Search results for: Learning Classifier System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10026

Search results for: Learning Classifier System

9306 A Study on Learning Styles and Academic Performance in Relation with Kinesthetic, Verbal and Visual Intelligences

Authors: Salina Budin, Nor Liawati Abu Othman, Shaira Ismail

Abstract:

This study attempts to determine kinesthetic, verbal and visual intelligences among mechanical engineering undergraduate students and explores any probable relation with students’ learning styles and academic performance. The questionnaire used in this study is based on Howard Gardner’s multiple intelligences theory comprising of five elements of learning style; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering. Additional questions on students’ perception of learning styles and their academic performance are included in the questionnaire. The results show that one third of the students are strongly dominant in the kinesthetic intelligent (33%), followed by a combination of kinesthetic and visual intelligences (29%) and 21% are strongly dominant in all three types of intelligences. There is a statistically significant correlation between kinesthetic, verbal and visual intelligences and students learning styles and academic performances. The ANOVA analysis supports that there is a significant relationship between academic performances and level of kinesthetic, verbal and visual intelligences. In addition, it has also proven a remarkable relationship between academic performances and kinesthetic, verbal and visual learning styles amongst the male and female students. Thus, it can be concluded that, academic achievements can be enhanced by understanding as well as capitalizing the students’ types of intelligences and learning styles.

Keywords: Kinesthetic intelligent, verbal intelligent, visual intelligent, learning style, academic performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2772
9305 Vocational Skills, Recognition of Prior Learning and Technology: The Future of Higher Education

Authors: Shankar Subramanian Iyer

Abstract:

The vocational education, enhanced by technology and Recognition of Prior Learning (RPL) is going to be the main ingredient of the future of education. This is coming from the various issues of the current educational system like cost, time, type of course, type of curriculum, unemployment, to name the major reasons. Most millennials like to perform and learn rather than learning how to perform. This is the essence of vocational education be it any field from cooking, painting, plumbing to modern technologies using computers. Even a more theoretical course like entrepreneurship can be taught as to be an entrepreneur and learn about its nuances. The best way to learn accountancy is actually keeping accounts for a small business or grocer and learn the ropes of accountancy and finance. The purpose of this study is to investigate the relationship between vocational skills, RPL and new technologies with future employability. This study implies that individual's knowledge and skills are essential aspects to be emphasized in future education and to give credit for prior experience for future employability. Virtual reality can be used to stimulate workplace situations for vocational learning for fields like hospitality, medical emergencies, healthcare, draughtsman ship, building inspection, quantity surveying, estimation, to name a few. All disruptions in future education, especially vocational education, are going to be technology driven with the advent of AI, ML, IoT, VR, VI etc. Vocational education not only helps institutes cut costs drastically, but allows all students to have hands-on experiences, rather than to be observers. The earlier experiential learning theory and the recent theory of knowledge and skills-based learning modified and applied to the vocational education and development of skills is the proposed contribution of this paper. Apart from secondary research study on major scholarly articles, books, primary research using interviews, questionnaire surveys have been used to validate and test the reliability of the suggested model using Partial Least Square- Structural Equation Method (PLS-SEM), the factors being assimilated using an existing literature review. Major findings have been that there exists high relationship between the vocational skills, RPL, new technology to the future employability through mediation of future employability skills.

Keywords: Vocational education, vocational skills, competencies, modern technologies, Recognition of Prior Learning, RPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
9304 Disparity of Learning Styles and Cognitive Abilities in Vocational Education

Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi Tee Tze Kiong

Abstract:

This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education.  Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. Building Construction is one of the vocational courses offered in Vocational Education structure. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. Felder-Solomon Learning Styles Index was developed based on FSLSM and the questions were used to identify what type of student learning preferences. The index consists 44 item-questions characterize for learning styles dimension in FSLSM. The achievement test was developed to determine the students’ cognitive abilities. The quantitative data was analyzed in descriptive and inferential statistic involving Multivariate Analysis of Variance (MANOVA). The study discovered students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities there are different finding for each type of learners in knowledge, skills and problem solving. This study concludes the gap between type of learner and the cognitive abilities in few illustrations and it explained how the connecting made. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.

Keywords: Learning Styles, Cognitive Abilities, Dimension of Learning Styles, Learning Preferences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
9303 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: Data mining, digital libraries, digital preservation, file format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
9302 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
9301 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time

Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl

Abstract:

In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.

Keywords: SQL injection, attacks, web application, accuracy, database, WebAppShield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
9300 Enhancement of Higher Order Thinking Skills among Teacher Trainers by Fun Game Learning Approach

Authors: Malathi Balakrishnan, Gananathan M. Nadarajah, Saraswathy Vellasamy, Evelyn Gnanam William George

Abstract:

The purpose of the study is to explore how the fun game-learning approach enhances teacher trainers’ higher order thinking skills. Two-day fun filled fun game learning-approach was introduced to teacher trainers as a Continuous Professional Development Program (CPD). 26 teacher trainers participated in this Transformation of Teaching and Learning Fun Way Program, organized by Institute of Teacher Education Malaysia. Qualitative research technique was adopted as the researchers observed the participants’ higher order thinking skills developed during the program. Data were collected from observational checklist; interview transcriptions of four participants and participants’ reflection notes. All the data were later analyzed with NVivo data analysis process. The finding of this study presented five main themes, which are critical thinking, hands on activities, creating, application and use of technology. The studies showed that the teacher trainers’ higher order thinking skills were enhanced after the two-day CPD program. Therefore, Institute of Teacher Education will have more success using the fun way game-learning approach to develop higher order thinking skills among its teacher trainers who can implement these skills to their trainee teachers in future. This study also added knowledge to Constructivism learning theory, which will further highlight the prominence of the fun way learning approach to enhance higher order thinking skills.

Keywords: Constructivism, game-learning approach, higher order thinking skill, teacher trainer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2827
9299 Engineering of E-Learning Content Creation: Case Study for African Countries

Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola

Abstract:

This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.

Keywords: Teaching contents engineering, e-learning, blended learning, international cooperation, 3DSlicer, open anatomy browser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
9298 Modified Levenberg-Marquardt Method for Neural Networks Training

Authors: Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi

Abstract:

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method.

Keywords: Levenberg-Marquardt, modification, neural network, variable learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5050
9297 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network

Authors: O. Siriporn, S. Benjawan

Abstract:

This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.

Keywords: Unsupervised, clustering, anomaly, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
9296 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: Connected component labeling, image processing, morphological processing, optical musical recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
9295 Improving the Elder-s Quality of Life with Smart Television Based Services

Authors: Van-Quang Trinh, Gi-Soo Chung, Hee-Cheol Kim

Abstract:

The increasing number of senior population gradually causes to demand the use of information and communication technology for their satisfactory lives. This paper presents the development of an integrated TV based system which offers an opportunity to provide value added services to a large number of elderly citizens, and thus helps improve their quality of life. The design philosophy underlying this paper is to fulfill both technological and human aspects. The balance between these two dimensions has been currently stressed as a crucial element for the design of usable systems in real use, particularly to the elderly who have physical and mental decline. As the first step to achieve it, we have identified human and social factors that affect the elder-s quality of life by a literature review, and based on them, build four fundamental services: information, healthcare, learning and social network services. Secondly, the system architecture, employed technologies and the elderly-friendly system design considerations are presented. This reflects technological and human perspectives in terms of the system design. Finally, we describe some scenarios that illustrate the potentiality of the proposed system to improve elderly people-s quality of life.

Keywords: Elderly people, human computer interaction, quality of life, smart television, user-centered system design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
9294 Development of Fake News Model Using Machine Learning through Natural Language Processing

Authors: Sajjad Ahmed, Knut Hinkelmann, Flavio Corradini

Abstract:

Fake news detection research is still in the early stage as this is a relatively new phenomenon in the interest raised by society. Machine learning helps to solve complex problems and to build AI systems nowadays and especially in those cases where we have tacit knowledge or the knowledge that is not known. We used machine learning algorithms and for identification of fake news; we applied three classifiers; Passive Aggressive, Naïve Bayes, and Support Vector Machine. Simple classification is not completely correct in fake news detection because classification methods are not specialized for fake news. With the integration of machine learning and text-based processing, we can detect fake news and build classifiers that can classify the news data. Text classification mainly focuses on extracting various features of text and after that incorporating those features into classification. The big challenge in this area is the lack of an efficient way to differentiate between fake and non-fake due to the unavailability of corpora. We applied three different machine learning classifiers on two publicly available datasets. Experimental analysis based on the existing dataset indicates a very encouraging and improved performance.

Keywords: Fake news detection, types of fake news, machine learning, natural language processing, classification techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
9293 Gaits Stability Analysis for a Pneumatic Quadruped Robot Using Reinforcement Learning

Authors: Soofiyan Atar, Adil Shaikh, Sahil Rajpurkar, Pragnesh Bhalala, Aniket Desai, Irfan Siddavatam

Abstract:

Deep reinforcement learning (deep RL) algorithms leverage the symbolic power of complex controllers by automating it by mapping sensory inputs to low-level actions. Deep RL eliminates the complex robot dynamics with minimal engineering. Deep RL provides high-risk involvement by directly implementing it in real-world scenarios and also high sensitivity towards hyperparameters. Tuning of hyperparameters on a pneumatic quadruped robot becomes very expensive through trial-and-error learning. This paper presents an automated learning control for a pneumatic quadruped robot using sample efficient deep Q learning, enabling minimal tuning and very few trials to learn the neural network. Long training hours may degrade the pneumatic cylinder due to jerk actions originated through stochastic weights. We applied this method to the pneumatic quadruped robot, which resulted in a hopping gait. In our process, we eliminated the use of a simulator and acquired a stable gait. This approach evolves so that the resultant gait matures more sturdy towards any stochastic changes in the environment. We further show that our algorithm performed very well as compared to programmed gait using robot dynamics.

Keywords: model-based reinforcement learning, gait stability, supervised learning, pneumatic quadruped

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 595
9292 Laboratory Experimentation for Supporting Collaborative Working in Engineering Education over the Internet

Authors: S. Odeh, E. Abdelghani

Abstract:

Collaborative working environments for distance education can be considered as a more generic form of contemporary remote labs. At present, the majority of existing real laboratories are not constructed to allow the involved participants to collaborate in real time. To make this revolutionary learning environment possible we must allow the different users to carry out an experiment simultaneously. In recent times, multi-user environments are successfully applied in many applications such as air traffic control systems, team-oriented military systems, chat-text tools, multi-player games etc. Thus, understanding the ideas and techniques behind these systems could be of great importance in the contribution of ideas to our e-learning environment for collaborative working. In this investigation, collaborative working environments from theoretical and practical perspectives are considered in order to build an effective collaborative real laboratory, which allows two students or more to conduct remote experiments at the same time as a team. In order to achieve this goal, we have implemented distributed system architecture, enabling students to obtain an automated help by either a human tutor or a rule-based e-tutor.

Keywords: Collaboration environment, e-tutor, multi-user environments, socio-technical system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
9291 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures

Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen

Abstract:

Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.

Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
9290 Innovative Teaching in Systems Analysis and Design - an Action Research Project

Authors: Imelda Smit

Abstract:

Systems Analysis and Design is a key subject in Information Technology courses, but students do not find it easy to cope with, since it is not “precise" like programming and not exact like Mathematics. It is a subject working with many concepts, modeling ideas into visual representations and then translating the pictures into a real life system. To complicate matters users who are not necessarily familiar with computers need to give their inputs to ensure that they get the system the need. Systems Analysis and Design also covers two fields, namely Analysis, focusing on the analysis of the existing system and Design, focusing on the design of the new system. To be able to test the analysis and design of a system, it is necessary to develop a system or at least a prototype of the system to test the validity of the analysis and design. The skills necessary in each aspect differs vastly. Project Management Skills, Database Knowledge and Object Oriented Principles are all necessary. In the context of a developing country where students enter tertiary education underprepared and the digital divide is alive and well, students need to be motivated to learn the necessary skills, get an opportunity to test it in a “live" but protected environment – within the framework of a university. The purpose of this article is to improve the learning experience in Systems Analysis and Design through reviewing the underlying teaching principles used, the teaching tools implemented, the observations made and the reflections that will influence future developments in Systems Analysis and Design. Action research principles allows the focus to be on a few problematic aspects during a particular semester.

Keywords: Action Research, Project Development, Systems Analysis and Design, Technology in Teaching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
9289 The Effect of Education Level on Psychological Empowerment and Burnout-The Mediating Role of Workplace Learning Behaviors

Authors: Sarit Rashkovits, Yael Livne

Abstract:

The study investigates the relationship between education level, workplace learning behaviors, psychological empowerment and burnout in a sample of 191 teachers. We hypothesized that education level will positively affect psychological state of increased empowerment and decreased burnout, and we purposed that these effects will be mediated by workplace learning behaviors. We used multiple regression analyses to test the model that included also the 6 following control variables: The teachers' age, gender, and teaching tenure; the schools' religious level, the pupils' needs: regular/ special needs, and the class level: elementary/ high school. The results support the purposed mediating model.

Keywords: Education level, Learning behaviors, Psychological empowerment, Burnout.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
9288 A Recommender Agent to Support Virtual Learning Activities

Authors: P. Valdiviezo, G. Riofrio, R. Reategui

Abstract:

This article describes the implementation of an intelligent agent that provides recommendations for educational resources in a virtual learning environment (VLE). It aims to support pending (undeveloped) student learning activities. It begins by analyzing the proposed VLE data model entities in the recommender process. The pending student activities are then identified, which constitutes the input information for the agent. By using the attribute-based recommender technique, the information can be processed and resource recommendations can be obtained. These serve as support for pending activity development in the course. To integrate this technique, we used an ontology. This served as support for the semantic annotation of attributes and recommended files recovery.

Keywords: Learning activities, educational resource, recommender agent, recommendation technique, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
9287 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect

Authors: Maha Jazouli

Abstract:

Suicide is one of the leading causes of death among prisoners, both in Canada and internationally. In recent years, rates of attempts of suicide and self-harm suicide have increased, with hangings being the most frequently used method. The objective of this article is to propose a method to automatically detect suicidal behaviors in real time. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Tests show that the proposed system gives satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.

Keywords: Suicide detection, Kinect Azure, RGB-D camera, SVM, gesture recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451
9286 Effects of Human Factors on Workforce Scheduling

Authors: M. Othman, N. Bhuiyan, G. J. Gouw

Abstract:

In today-s competitive market, most companies develop manufacturing systems that can help in cost reduction and maximum quality. Human issues are an important part of manufacturing systems, yet most companies ignore their effects on production performance. This paper aims to developing an integrated workforce planning system that incorporates the human being. Therefore, a multi-objective mixed integer nonlinear programming model is developed to determine the amount of hiring, firing, training, overtime for each worker type. This paper considers a workforce planning model including human aspects such as skills, training, workers- personalities, capacity, motivation, and learning rates. This model helps to minimize the hiring, firing, training and overtime costs, and maximize the workers- performance. The results indicate that the workers- differences should be considered in workforce scheduling to generate realistic plans with minimum costs. This paper also investigates the effects of human learning rates on the performance of the production systems.

Keywords: Human Factors, Learning Curves, Workers' Differences, Workforce Scheduling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
9285 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: Data Estimation, link data, machine learning, road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
9284 The Use of Social Networking Sites in eLearning

Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith

Abstract:

The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper commences its contribution by analyzing the various models and theories proposed in literature and amalgamate together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.

Keywords: eLearning, higher education, social network sites, student learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2177
9283 Enhancing Students’ Performance in Basic Science and Technology in Nigeria Using Moodle LMS

Authors: Olugbade Damola, Adekomi Adebimbo, Sofowora Olaniyi Alaba

Abstract:

One of the major problems facing education in Nigeria is the provision of quality Science and Technology education. Inadequate teaching facilities, non-usage of innovative teaching strategies, ineffective classroom management, lack of students’ motivation and poor integration of ICT has resulted in the increase in percentage of students who failed Basic Science and Technology in Junior Secondary Certification Examination for National Examination Council in Nigeria. To address these challenges, the Federal Government came up with a road map on education. This was with a view of enhancing quality education through integration of modern technology into teaching and learning, enhancing quality assurance through proper monitoring and introduction of innovative methods of teaching. This led the researcher to investigate how MOODLE LMS could be used to enhance students’ learning outcomes in BST. A sample of 120 students was purposively selected from four secondary schools in Ogbomoso. The experimental group was taught using MOODLE LMS, while the control group was taught using the conventional method. Data obtained were analyzed using mean, standard deviation and t-test. The result showed that MOODLE LMS was an effective learning platform in teaching BST in junior secondary schools (t=4.953, P<0.05). Students’ attitudes towards BST was also enhanced through MOODLE LMS (t=15.632, P<0.05). The use of MOODLE LMS significantly enhanced students’ retention (t=6.640, P<0.05). In conclusion, the Federal Government efforts at enhancing quality assurance through integration of modern technology and e-learning in Secondary schools proved to have yielded good result has students found MOODLE LMS to be motivating and interactive. Attendance was improved.

Keywords: MOODLE, learning management system, quality assurance, basic science and technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525
9282 Deep Learning Based Fall Detection Using Simplified Human Posture

Authors: Kripesh Adhikari, Hamid Bouchachia, Hammadi Nait-Charif

Abstract:

Falls are one of the major causes of injury and death among elderly people aged 65 and above. A support system to identify such kind of abnormal activities have become extremely important with the increase in ageing population. Pose estimation is a challenging task and to add more to this, it is even more challenging when pose estimations are performed on challenging poses that may occur during fall. Location of the body provides a clue where the person is at the time of fall. This paper presents a vision-based tracking strategy where available joints are grouped into three different feature points depending upon the section they are located in the body. The three feature points derived from different joints combinations represents the upper region or head region, mid-region or torso and lower region or leg region. Tracking is always challenging when a motion is involved. Hence the idea is to locate the regions in the body in every frame and consider it as the tracking strategy. Grouping these joints can be beneficial to achieve a stable region for tracking. The location of the body parts provides a crucial information to distinguish normal activities from falls.

Keywords: Fall detection, machine learning, deep learning, pose estimation, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
9281 The Use of Project to Enhance Learning Domains Stated by National Qualifications Framework: TQF

Authors: Duangkamol Thitivesa

Abstract:

This paper explores the use of project work in a content-based instruction in a Rajabhat University, Thailand. The use of project is to promote kinds of learning expected of student teachers as stated by Thailand Quality Framework: TQF. The kinds of learning are grouped into five domains: Ethical and moral development, knowledge, cognitive skill, interpersonal skills and responsibility, and analytical and communication skills. The content taught in class is used to lead the student teachers to relate their previously-acquired linguistic knowledge to meaningful realizations of the language system in passages of immediate relevance to their professional interests, teaching methods in particular. Two research questions are formulate to guide this study: 1) To what degree are the five domains of learning expected of student teachers after the use of project in a content class?, and 2) What is the academic achievement of the students’ writing skills, as part of the learning domains stated by TQF, against the 70% attainment target after the use of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of a summative achievement test, student writing works, an observation checklist, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students’ record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students’ ability to attend to, recognize, and focus on meaningful patterns of language forms.

Keywords: Thailand Quality Framework, Project Work, Writing skill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
9280 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half

Authors: Said C. Fares, Mary A. Fares

Abstract:

It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.

Keywords: Failure Rate, Interactive Learning, Student engagement, CS1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
9279 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding

Authors: Mohd A. Mezher, Maysam F. Abbod

Abstract:

Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.

Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
9278 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model

Authors: Yolina A. Petrova, Georgi I. Petkov

Abstract:

The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.

Keywords: Categorization, category learning, role-governed category, analogy-making, cognitive modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
9277 Policies that Enhance Learning and Teaching

Authors: Shannon M. Chance, Pamela L. Eddy, Gavin Duffy, Brian Bowe, Jen Harvey

Abstract:

Educational institutions often implement policies with the intention of influencing how learning and teaching occur. Generally, such policies are not as effective as their makers would like; changing the behavior of third-level teachers proves difficult. Nevertheless, a policy instituted in 2006 at the Dublin Institute of Technology has met with success: each newly hired faculty member must have a post-graduate qualification in “Learning and Teaching" or successfully complete one within the first two years of employment. The intention is to build teachers- knowledge about student-centered pedagogies and their capacity to implement them. As a result of this policy (and associated programs that support it), positive outcomes are readily apparent. Individual teachers who have completed the programs have implemented significant change at the course and program levels. This paper introduces the policy, identifies outcomes in relation to existing theory, describes research underway, and pinpoints areas where organizational learning has occurred.

Keywords: Faculty Development, Institutional Policy, Learning and Teaching, Postgraduate Qualification, Professional Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760