Search results for: Fuzzy multi-attributesingle-expert decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2823

Search results for: Fuzzy multi-attributesingle-expert decision making

2103 Adaptive Fuzzy Control of Stewart Platform under Actuator Saturation

Authors: Dongsu Wu, Hongbin Gu, Peng Li

Abstract:

A novel adaptive fuzzy trajectory tracking algorithm of Stewart platform based motion platform is proposed to compensate path deviation and degradation of controller-s performance due to actuator torque limit. The algorithm can be divided into two parts: the real-time trajectory shaping part and the joint space adaptive fuzzy controller part. For a reference trajectory in task space whenever any of the actuators is saturated, the desired acceleration of the reference trajectory is modified on-line by using dynamic model of motion platform. Meanwhile an additional action with respect to the difference between the nominal and modified trajectories is utilized in the non-saturated region of actuators to reduce the path error. Using modified trajectory as input, the joint space controller incorporates compute torque controller, leg velocity observer and fuzzy disturbance observer with saturation compensation. It can ensure stability and tracking performance of controller in present of external disturbance and position only measurement. Simulation results verify the effectiveness of proposed control scheme.

Keywords: Actuator saturation, adaptive fuzzy control, Stewartplatform, trajectory shaping, flight simulator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
2102 Pruning Method of Belief Decision Trees

Authors: Salsabil Trabelsi, Zied Elouedi, Khaled Mellouli

Abstract:

The belief decision tree (BDT) approach is a decision tree in an uncertain environment where the uncertainty is represented through the Transferable Belief Model (TBM), one interpretation of the belief function theory. The uncertainty can appear either in the actual class of training objects or attribute values of objects to classify. In this paper, we develop a post-pruning method of belief decision trees in order to reduce size and improve classification accuracy on unseen cases. The pruning of decision tree has a considerable intention in the areas of machine learning.

Keywords: machine learning, uncertainty, belief function theory, belief decision tree, pruning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
2101 Nonlinear Fuzzy Tracking Real-time-based Control of Drying Parameters

Authors: Marco Soares dos Santos, Camila Nicola Boeri, Jorge Augusto Ferreira, Fernando Neto da Silva

Abstract:

The highly nonlinear characteristics of drying processes have prompted researchers to seek new nonlinear control solutions. However, the relation between the implementation complexity, on-line processing complexity, reliability control structure and controller-s performance is not well established. The present paper proposes high performance nonlinear fuzzy controllers for a real-time operation of a drying machine, being developed under a consistent match between those issues. A PCI-6025E data acquisition device from National Instruments® was used, and the control system was fully designed with MATLAB® / SIMULINK language. Drying parameters, namely relative humidity and temperature, were controlled through MIMOs Hybrid Bang-bang+PI (BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based controllers to perform drying tests on biological materials. The performance of the drying strategies was compared through several criteria, which are reported without controllers- retuning. Controllers- performance analysis has showed much better performance of FLC than BPI controller. The absolute errors were lower than 8,85 % for Fuzzy Logic Controller, about three times lower than the experimental results with BPI control.

Keywords: Drying control, Fuzzy logic control, Intelligent temperature-humidity control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338
2100 Fuzzy Logic Control of Static Var Compensator for Power System Damping

Authors: N.Karpagam, D.Devaraj

Abstract:

Static Var Compensator (SVC) is a shunt type FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper, a fuzzy logic based supplementary controller for Static Var Compensator (SVC) is developed which is used for damping the rotor angle oscillations and to improve the transient stability of the power system. Generator speed and the electrical power are chosen as input signals for the Fuzzy Logic Controller (FLC). The effectiveness and feasibility of the proposed control is demonstrated with Single Machine Infinite Bus (SMIB) system and multimachine system (WSCC System) which show improvement over the use of a fixed parameter controller.

Keywords: FLC, SVC, Transient stability, SMIB, PIDcontroller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3446
2099 Fuzzy Logic Based Active Vibration Control of Piezoelectric Stewart Platform

Authors: Arian Bahrami, Mojtaba Tafaoli-Masoule, Mansour Nikkhah Bahrami

Abstract:

This paper demonstrates the potential of applying PD-like fuzzy logic controller for active vibration control of piezoelectric Stewart platforms. Through simulation, the control authority of the piezo stack actuators for effectively damping the Stewart platform vibration can be evaluated for further implementation of the system. Each leg of the piezoelectric Stewart platform consists of a linear piezo stack actuator, a collocated velocity sensor, a collocated displacement sensor and flexible tips for the connections with the two end plates. The piezoelectric stack is modeled as a bar element and the electro-mechanical coupling property is simulated using Matlab/Simulink software. Then, the open loop and closed loop dynamic responses are performed for the system to characterize the effect of the control on the vibration of the piezoelectric Stewart platform. A significant improvement in the damping of the structure can be observed by using the PD-like fuzzy controller.

Keywords: Active vibration control, Fuzzy controller, Piezoelectric stewart platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2897
2098 Induction Motor Speed Control Using Fuzzy Logic Controller

Authors: V. Chitra, R. S. Prabhakar

Abstract:

Because of the low maintenance and robustness induction motors have many applications in the industries. The speed control of induction motor is more important to achieve maximum torque and efficiency. Various speed control techniques like, Direct Torque Control, Sensorless Vector Control and Field Oriented Control are discussed in this paper. Soft computing technique – Fuzzy logic is applied in this paper for the speed control of induction motor to achieve maximum torque with minimum loss. The fuzzy logic controller is implemented using the Field Oriented Control technique as it provides better control of motor torque with high dynamic performance. The motor model is designed and membership functions are chosen according to the parameters of the motor model. The simulated design is tested using various tool boxes in MATLAB. The result concludes that the efficiency and reliability of the proposed speed controller is good.

Keywords: Induction motor, Field Oriented Control, Fuzzy logic controller, Maximum torque, Membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3235
2097 A Simulation Study of Bullwhip Effect in a Closed-Loop Supply Chain with Fuzzy Demand and Fuzzy Collection Rate under Possibility Constraints

Authors: Debabrata Das, Pankaj Dutta

Abstract:

Along with forward supply chain organization needs to consider the impact of reverse logistics due to its economic advantage, social awareness and strict legislations. In this paper, we develop a system dynamics framework for a closed-loop supply chain with fuzzy demand and fuzzy collection rate by incorporating product exchange policy in forward channel and various recovery options in reverse channel. The uncertainty issues associated with acquisition and collection of used product have been quantified using possibility measures. In the simulation study, we analyze order variation at both retailer and distributor level and compare bullwhip effects of different logistics participants over time between the traditional forward supply chain and the closed-loop supply chain. Our results suggest that the integration of reverse logistics can reduce order variation and bullwhip effect of a closed-loop system. Finally, sensitivity analysis is performed to examine the impact of various parameters on recovery process and bullwhip effect.

Keywords: Bullwhip Effect, Fuzzy Possibility Measures, Reverse Supply Chain, System Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
2096 Seamless Handover in Urban 5G-UAV Systems Using Entropy Weighted Method

Authors: Anirudh Sunil Warrier, Saba Al-Rubaye, Dimitrios Panagiotakopoulos, Gokhan Inalhan, Antonios Tsourdos

Abstract:

The demand for increased data transfer rate and network traffic capacity has given rise to the concept of heterogeneous networks. Heterogeneous networks are wireless networks, consisting of devices using different underlying radio access technologies (RAT). For Unmanned Aerial Vehicles (UAVs) this enhanced data rate and network capacity are even more critical especially in their applications of medicine, delivery missions and military. In an urban heterogeneous network environment, the UAVs must be able switch seamlessly from one base station (BS) to another for maintaining a reliable link. Therefore, seamless handover in such urban environments has become a major challenge. In this paper, a scheme to achieve seamless handover is developed, an algorithm based on Received Signal Strength (RSS) criterion for network selection is used and Entropy Weighted Method (EWM) is implemented for decision making. Seamless handover using EWM decision-making is demonstrated successfully for a UAV moving across fifth generation (5G) and long-term evolution (LTE) networks via a simulation level analysis. Thus, a solution for UAV-5G communication, specifically the mobility challenge in heterogeneous networks is solved and this work could act as step forward in making UAV-5G architecture integration a possibility.

Keywords: Air to ground, A2G, fifth generation, 5G, handover, mobility, unmanned aerial vehicle, UAV, urban environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
2095 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383
2094 A Bi-Objective Preventive Healthcare Facility Network Design with Incorporating Cost and Time Saving

Authors: Mehdi Seifbarghy, Keyvan Roshan

Abstract:

Main goal of preventive healthcare problems are at decreasing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. The levels of establishment and staffing costs along with summation of the travel and waiting time that clients spent are considered as objectives functions of the proposed nonlinear integer programming model. In this paper, we have proposed a bi-objective mathematical model for designing a network of preventive healthcare facilities so as to minimize aforementioned objectives, simultaneously. Moreover, each facility acts as M/M/1 queuing system. The number of facilities to be established, the location of each facility, and the level of technology for each facility to be chosen are provided as the main determinants of a healthcare facility network. Finally, to demonstrate performance of the proposed model, four multi-objective decision making techniques are presented to solve the model.

Keywords: Preventive healthcare problems, Non-linear integer programming models, Multi-objective decision making techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
2093 Fuzzy Logic Speed Control of Three Phase Induction Motor Drive

Authors: P.Tripura, Y.Srinivasa Kishore Babu

Abstract:

This paper presents an intelligent speed control system based on fuzzy logic for a voltage source PWM inverter-fed indirect vector controlled induction motor drive. Traditional indirect vector control system of induction motor introduces conventional PI regulator in outer speed loop; it is proved that the low precision of the speed regulator debases the performance of the whole system. To overcome this problem, replacement of PI controller by an intelligent controller based on fuzzy set theory is proposed. The performance of the intelligent controller has been investigated through digital simulation using MATLAB-SIMULINK package for different operating conditions such as sudden change in reference speed and load torque. The simulation results demonstrate that the performance of the proposed controller is better than that of the conventional PI controller.

Keywords: Fuzzy Logic, Intelligent controllers, Conventional PI controller, Induction motor drives, indirect vector control, Speed control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6500
2092 Combined Fuzzy and Predictive Controller for Unity Power Factor Converter

Authors: Abdelhalim Kessal

Abstract:

This paper treats a design of combined control of a single phase power factor correction (PFC). The strategy of the proposed control is based on two parts, the first, for the outer loop (DC output regulated voltage), and the second govern the input current of the converter in order to achieve a sinusoidal form in phase with the grid voltage. Two kinds of regulators are used, Fuzzy controller for the outer loop and predictive controller for the inner loop. The controllers are verified and discussed through simulation under MATLAB/Simulink platform. Also an experimental confirmation is applied. Results present a high dynamic performance under various parameters changes.

Keywords: Boost converter, harmonic distortion, Fuzzy, prediction, unity power factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1154
2091 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524
2090 Hospital Facility Location Selection Using Permanent Analytics Process

Authors: C. Ardil

Abstract:

In this paper, a new MCDMA approach, the permanent analytics process is proposed to assess the immovable valuation criteria and their significance in the placement of the healthcare facility. Five decision factors are considered for the value and selection of immovables. In the multiple factor selection problems, the priority vector of the criteria used to compare several immovables is first determined using the permanent analytics method, a mathematical model for the multiple criteria decisionmaking process. Then, to demonstrate the viability and efficacy of the suggested approach, twenty potential candidate locations were evaluated using the hospital site selection problem's decision criteria. The ranking accuracy of estimation was evaluated using composite programming, which took into account both the permanent analytics process and the weighted multiplicative model. 

Keywords: Hospital Facility Location Selection, Permanent Analytics Process, Multiple Criteria Decision Making (MCDM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
2089 Fuzzy Control of a Quarter-Car Suspension System

Authors: M. M. M. Salem, Ayman A. Aly

Abstract:

An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.

Keywords: Fuzzy logic control, ride comfort, vehicle dynamics, active suspension system, quarter-car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4205
2088 Fuzzy Sliding Mode Control of an MR Mount for Vibration Attenuation

Authors: Jinsiang Shaw, Ray Pan, Yin-Chieh Chang

Abstract:

In this paper, an magnetorheological (MR) mount with fuzzy sliding mode controller (FSMC) is studied for vibration suppression when the system is subject to base excitations. In recent years, magnetorheological fluids are becoming a popular material in the field of the semi-active control. However, the dynamic equation of an MR mount is highly nonlinear and it is difficult to identify. FSMC provides a simple method to achieve vibration attenuation of the nonlinear system with uncertain disturbances. This method is capable of handling the chattering problem of sliding mode control effectively and the fuzzy control rules are obtained by using the Lyapunov stability theory. The numerical simulations using one-dimension and two-dimension FSMC show effectiveness of the proposed controller for vibration suppression. Further, the well-known skyhook control scheme and an adaptive sliding mode controller are also included in the simulation for comparison with the proposed FSMC.

Keywords: adaptive sliding mode controller, fuzzy sliding modecontroller, magnetorheological mount, skyhook control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
2087 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888
2086 Identification of Aircraft Gas Turbine Engines Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
2085 Trainer Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS)

Authors: C. Ardil

Abstract:

This article presents a multiple criteria evaluation for a trainer aircraft selection problem using "preference analysis for reference ideal solution (PARIS)” approach. The available relevant literature points to the use of multiple criteria decision making analysis (MCDMA) methods for the problem of trainer aircraft selection, which often involves conflicting multiple criteria. Therefore, this MCDMA study aims to propose a robust systematic integrated framework focusing on the trainer aircraft selection problem. For this purpose, an integrated preference analysis approach based the mean weight and entropy weight procedures with PARIS, and TOPSIS was used for a MCDMA compensating solution. In this study, six trainer aircraft alternatives were evaluated according to six technical decision criteria, and data were collected from the current relevant literature. As a result, the King Air C90GTi alternative was identified as the most suitable trainer aircraft alternative. In order to verify the stability and accuracy of the results obtained, comparisons were made with existing MCDMA methods during the sensitivity and validity analysis process.The results of the application were further validated by applying the comparative analysis-based PARIS, and TOPSIS method. The proposed integrated MCDMA systematic structure is also expected to address the issues encountered in the aircraft selection process. Finally, the analysis results obtained show that the proposed MCDMA method is an effective and accurate tool that can help analysts make better decisions.

Keywords: aircraft, trainer aircraft selection, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 430
2084 Robust H∞ Filter Design for Uncertain Fuzzy Descriptor Systems: LMI-Based Design

Authors: Wudhichai Assawinchaichote, Sing Kiong Nguang

Abstract:

This paper examines the problem of designing a robust H∞ filter for a class of uncertain fuzzy descriptor systems described by a Takagi-Sugeno (TS) fuzzy model. Based on a linear matrix inequality (LMI) approach, LMI-based sufficient conditions for the uncertain nonlinear descriptor systems to have an H∞ performance are derived. To alleviate the ill-conditioning resulting from the interaction of slow and fast dynamic modes, solutions to the problem are given in terms of linear matrix inequalities which are independent of the singular perturbation ε, when ε is sufficiently small. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard uncertain nonlinear descriptor systems. A numerical example is provided to illustrate the design developed in this paper.

Keywords: H∞ control, Takagi-Sugeno (TS) fuzzy model, Linear Matrix Inequalities (LMIs), Descriptor systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
2083 Identification of Aircraft Gas Turbine Engine's Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
2082 Reliability Analysis of Press Unit using Vague Set

Authors: S. P. Sharma, Monica Rani

Abstract:

In conventional reliability assessment, the reliability data of system components are treated as crisp values. The collected data have some uncertainties due to errors by human beings/machines or any other sources. These uncertainty factors will limit the understanding of system component failure due to the reason of incomplete data. In these situations, we need to generalize classical methods to fuzzy environment for studying and analyzing the systems of interest. Fuzzy set theory has been proposed to handle such vagueness by generalizing the notion of membership in a set. Essentially, in a Fuzzy Set (FS) each element is associated with a point-value selected from the unit interval [0, 1], which is termed as the grade of membership in the set. A Vague Set (VS), as well as an Intuitionistic Fuzzy Set (IFS), is a further generalization of an FS. Instead of using point-based membership as in FS, interval-based membership is used in VS. The interval-based membership in VS is more expressive in capturing vagueness of data. In the present paper, vague set theory coupled with conventional Lambda-Tau method is presented for reliability analysis of repairable systems. The methodology uses Petri nets (PN) to model the system instead of fault tree because it allows efficient simultaneous generation of minimal cuts and path sets. The presented method is illustrated with the press unit of the paper mill.

Keywords: Lambda -Tau methodology, Petri nets, repairable system, vague fuzzy set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
2081 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees

Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho

Abstract:

The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.

Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137
2080 Power System Damping Using Hierarchical Fuzzy Multi- Input PSS and Communication Lines Active Power Deviations Input and SVC

Authors: Mohammad Hasan Raouf, Ahmad Rouhani, Mohammad Abedini, Ebrahim Rasooli Anarmarzi

Abstract:

In this paper the application of a hierarchical fuzzy system (HFS) based on MPSS and SVC in multi-machine environment is studied. Also the effect of communication lines active power variance signal between two ΔPTie-line regions, as one of the inputs of hierarchical fuzzy multi-input PSS and SVC (HFMPSS & SVC), on the increase of low frequency oscillation damping is examined. In the MPSS, to have better efficiency an auxiliary signal of reactive power deviation (ΔQ) is added with ΔP+ Δω input type PSS. The number of rules grows exponentially with the number of variables in a classic fuzzy system. To reduce the number of rules the HFS consists of a number of low-dimensional fuzzy systems in a hierarchical structure. Phasor model of SVC is described and used in this paper. The performances of MPSS and ΔPTie-line based HFMPSS and also the proposed method in damping inter-area mode of oscillation are examined in response to disturbances. The efficiency of the proposed model is examined by simulating a four-machine power system. Results show that the proposed method is performing satisfactorily within the whole range of disturbances and reduces the cost of system.

Keywords: Communication lines active power variance signal, Hierarchical fuzzy system (HFS), Multi-input power system stabilizer (MPSS), Static VAR compensator (SVC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
2079 Adaptive E-Learning System Using Fuzzy Logic and Concept Map

Authors: Mesfer Al Duhayyim, Paul Newbury

Abstract:

This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.

Keywords: Adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1101
2078 An Analytical Comparison between Open Loop, PID and Fuzzy Logic Based DC-DC Boost Convertor

Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani

Abstract:

This paper explains about the voltage output for DC to DC boost converter between open loop, PID controller and fuzzy logic controller through Matlab Simulink. Simulink input voltage was set at 12V and the voltage reference was set at 24V. The analysis on the deviation of voltage resulted that the difference between reference voltage setting and the output voltage is always lower. Comparison between open loop, PID and FLC shows that, the open loop circuit having a bit higher on the deviation of voltage. The PID circuit boosts for FLC has a lesser deviation of voltage and proved that it is such a better performance on control the deviation of voltage during the boost mode.

Keywords: Boost Convertors, Power Electronics, PID, Fuzzy logic, Open loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3858
2077 Performance Comparison of AODV and Soft AODV Routing Protocol

Authors: Abhishek, Seema Devi, Jyoti Ohri

Abstract:

A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET's node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV.

Keywords: ANFIS, AODV, fuzzy, MANET, reactive routing protocol, routing protocol, Truetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
2076 Navigation of Multiple Mobile Robots using Rule-based-Neuro-Fuzzy Technique

Authors: Saroj Kumar Pradhan, Dayal Ramakrushna Parhi, Anup Kumar Panda

Abstract:

This paper deals with motion planning of multiple mobile robots. Mobile robots working together to achieve several objectives have many advantages over single robot system. However, the planning and coordination between the mobile robots is extremely difficult. In the present investigation rule-based and rulebased- neuro-fuzzy techniques are analyzed for multiple mobile robots navigation in an unknown or partially known environment. The final aims of the robots are to reach some pre-defined goals. Based upon a reference motion, direction; distances between the robots and obstacles; and distances between the robots and targets; different types of rules are taken heuristically and refined later to find the steering angle. The control system combines a repelling influence related to the distance between robots and nearby obstacles and with an attracting influence between the robots and targets. Then a hybrid rule-based-neuro-fuzzy technique is analysed to find the steering angle of the robots. Simulation results show that the proposed rulebased- neuro-fuzzy technique can improve navigation performance in complex and unknown environments compared to this simple rulebased technique.

Keywords: Mobile robots, Navigation, Neuro-fuzzy, Obstacle avoidance, Rule-based, Target seeking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
2075 Drainage Prediction for Dam using Fuzzy Support Vector Regression

Authors: S. Wiriyarattanakun, A. Ruengsiriwatanakun, S. Noimanee

Abstract:

The drainage Estimating is an important factor in dam management. In this paper, we use fuzzy support vector regression (FSVR) to predict the drainage of the Sirikrit Dam at Uttaradit province, Thailand. The results show that the FSVR is a suitable method in drainage estimating.

Keywords: Drainage Estimation, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
2074 Study on Applying Fuzzy AHP and GRA in Selection of Agent Construction Enterprise

Authors: Shirong Li, Huan Yan

Abstract:

To help the client to select a competent agent construction enterprise (ACE), this study aims to investigate the selection standards by using the Fuzzy Analytic Hierarchy Process (FAHP) and build an evaluation mathematical model with Grey Relational Analysis (GRA). According to the outputs of literature review, four orderly levels are established within the model, taking the consideration of various agent construction models in practice. Then, the process of applying FAHP and GRA is discussed in detailed. Finally, through a case study, this paper illustrates how to apply these methods in getting the weights of each standard and the final assessment result.

Keywords: agent construction enterprise, agent constructionmodel, fuzzy analytic hierarchy process, grey relational analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043