Search results for: texture feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1110

Search results for: texture feature

420 Software Development Processes Maturity versus Software Processes and Products Measurement

Authors: Beata Czarnacka-Chrobot

Abstract:

Unsatisfactory effectiveness of software systems development and enhancement projects is one of the main reasons why in software engineering there are attempts being made to use experiences coming from other engineering disciplines. In spite of specificity of software product and process a belief had come out that the execution of software could be more effective if these objects were subject to measurement – as it is true in other engineering disciplines for which measurement is an immanent feature. Thus objective and reliable approaches to the measurement of software processes and products have been sought in software engineering for several dozens of years already. This may be proved, among others, by the current version of CMMI for Development model. This paper is aimed at analyzing the approach to the software processes and products measurement proposed in the latest version of this very model, indicating growing acceptance for this issue in software engineering.

Keywords: CMMI for Development (1.3), ISO/IEC standards, measurement and analysis process area, software process measurement, software product measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
419 Performance of Nakagami Fading Channel over Energy Detection Based Spectrum Sensing

Authors: M. Ranjeeth, S. Anuradha

Abstract:

Spectrum sensing is the main feature of cognitive radio technology. Spectrum sensing gives an idea of detecting the presence of the primary users in a licensed spectrum. In this paper we compare the theoretical results of detection probability of different fading environments like Rayleigh, Rician, Nakagami-m fading channels with the simulation results using energy detection based spectrum sensing. The numerical results are plotted as Pf Vs Pd for different SNR values, fading parameters. It is observed that Nakagami fading channel performance is better than other fading channels by using energy detection in spectrum sensing. A MATLAB simulation test bench has been implemented to know the performance of energy detection in different fading channel environment.

Keywords: Spectrum sensing, Energy detection, fading channels, Probability of detection, probability of false alarm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101
418 Learning to Recommend with Negative Ratings Based on Factorization Machine

Authors: Caihong Sun, Xizi Zhang

Abstract:

Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.

Keywords: Factorization machines, feature engineering, negative ratings, recommendation systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
417 A Matching Algorithm of Minutiae for Real Time Fingerprint Identification System

Authors: Shahram Mohammadi, Ali Frajzadeh

Abstract:

A lot of matching algorithms with different characteristics have been introduced in recent years. For real time systems these algorithms are usually based on minutiae features. In this paper we introduce a novel approach for feature extraction in which the extracted features are independent of shift and rotation of the fingerprint and at the meantime the matching operation is performed much more easily and with higher speed and accuracy. In this new approach first for any fingerprint a reference point and a reference orientation is determined and then based on this information features are converted into polar coordinates. Due to high speed and accuracy of this approach and small volume of extracted features and easily execution of matching operation this approach is the most appropriate for real time applications.

Keywords: Matching, Minutiae, Reference point, Reference orientation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
416 Characteristic Study on Conventional and Soliton Based Transmission System

Authors: Bhupeshwaran Mani, S. Radha, A. Jawahar, A. Sivasubramanian

Abstract:

Here, we study the characteristic feature of conventional (ON-OFF keying) and soliton based transmission system. We consider 20Gbps transmission system implemented with Conventional Single Mode Fiber (C-SMF) to examine the role of Gaussian pulse which is the characteristic of conventional propagation and Hyperbolic-secant pulse which is the characteristic of soliton propagation in it. We note the influence of these pulses with respect to different dispersion lengths and soliton period in conventional and soliton system respectively and evaluate the system performance in terms of Quality factor. From the analysis, we could prove that the soliton pulse has the consistent performance even for long distance without dispersion compensation than the conventional system as it is robust to dispersion. For the length of transmission of 200Km, soliton system yielded Q of 33.958 while the conventional system totally exhausted with Q=0.

Keywords: Soliton, dispersion length, Soliton period, Return-tozero (RZ), Q-factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
415 Shift Invariant Support Vector Machines Face Recognition System

Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas

Abstract:

In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.

Keywords: Face recognition, support vector machines, shiftinvariance, image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
414 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: Knowledge based engineering, biologically inspired design, knowledge cell, knowledge clustering, knowledge acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
413 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
412 Local Steerable Pyramid Binary Pattern Sequence LSPBPS for Face Recognition Method

Authors: Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Mohammed Rziza, Driss Aboutajdine

Abstract:

In this paper the problem of face recognition under variable illumination conditions is considered. Most of the works in the literature exhibit good performance under strictly controlled acquisition conditions, but the performance drastically drop when changes in pose and illumination occur, so that recently number of approaches have been proposed to deal with such variability. The aim of this work is to introduce an efficient local appearance feature extraction method based steerable pyramid (SP) for face recognition. Local information is extracted from SP sub-bands using LBP(Local binary Pattern). The underlying statistics allow us to reduce the required amount of data to be stored. The experiments carried out on different face databases confirm the effectiveness of the proposed approach.

Keywords: Face recognition (FR), Steerable pyramid (SP), localBinary Pattern (LBP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
411 A Robust Visual Tracking Algorithm with Low-Rank Region Covariance

Authors: Songtao Wu, Yuesheng Zhu, Ziqiang Sun

Abstract:

Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.

Keywords: Visual tracking, region covariance descriptor, lowrankregion covariance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
410 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles

Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo

Abstract:

Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.

Keywords: Surface texturing, surface modification, topography, ultrasonic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
409 Non-negative Principal Component Analysis for Face Recognition

Authors: Zhang Yan, Yu Bin

Abstract:

Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.

Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
408 Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

Authors: S. Souli, Z. Lachiri

Abstract:

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram.

To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Keywords: Environmental sounds, Log-Gabor filters, Spectrogram, SVM Multiclass, Visual features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
407 Development of Multimodal e-Slide Presentation to Support Self-Learning for the Visually Impaired

Authors: Rustam Asnawi, Wan Fatimah Wan Ahmad

Abstract:

Currently electronic slide (e-slide) is one of the most common styles in educational presentation. Unfortunately, the utilization of e-slide for the visually impaired is uncommon since they are unable to see the content of such e-slides which are usually composed of text, images and animation. This paper proposes a model for presenting e-slide in multimodal presentation i.e. using conventional slide concurrent with voicing, in both languages Malay and English. At the design level, live multimedia presentation concept is used, while at the implementation level several components are used. The text content of each slide is extracted using COM component, Microsoft Speech API for voicing the text in English language and the text in Malay language is voiced using dictionary approach. To support the accessibility, an auditory user interface is provided as an additional feature. A prototype of such model named as VSlide has been developed and introduced.

Keywords: presentation, self-learning, slide, visually impaired

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
406 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
405 Video Classification by Partitioned Frequency Spectra of Repeating Movements

Authors: Kahraman Ayyildiz, Stefan Conrad

Abstract:

In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.

Keywords: action recognition, frequency feature, motion recognition, repeating movement, video classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
404 Hybrid Modeling Algorithm for Continuous Tamil Speech Recognition

Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi

Abstract:

In this paper, Fuzzy C-Means clustering with Expectation Maximization-Gaussian Mixture Model based hybrid modeling algorithm is proposed for Continuous Tamil Speech Recognition. The speech sentences from various speakers are used for training and testing phase and objective measures are between the proposed and existing Continuous Speech Recognition algorithms. From the simulated results, it is observed that the proposed algorithm improves the recognition accuracy and F-measure up to 3% as compared to that of the existing algorithms for the speech signal from various speakers. In addition, it reduces the Word Error Rate, Error Rate and Error up to 4% as compared to that of the existing algorithms. In all aspects, the proposed hybrid modeling for Tamil speech recognition provides the significant improvements for speechto- text conversion in various applications.

Keywords: Speech Segmentation, Feature Extraction, Clustering, HMM, EM-GMM, CSR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139
403 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time

Authors: Jyh-Da Wei, Hsin-Chen Tsai

Abstract:

This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.

Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
402 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods

Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis

Abstract:

An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.

Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
401 A Comparative Study of Image Segmentation Algorithms

Authors: Mehdi Hosseinzadeh, Parisa Khoshvaght

Abstract:

In some applications, such as image recognition or compression, segmentation refers to the process of partitioning a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Image segmentation is to classify or cluster an image into several parts (regions) according to the feature of image, for example, the pixel value or the frequency response. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image. Several image segmentation algorithms were proposed to segment an image before recognition or compression. Up to now, many image segmentation algorithms exist and be extensively applied in science and daily life. According to their segmentation method, we can approximately categorize them into region-based segmentation, data clustering, and edge-base segmentation. In this paper, we give a study of several popular image segmentation algorithms that are available.

Keywords: Image Segmentation, hierarchical segmentation, partitional segmentation, density estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
400 On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs

Authors: Chien-Hua Lee, Cheng-Yi Chen

Abstract:

The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.

Keywords: homogeneous bilinear system, constrained input, time-delay, uncertainty, transient response, decay rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
399 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung

Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner

Abstract:

Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.

Keywords: lung cancer, micro arrays, data mining, feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
398 Transient Stress Analysis on Medium Modules Spur Gear by Using Mode Super Position Technique

Authors: Ali Raad Hassan

Abstract:

Natural frequencies and dynamic response of a spur gear sector are investigated using a two dimensional finite element model that offers significant advantages for dynamic gear analyses. The gear teeth are analyzed for different operating speeds. A primary feature of this modeling is determination of mesh forces using a detailed contact analysis for each time step as the gears roll through the mesh. ANSYS software has been used on the proposed model to find the natural frequencies by Block Lanczos technique and displacements and dynamic stresses by transient mode super position method. The effect of rotational speed of the gear on the dynamic response of gear tooth has been studied and design limits have been discussed.

Keywords: Spur gear, Natural frequency, transient analysis, Mode super position technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
397 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
396 Design of FIR Filter for Water Level Detection

Authors: Sakol Udomsiri, Masahiro Iwahashi

Abstract:

This paper proposes a new design of spatial FIR filter to automatically detect water level from a video signal of various river surroundings. A new approach in this report applies "addition" of frames and a "horizontal" edge detector to distinguish water region and land region. Variance of each line of a filtered video frame is used as a feature value. The water level is recognized as a boundary line between the land region and the water region. Edge detection filter essentially demarcates between two distinctly different regions. However, the conventional filters are not automatically adaptive to detect water level in various lighting conditions of river scenery. An optimized filter is purposed so that the system becomes robust to changes of lighting condition. More reliability of the proposed system with the optimized filter is confirmed by accuracy of water level detection.

Keywords: water level, video, filter, detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
395 The Examination of Prospective ICT Teachers’ Attitudes towards Application of Computer Assisted Instruction

Authors: Agâh Tuğrul Korucu, Ismail Fatih Yavuzaslan, Lale Toraman

Abstract:

Nowadays, thanks to development of technology, integration of technology into teaching and learning activities is spreading. Increasing technological literacy which is one of the expected competencies for individuals of 21st century is associated with the effective use of technology in education. The most important factor in effective use of technology in education institutions is ICT teachers. The concept of computer assisted instruction (CAI) refers to the utilization of information and communication technology as a tool aided teachers in order to make education more efficient and improve its quality in the process of educational. Teachers can use computers in different places and times according to owned hardware and software facilities and characteristics of the subject and student in CAI. Analyzing teachers’ use of computers in education is significant because teachers are the ones who manage the course and they are the most important element in comprehending the topic by students. To accomplish computer-assisted instruction efficiently is possible through having positive attitude of teachers. Determination the level of knowledge, attitude and behavior of teachers who get the professional knowledge from educational faculties and elimination of deficiencies if any are crucial when teachers are at the faculty. Therefore, the aim of this paper is to identify ICT teachers' attitudes toward computer-assisted instruction in terms of different variables. Research group consists of 200 prospective ICT teachers studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education CEIT department. As data collection tool of the study; “personal information form” developed by the researchers and used to collect demographic data and "the attitude scale related to computer-assisted instruction" are used. The scale consists of 20 items. 10 of these items show positive feature, while 10 of them show negative feature. The Kaiser-Meyer-Olkin (KMO) coefficient of the scale is found 0.88 and Barlett test significance value is found 0.000. The Cronbach’s alpha reliability coefficient of the scale is found 0.93. In order to analyze the data collected by data collection tools computer-based statistical software package used; statistical techniques such as descriptive statistics, t-test, and analysis of variance are utilized. It is determined that the attitudes of prospective instructors towards computers do not differ according to their educational branches. On the other hand, the attitudes of prospective instructors who own computers towards computer-supported education are determined higher than those of the prospective instructors who do not own computers. It is established that the departments of students who previously received computer lessons do not affect this situation so much. The result is that; the computer experience affects the attitude point regarding the computer-supported education positively.

Keywords: Attitude, computer based instruction, information and communication technologies, technology based instruction, teacher candidate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
394 Color Image Segmentation Using Competitive and Cooperative Learning Approach

Authors: Yinggan Tang, Xinping Guan

Abstract:

Color image segmentation can be considered as a cluster procedure in feature space. k-means and its adaptive version, i.e. competitive learning approach are powerful tools for data clustering. But k-means and competitive learning suffer from several drawbacks such as dead-unit problem and need to pre-specify number of cluster. In this paper, we will explore to use competitive and cooperative learning approach to perform color image segmentation. In competitive and cooperative learning approach, seed points not only compete each other, but also the winner will dynamically select several nearest competitors to form a cooperative team to adapt to the input together, finally it can automatically select the correct number of cluster and avoid the dead-units problem. Experimental results show that CCL can obtain better segmentation result.

Keywords: Color image segmentation, competitive learning, cluster, k-means algorithm, competitive and cooperative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
393 Detection and Pose Estimation of People in Images

Authors: Mousa Mojarrad, Amir Masoud Rahmani, Mehrab Mohebi

Abstract:

Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.

Keywords: Analysis of Image Processing, Canny Edge Detection, Human Body Recognition, Measurement, Pose Estimation, 2D Human Dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
392 Petro-Mineralogical Studies of Phosphorite Deposit of Sallopat Block of Banswara District, Rajasthan, India

Authors: K. F. Khan, Samsuddin Khan

Abstract:

The Paleoproterozoic phosphorite deposit of Sallopat block of Banswara district of Rajasthan belongs to kalinjara formation of lunavada group of Aravalli Super Group. The phosphorites are found to occur as massive, brecciated, laminated and stromatolitic associated with calcareous quartzite, interbedded dolomite and multi coloured chert. The phosphorites are showing alternate brown and grey coloured concentric rims which are composed of phosphate, calcite and quartz minerals. Petro-mineralogical studies of phosphorite samples using petrological microscope, XRD, FEG- SEM and EDX reveal that apatite-(CaF) and apatite-(CaOH) are phosphate minerals which are intermixed with minor amount of carbonate materials. Sporadic findings of the uniform tiny granules of partially anisotropic apatite-(CaF) along with dolomite, calcite, quartz, muscovite, zeolite and other gangue minerals have been observed with the replacement of phosphate material by quartz and carbonate. The presence of microbial filaments of organic matter and alternate concentric rims of stromatolitic structure may suggest that the deposition of the phosphate took place in shallow marine oxidizing environmental conditions leading to the formation of phosphorite layers as primary biogenic precipitates by bacterial or algal activities. Different forms and texture of phosphate minerals may be due to environmental vicissitudes at the time of deposition followed by some replacement processes and biogenic activities.

Keywords: Petro-mineralogy, phosphorites, sallopat, apatite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
391 Outlier Pulse Detection and Feature Extraction for Wrist Pulse Analysis

Authors: Bhaskar Thakker, Anoop Lal Vyas

Abstract:

Wrist pulse analysis for identification of health status is found in Ancient Indian as well as Chinese literature. The preprocessing of wrist pulse is necessary to remove outlier pulses and fluctuations prior to the analysis of pulse pressure signal. This paper discusses the identification of irregular pulses present in the pulse series and intricacies associated with the extraction of time domain pulse features. An approach of Dynamic Time Warping (DTW) has been utilized for the identification of outlier pulses in the wrist pulse series. The ambiguity present in the identification of pulse features is resolved with the help of first derivative of Ensemble Average of wrist pulse series. An algorithm for detecting tidal and dicrotic notch in individual wrist pulse segment is proposed.

Keywords: Wrist Pulse Segment, Ensemble Average, Dynamic Time Warping (DTW), Pulse Similarity Vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095