Search results for: Artificial Bee Colony algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4154

Search results for: Artificial Bee Colony algorithm

3434 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
3433 Solving the Economic Dispatch Problem by Using Differential Evolution

Authors: S. Khamsawang, S. Jiriwibhakorn

Abstract:

This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.

Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
3432 On Constructing Approximate Convex Hull

Authors: M. Zahid Hossain, M. Ashraful Amin

Abstract:

The algorithms of convex hull have been extensively studied in literature, principally because of their wide range of applications in different areas. This article presents an efficient algorithm to construct approximate convex hull from a set of n points in the plane in O(n + k) time, where k is the approximation error control parameter. The proposed algorithm is suitable for applications preferred to reduce the computation time in exchange of accuracy level such as animation and interaction in computer graphics where rapid and real-time graphics rendering is indispensable.

Keywords: Convex hull, Approximation algorithm, Computational geometry, Linear time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
3431 Variational EM Inference Algorithm for Gaussian Process Classification Model with Multiclass and Its Application to Human Action Classification

Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park

Abstract:

In this paper, we propose the variational EM inference algorithm for the multi-class Gaussian process classification model that can be used in the field of human behavior recognition. This algorithm can drive simultaneously both a posterior distribution of a latent function and estimators of hyper-parameters in a Gaussian process classification model with multiclass. Our algorithm is based on the Laplace approximation (LA) technique and variational EM framework. This is performed in two steps: called expectation and maximization steps. First, in the expectation step, using the Bayesian formula and LA technique, we derive approximately the posterior distribution of the latent function indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. Second, in the maximization step, using a derived posterior distribution of latent function, we compute the maximum likelihood estimator for hyper-parameters of a covariance matrix necessary to define prior distribution for latent function. These two steps iteratively repeat until a convergence condition satisfies. Moreover, we apply the proposed algorithm with human action classification problem using a public database, namely, the KTH human action data set. Experimental results reveal that the proposed algorithm shows good performance on this data set.

Keywords: Bayesian rule, Gaussian process classification model with multiclass, Gaussian process prior, human action classification, laplace approximation, variational EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
3430 Transformer Top-Oil Temperature Modeling and Simulation

Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende

Abstract:

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
3429 New Efficient Iterative Optimization Algorithm to Design the Two Channel QMF Bank

Authors: Ram Kumar Soni, Alok Jain, Rajiv Saxena

Abstract:

This paper proposes an efficient method for the design of two channel quadrature mirror filter (QMF) bank. To achieve minimum value of reconstruction error near to perfect reconstruction, a linear optimization process has been proposed. Prototype low pass filter has been designed using Kaiser window function. The modified algorithm has been developed to optimize the reconstruction error using linear objective function through iteration method. The result obtained, show that the performance of the proposed algorithm is better than that of the already exists methods.

Keywords: Filterbank, near perfect reconstruction, Kaiserwindow, QMF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
3428 Representing Collective Unconsciousness Using Neural Networks

Authors: Pierre Abou-Haila, Richard Hall, Mark Dawes

Abstract:

Instead of representing individual cognition only, population cognition is represented using artificial neural networks whilst maintaining individuality. This population network trains continuously, simulating adaptation. An implementation of two coexisting populations is compared to the Lotka-Volterra model of predator-prey interaction. Applications include multi-agent systems such as artificial life or computer games.

Keywords: Collective unconsciousness, neural networks, adaptation, predator-prey simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829
3427 New Design Constraints of FIR Filter on Magnitude and Phase of Error Function

Authors: Raghvendra Kumar, Lillie Dewan

Abstract:

Exchange algorithm with constraints on magnitude and phase error separately in new way is presented in this paper. An important feature of the algorithms presented in this paper is that they allow for design constraints which often arise in practical filter design problems. Meeting required minimum stopband attenuation or a maximum deviation from the desired magnitude and phase responses in the passbands are common design constraints that can be handled by the methods proposed here. This new algorithm may have important advantages over existing technique, with respect to the speed and stability of convergence, memory requirement and low ripples.

Keywords: Least square estimation, Constraints, Exchange algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
3426 Unsupervised Segmentation by Hidden Markov Chain with Bi-dimensional Observed Process

Authors: Abdelali Joumad, Abdelaziz Nasroallah

Abstract:

In unsupervised segmentation context, we propose a bi-dimensional hidden Markov chain model (X,Y) that we adapt to the image segmentation problem. The bi-dimensional observed process Y = (Y 1, Y 2) is such that Y 1 represents the noisy image and Y 2 represents a noisy supplementary information on the image, for example a noisy proportion of pixels of the same type in a neighborhood of the current pixel. The proposed model can be seen as a competitive alternative to the Hilbert-Peano scan. We propose a bayesian algorithm to estimate parameters of the considered model. The performance of this algorithm is globally favorable, compared to the bi-dimensional EM algorithm through numerical and visual data.

Keywords: Image segmentation, Hidden Markov chain with a bi-dimensional observed process, Peano-Hilbert scan, Bayesian approach, MCMC methods, Bi-dimensional EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
3425 Path Planning of a Robot Manipulator using Retrieval RRT Strategy

Authors: K. Oh, J. P. Hwang, E. Kim, H. Lee

Abstract:

This paper presents an algorithm which extends the rapidly-exploring random tree (RRT) framework to deal with change of the task environments. This algorithm called the Retrieval RRT Strategy (RRS) combines a support vector machine (SVM) and RRT and plans the robot motion in the presence of the change of the surrounding environment. This algorithm consists of two levels. At the first level, the SVM is built and selects a proper path from the bank of RRTs for a given environment. At the second level, a real path is planned by the RRT planners for the given environment. The suggested method is applied to the control of KUKA™,, a commercial 6 DOF robot manipulator, and its feasibility and efficiency are demonstrated via the cosimulatation of MatLab™, and RecurDyn™,.

Keywords: Path planning, RRT, 6 DOF manipulator, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
3424 Haemocompatibility of Surface Modified AISI 316L Austenitic Stainless Steel Tested in Artificial Plasma

Authors: W. Walke, J. Przondziono, K. Nowińska

Abstract:

The study comprises evaluation of suitability of passive layer created on the surface of AISI 316L stainless steel for products that are intended to have contact with blood. For that purpose, prior to and after chemical passivation, samples were subject to 7 day exposure in artificial plasma at the temperature of T=37°C. Next, tests of metallic ions infiltration from the surface to the solution were performed. The tests were performed with application of spectrometer JY 2000, by Yobin – Yvon, employing Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). In order to characterize physical and chemical features of electrochemical processes taking place during exposure of samples to artificial plasma, tests with application of electrochemical impedance spectroscopy were suggested. The tests were performed with application of measuring unit equipped with potentiostat PGSTAT 302n with an attachment for impedance tests FRA2. Measurements were made in the environment simulating human blood at the temperature of T=37°C. Performed tests proved that application of chemical passivation process for AISI 316L stainless steel used for production of goods intended to have contact with blood is well-grounded and useful in order to improve safety of their usage.

Keywords: AISI 316L stainless steel, chemical passivation, artificial plasma, ions infiltration, EIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
3423 Trustworthy Link Failure Recovery Algorithm for Highly Dynamic Mobile Adhoc Networks

Authors: Y. Harold Robinson, M. Rajaram

Abstract:

The Trustworthy link failure recovery algorithm is introduced in this paper, to provide the forwarding continuity even with compound link failures. The ephemeral failures are common in IP networks and it also has some proposals based on local rerouting. To ensure forwarding continuity, we are introducing the compound link failure recovery algorithm, even with compound link failures. For forwarding the information, each packet carries a blacklist, which is a min set of failed links encountered along its path, and the next hop is chosen by excluding the blacklisted links. Our proposed method describes how it can be applied to ensure forwarding to all reachable destinations in case of any two or more link or node failures in the network. After simulating with NS2 contains lot of samples proved that the proposed protocol achieves exceptional concert even under elevated node mobility using Trustworthy link Failure Recovery Algorithm.

Keywords: Wireless Sensor Networks, Predistribution Scheme, Cryptographic Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
3422 Feature Based Dense Stereo Matching using Dynamic Programming and Color

Authors: Hajar Sadeghi, Payman Moallem, S. Amirhassn Monadjemi

Abstract:

This paper presents a new feature based dense stereo matching algorithm to obtain the dense disparity map via dynamic programming. After extraction of some proper features, we use some matching constraints such as epipolar line, disparity limit, ordering and limit of directional derivative of disparity as well. Also, a coarseto- fine multiresolution strategy is used to decrease the search space and therefore increase the accuracy and processing speed. The proposed method links the detected feature points into the chains and compares some of the feature points from different chains, to increase the matching speed. We also employ color stereo matching to increase the accuracy of the algorithm. Then after feature matching, we use the dynamic programming to obtain the dense disparity map. It differs from the classical DP methods in the stereo vision, since it employs sparse disparity map obtained from the feature based matching stage. The DP is also performed further on a scan line, between any matched two feature points on that scan line. Thus our algorithm is truly an optimization method. Our algorithm offers a good trade off in terms of accuracy and computational efficiency. Regarding the results of our experiments, the proposed algorithm increases the accuracy from 20 to 70%, and reduces the running time of the algorithm almost 70%.

Keywords: Chain Correspondence, Color Stereo Matching, Dynamic Programming, Epipolar Line, Stereo Vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354
3421 Breast Skin-Line Estimation and Breast Segmentation in Mammograms using Fast-Marching Method

Authors: Roshan Dharshana Yapa, Koichi Harada

Abstract:

Breast skin-line estimation and breast segmentation is an important pre-process in mammogram image processing and computer-aided diagnosis of breast cancer. Limiting the area to be processed into a specific target region in an image would increase the accuracy and efficiency of processing algorithms. In this paper we are presenting a new algorithm for estimating skin-line and breast segmentation using fast marching algorithm. Fast marching is a partial-differential equation based numerical technique to track evolution of interfaces. We have introduced some modifications to the traditional fast marching method, specifically to improve the accuracy of skin-line estimation and breast tissue segmentation. Proposed modifications ensure that the evolving front stops near the desired boundary. We have evaluated the performance of the algorithm by using 100 mammogram images taken from mini-MIAS database. The results obtained from the experimental evaluation indicate that this algorithm explains 98.6% of the ground truth breast region and accuracy of the segmentation is 99.1%. Also this algorithm is capable of partially-extracting nipple when it is available in the profile.

Keywords: Mammogram, fast marching method, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2679
3420 Content Based Sampling over Transactional Data Streams

Authors: Mansour Tarafdar, Mohammad Saniee Abade

Abstract:

This paper investigates the problem of sampling from transactional data streams. We introduce CFISDS as a content based sampling algorithm that works on a landmark window model of data streams and preserve more informed sample in sample space. This algorithm that work based on closed frequent itemset mining tasks, first initiate a concept lattice using initial data, then update lattice structure using an incremental mechanism.Incremental mechanism insert, update and delete nodes in/from concept lattice in batch manner. Presented algorithm extracts the final samples on demand of user. Experimental results show the accuracy of CFISDS on synthetic and real datasets, despite on CFISDS algorithm is not faster than exist sampling algorithms such as Z and DSS.

Keywords: Sampling, data streams, closed frequent item set mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
3419 A Study of Cooperative Co-evolutionary Genetic Algorithm for Solving Flexible Job Shop Scheduling Problem

Authors: Lee Yih Rou, Hishammuddin Asmuni

Abstract:

Flexible Job Shop Problem (FJSP) is an extension of classical Job Shop Problem (JSP). The FJSP extends the routing flexibility of the JSP, i.e assigning machine to an operation. Thus it makes it more difficult than the JSP. In this study, Cooperative Coevolutionary Genetic Algorithm (CCGA) is presented to solve the FJSP. Makespan (time needed to complete all jobs) is used as the performance evaluation for CCGA. In order to test performance and efficiency of our CCGA the benchmark problems are solved. Computational result shows that the proposed CCGA is comparable with other approaches.

Keywords: Co-evolution, Genetic Algorithm (GA), Flexible JobShop Problem(FJSP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1791
3418 A New Particle Filter Inspired by Biological Evolution: Genetic Filter

Authors: S. Park, J. Hwang, K. Rou, E. Kim

Abstract:

In this paper, we consider a new particle filter inspired by biological evolution. In the standard particle filter, a resampling scheme is used to decrease the degeneracy phenomenon and improve estimation performance. Unfortunately, however, it could cause the undesired the particle deprivation problem, as well. In order to overcome this problem of the particle filter, we propose a novel filtering method called the genetic filter. In the proposed filter, we embed the genetic algorithm into the particle filter and overcome the problems of the standard particle filter. The validity of the proposed method is demonstrated by computer simulation.

Keywords: Particle filter, genetic algorithm, evolutionary algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
3417 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
3416 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process

Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama

Abstract:

Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.

Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
3415 An Efficient Algorithm for Delay Delay-variation Bounded Least Cost Multicast Routing

Authors: Manas Ranjan Kabat, Manoj Kumar Patel, Chita Ranjan Tripathy

Abstract:

Many multimedia communication applications require a source to transmit messages to multiple destinations subject to quality of service (QoS) delay constraint. To support delay constrained multicast communications, computer networks need to guarantee an upper bound end-to-end delay from the source node to each of the destination nodes. This is known as multicast delay problem. On the other hand, if the same message fails to arrive at each destination node at the same time, there may arise inconsistency and unfairness problem among users. This is related to multicast delayvariation problem. The problem to find a minimum cost multicast tree with delay and delay-variation constraints has been proven to be NP-Complete. In this paper, we propose an efficient heuristic algorithm, namely, Economic Delay and Delay-Variation Bounded Multicast (EDVBM) algorithm, based on a novel heuristic function, to construct an economic delay and delay-variation bounded multicast tree. A noteworthy feature of this algorithm is that it has very high probability of finding the optimal solution in polynomial time with low computational complexity.

Keywords: EDVBM, Heuristic algorithm, Multicast tree, QoS routing, Shortest path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
3414 Combined Simulated Annealing and Genetic Algorithm to Solve Optimization Problems

Authors: Younis R. Elhaddad

Abstract:

Combinatorial optimization problems arise in many scientific and practical applications. Therefore many researchers try to find or improve different methods to solve these problems with high quality results and in less time. Genetic Algorithm (GA) and Simulated Annealing (SA) have been used to solve optimization problems. Both GA and SA search a solution space throughout a sequence of iterative states. However, there are also significant differences between them. The GA mechanism is parallel on a set of solutions and exchanges information using the crossover operation. SA works on a single solution at a time. In this work SA and GA are combined using new technique in order to overcome the disadvantages' of both algorithms.

Keywords: Genetic Algorithm, Optimization problems, Simulated Annealing, Traveling Salesman Problem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3448
3413 Wavelet Entropy Based Algorithm for Fault Detection and Classification in FACTS Compensated Transmission Line

Authors: Amany M. El-Zonkoly, Hussein Desouki

Abstract:

Distance protection of transmission lines including advanced flexible AC transmission system (FACTS) devices has been a very challenging task. FACTS devices of interest in this paper are static synchronous series compensators (SSSC) and unified power flow controller (UPFC). In this paper, a new algorithm is proposed to detect and classify the fault and identify the fault position in a transmission line with respect to a FACTS device placed in the midpoint of the transmission line. Discrete wavelet transformation and wavelet entropy calculations are used to analyze during fault current and voltage signals of the compensated transmission line. The proposed algorithm is very simple and accurate in fault detection and classification. A variety of fault cases and simulation results are introduced to show the effectiveness of such algorithm.

Keywords: Entropy calculation, FACTS, SSSC, UPFC, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
3412 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
3411 Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model

Authors: Jedol Dayou, Jackson Hian Wui Chang, Rubena Yusoff, Ag. Sufiyan Abd. Hamid, Fauziah Sulaiman, Justin Sentian

Abstract:

Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.

Keywords: Aerosol optical depth, direct normal irradiance, Langley calibration, radiance-based validation, SMARTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
3410 Proposing a Pareto-based Multi-Objective Evolutionary Algorithm to Flexible Job Shop Scheduling Problem

Authors: Seyed Habib A. Rahmati

Abstract:

During last decades, developing multi-objective evolutionary algorithms for optimization problems has found considerable attention. Flexible job shop scheduling problem, as an important scheduling optimization problem, has found this attention too. However, most of the multi-objective algorithms that are developed for this problem use nonprofessional approaches. In another words, most of them combine their objectives and then solve multi-objective problem through single objective approaches. Of course, except some scarce researches that uses Pareto-based algorithms. Therefore, in this paper, a new Pareto-based algorithm called controlled elitism non-dominated sorting genetic algorithm (CENSGA) is proposed for the multi-objective FJSP (MOFJSP). Our considered objectives are makespan, critical machine work load, and total work load of machines. The proposed algorithm is also compared with one the best Pareto-based algorithms of the literature on some multi-objective criteria, statistically.

Keywords: Scheduling, Flexible job shop scheduling problem, controlled elitism non-dominated sorting genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
3409 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem

Authors: San Nah Sze, Wei King Tiong

Abstract:

The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.

Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
3408 AGV Guidance System: An Application of Simple Active Contour for Visual Tracking

Authors: M.Asif, M.R.Arshad, P.A.Wilson

Abstract:

In this paper, a simple active contour based visual tracking algorithm is presented for outdoor AGV application which is currently under development at the USM robotic research group (URRG) lab. The presented algorithm is computationally low cost and able to track road boundaries in an image sequence and can easily be implemented on available low cost hardware. The proposed algorithm used an active shape modeling using the B-spline deformable template and recursive curve fitting method to track the current orientation of the road.

Keywords: Active contour, B-spline, recursive curve fitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
3407 Digital Control Algorithm Based on Delta-Operator for High-Frequency DC-DC Switching Converters

Authors: Renkai Wang, Tingcun Wei

Abstract:

In this paper, a digital control algorithm based on delta-operator is presented for high-frequency digitally-controlled DC-DC switching converters. The stability and the controlling accuracy of the DC-DC switching converters are improved by using the digital control algorithm based on delta-operator without increasing the hardware circuit scale. The design method of voltage compensator in delta-domain using PID (Proportion-Integration- Differentiation) control is given in this paper, and the simulation results based on Simulink platform are provided, which have verified the theoretical analysis results very well. It can be concluded that, the presented control algorithm based on delta-operator has better stability and controlling accuracy, and easier hardware implementation than the existed control algorithms based on z-operator, therefore it can be used for the voltage compensator design in high-frequency digitally- controlled DC-DC switching converters.

Keywords: Digitally-controlled DC-DC switching converter, finite word length, control algorithm based on delta-operator, high-frequency, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
3406 A Novel Plausible Deniability Scheme in Secure Steganography

Authors: Farshad Amin, Majid Soleimanipour, Alireza Karimi

Abstract:

The goal of steganography is to avoid drawing suspicion to the transmission of a hidden message. If suspicion is raised, steganography may fail. The success of steganography depends on the secrecy of the action. If steganography is detected, the system will fail but data security depends on the robustness of the applied algorithm. In this paper, we propose a novel plausible deniability scheme in steganography by using a diversionary message and encrypt it with a DES-based algorithm. Then, we compress the secret message and encrypt it by the receiver-s public key along with the stego key and embed both messages in a carrier using an embedding algorithm. It will be demonstrated how this method can support plausible deniability and is robust against steganalysis.

Keywords: Steganography, Cryptography, Information Hiding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
3405 Identification of the Parameters of a AC Servomotor Using Genetic Algorithm

Authors: J. G. Batista, K. N. Sousa, J. L. Nunes, R. L. S. Sousa, G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measured and/or expected values.

Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074