 Application of Hybrid Genetic Algorithm Based on Simulated Annealing in Function Optimization

Authors: Panpan Xu, Shulin Sui, Zongjie Du

Abstract:

Genetic algorithm is widely used in optimization problems for its excellent global search capabilities and highly parallel processing capabilities; but, it converges prematurely and has a poor local optimization capability in actual operation. Simulated annealing algorithm can avoid the search process falling into local optimum. A hybrid genetic algorithm based on simulated annealing is designed by combining the advantages of genetic algorithm and simulated annealing algorithm. The numerical experiment represents the hybrid genetic algorithm can be applied to solve the function optimization problems efficiently.

Keywords: Genetic algorithm, Simulated annealing, Hybrid genetic algorithm, Function optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
6084 Forward Simulation of a Parallel Hybrid Vehicle and Fuzzy Controller Design for Driving/Regenerative Propose

Authors: Peyman Naderi, Ali Farhadi, S. Mohammad Taghi Bathaee

Abstract:

One of the best ways for achievement of conventional vehicle changing to hybrid case is trustworthy simulation result and using of driving realities. For this object, in this paper, at first sevendegree- of-freedom dynamical model of vehicle will be shown. Then by using of statically model of engine, gear box, clutch, differential, electrical machine and battery, the hybrid automobile modeling will be down and forward simulation of vehicle for pedals to wheels power transformation will be obtained. Then by design of a fuzzy controller and using the proper rule base, fuel economy and regenerative braking will be marked. Finally a series of MATLAB/SIMULINK simulation results will be proved the effectiveness of proposed structure.

Keywords: Hybrid, Driving, Fuzzy, Regeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
6083 A Metric-Set and Model Suggestion for Better Software Project Cost Estimation

Authors: Murat Ayyıldız, Oya Kalıpsız, Sırma Yavuz

Abstract:

Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with success

Keywords: Software Metrics, Software Cost Estimation, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
6082 A New Group Key Management Protocol for Wireless Ad-Hoc Networks

Authors: Rony H. Rahman, Lutfar Rahman

Abstract:

Ad hoc networks are characterized by multi-hop wireless connectivity and frequently changing network topology. Forming security association among a group of nodes in ad-hoc networks is more challenging than in conventional networks due to the lack of central authority, i.e. fixed infrastructure. With that view in mind, group key management plays an important building block of any secure group communication. The main contribution of this paper is a low complexity key management scheme that is suitable for fully self-organized ad-hoc networks. The protocol is also password authenticated, making it resilient against active attacks. Unlike other existing key agreement protocols, ours make no assumption about the structure of the underlying wireless network, making it suitable for “truly ad-hoc" networks. Finally, we will analyze our protocol to show the computation and communication burden on individual nodes for key establishment.

Keywords: Ad-hoc Networks, Group Key Management, Key Management Protocols, Password Authentication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
6081 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
6080 A Polyimide Based Split-Ring Neural Interface Electrode for Neural Signal Recording

Authors: Ning Xue, Srinivas Merugu, Ignacio Delgado Martinez, Tao Sun, John Tsang, Shih-Cheng Yen

Abstract:

We have developed a polyimide based neural interface electrode to record nerve signals from the sciatic nerve of a rat. The neural interface electrode has a split-ring shape, with four protruding gold electrodes for recording, and two reference gold electrodes around the split-ring. The split-ring electrode can be opened up to encircle the sciatic nerve. The four electrodes can be bent to sit on top of the nerve and hold the device in position, while the split-ring frame remains flat. In comparison, while traditional cuff electrodes can only fit certain sizes of the nerve, the developed device can fit a variety of rat sciatic nerve dimensions from 0.6 mm to 1.0 mm, and adapt to the chronic changes in the nerve as the electrode tips are bendable. The electrochemical impedance spectroscopy measurement was conducted. The gold electrode impedance is on the order of 10 kΩ, showing excellent charge injection capacity to record neural signals.

Keywords: Impedance, neural interface, split-ring electrode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
6079 Neural Network Tuned Fuzzy Controller for MIMO System

Authors: Seema Chopra, R. Mitra, Vijay Kumar

Abstract:

In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.

Keywords: Fuzzy Control, Neural Network, MIMO System, Optimization of Membership functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3210