

1
Abstract—Unsatisfactory effectiveness of software systems

development and enhancement projects is one of the main reasons
why in software engineering there are attempts being made to use
experiences coming from other engineering disciplines. In spite of
specificity of software product and process a belief had come out that
the execution of software could be more effective if these objects
were subject to measurement – as it is true in other engineering
disciplines for which measurement is an immanent feature. Thus
objective and reliable approaches to the measurement of software
processes and products have been sought in software engineering for
several dozens of years already. This may be proved, among others,
by the current version of CMMI for Development model. This paper
is aimed at analyzing the approach to the software processes and
products measurement proposed in the latest version of this very
model, indicating growing acceptance for this issue in software
engineering.

Keywords—CMMI for Development (1.3), ISO/IEC standards,
measurement and analysis process area, software process
measurement, software product measurement.

I. INTRODUCTION
S indicated by the studies of Software Engineering
Institute (SEI) (see e.g., [1], [2], [3]), measurement of

software processes and products remains a neglected area of
software engineering in which „there is still a significant gap
between the current and desired state of measurement
practice” [1, p. 29]. Results of these studies are in agreement
with the conclusions coming from the surveys having been
carried out by the author of this paper among Polish
developers of dedicated software systems that unequivocally
indicate that methodic approaches to the software product and
process measurement are still being used relatively rarely (for
more details see [4]). While software product and process
measurement is an essential factor promoting effective
management of software development and therefore –
effective execution of software systems development and
enhancement projects [5, Part 6]. It is of significance that
hardly can be overestimated since such projects cannot boast
about high effectiveness: as indicated by the results of the
Standish Group study, success rate for such projects has never
gone beyond 37% [6]. This US institution estimates that in
case of more than 40% of software application development
and enhancement projects the planned time of product

Beata Czarnacka-Chrobot is with the Department of Business Informatics,

Warsaw School of Economics, Al. Niepodleglosci 164, 02-554, Warsaw,
Poland (e-mail: bczarn@sgh.waw.pl).

delivery is exceeded by nearly 80% on average and the
estimated budget - by approx. 55% on average [7]. This leads
to the substantial financial losses, on a worldwide scale
estimated to be hundreds of billions of dollars yearly,
sometimes making even more than half the funds being
invested in such projects. That’s why „there is still much that
needs to be done so that organizations use measurement
effectively to improve their [software – BCC] processes,
products, and services.” [1, p. 29].

No wonder that the measurement of software processes and
products is an area of software engineering, which L. Buglione
and A. Abran not long ago used to describe as „rather
immature in terms of knowledge maturity” [8, p. 84]. In their
opinion, this area does not yet meet criteria of the so-called
rule of general acceptance, formulated by the Project
Management Institute (PMI) in PMBOK (Project Management
Body of Knowledge) and then adopted by the IEEE (Institute
of Electrical and Electronics Engineers) Computer Society in
SWEBOK (Software Engineering Body of Knowledge).
According to this rule: “generally accepted means that the
knowledge and practices described are applicable to most
projects most of the time, and that there is widespread
consensus about their value and usefulness” [9, p. 3].
According to these authors, a factor promoting change of this
status quo is developing formalized approaches to the
software process and product measurement that would
constitute source of knowledge allowing the above mentioned
rule to be accomplished over time also by this specific area of
software engineering.

That’s why over the last couple of years the works have
been intensified that aimed at describing the best practices
concerning software process and product measurement within
the existing models, including first of all Capability Maturity
Model Integration (CMMI) for Development (CMMI-DEV)
[10], or in the form of new standards, first of all ISO/IEC
(International Organization for Standardization/International
Electrotechnical Commission) standards, relating to this
subject matter to various, also very detailed one, degree (see
e.g., [11], [12], [13], [14]). As a result they gave rise to a
variety of formal approaches, treating this very area from
different perspectives, and de facto being the effect of several
dozens of years of pursuit and development of sufficiently
objective and reliable methods of proceedings in the discussed
field and filling the gap in the theory as well as in the practice
of software engineering. It is worth noting that to a greater and
greater degree they concentrate on measurement of software

Software Development Processes Maturity
versus Software Processes and Products

Measurement
Beata Czarnacka-Chrobot

A

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1295International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

31
5.

pd
f

product, which as a matter of fact is a result of software
processes being undertaken, while only recently such
approaches were criticized for concentrating almost entirely
on the process alone.

Due to a large substantive differentiation of various
approaches to measurement, in the execution of this process in
practice it is worth to use model of proceedings that not only
recommends execution of measurement but also offers general
set of guidelines to the users, certain scheme of proceedings
assumed to simplify and/or sort this process. As an example of
model that could be helpful in the execution of the
measurement process one should present CMMI-DEV model
and this being due to at least four reasons: (1) on the basis of
the development of this model one may observe evolution of
the approach to the issue of measurement in software
engineering, (2) in this model the effects that can be obtained
thanks to measurement are clearly appreciated, (3) approach to
measurement, characteristic of this model, brings very
beneficial measurable results, (4) this model is considered
useful and relatively often used in software engineering
practice, as suggested by the SEI studies [1, p. 18].

Hence the goal of this paper is the analysis of the approach
to the software products and processes measurement proposed
in the latest version of the CMMI for Development model.
Therefore in the section 2 the paper presents general
classification of formal approaches to measurement in
software engineering. Section 3 is devoted to synthetic
characteristics of the CMMI-DEV model while section 4 – of
the so-called measurement and analysis process area of the
CMMI-DEV model. Section 5 features conclusions
concerning mainly evaluation of the described approach usage
in practice from the perspective of software process and
product measurement.

II. CLASSIFICATION OF FORMAL APPROACHES TO
MEASUREMENT IN SOFTWARE ENGINEERING

On the basis of the classification proposed by K. Richins
[15, p. 3.259], formal approaches to the software process and
product measurement may be divided into (for more details
see [11]):
• Approaches officially recognized as international

standards, which to lower or higher degree relate to
measurement. Since the measurement processes in
software engineering are being attributed higher and
higher significance, a considerable progress has taken
place over the last few years in the standardization of
approaches to this issue, which may be proved, among
others, by the international norms having been published
jointly by the ISO and IEC. The ISO/IEC norms
concerning measurement in software engineering may be
specified by bringing it to the following categories
characterized by the increasing level of detailness:
1) Standards including the measurement, concerning:

– measurement process (ISO/IEC norms: 12207,
15288, 14598)

– software process measurement (ISO/IEC norms:
90003, 15504)

– software product measurement (ISO/IEC norms:
25000, 25001, 25030).

2) Standards dedicated to the measurement, concerning:
– measurement process (ISO/IEC 15939 norm)
– software product measurement (ISO/IEC norms:

9126, 25020, 25021, 14143).
3) Standards dedicated to particular methods of software

product functional size measurement (ISO/IEC norms:
20926, 20968, 24570, 19761, 29881).

• Approaches setting directions for proceedings thus
ensuring proper course of the measurement process,
which do not hold official status of international standard
yet as a rule are successfully used in practice in given
application areas. Development of this type of
structuralized approaches is being supported by the
initiatives such as e.g., Software Engineering
Measurement and Analysis (SEMA) Group, undertaken
within the SEI, or Measurement Working Group (MWG)
performing within the International Council on System
Engineering (INCOSE), as well as by various
government directives. As indicated by the SEI studies
[1, p. 18], approach being used in practice to the largest
extent in this type of measurement proves to be the so-
called Measurement and Analysis (MA) Process Area
(PA) of the CMMI-DEV model [10, pp. 175-190].

III. SYNTHETIC CHARACTERISTICS OF THE CMMI FOR
DEVELOPMENT MODEL

According to N. Fenton, considerable influence on the
awareness of the significance of measurement and its
understanding and therefore on the use of measurements in the
practice of software engineering has been made by the
Software Process Assessment/Software Process Improvement
(SPA/SPI) model called Capability Maturity Model (CMM),
developed by the SEI in the 1980s [16, pp. 88, 109-110]. This
results from the fact that in this particular approach as well as
in other approaches that had stemmed from it, being relatively
popular due to commercial motivation (e.g. US Department of
Defense requires companies putting for their contracts to be
minimum on the maturity level 3 of the CMMI model),
measurement is considered significant to achieving
subsequent, higher levels of maturity or capability.

The CMM model was commissioned by the US Department
of Defense in response to the problems concerning
effectiveness of the execution of software ordered for this
institution. It was supposed to be used for the assessment of
the usefulness of its potential providers by qualifying them
into one of five levels of maturity [16, p. 109]. In spite of its
popularity it had not avoided the criticism though – first of all
due to a five-degree scale and methods of assessment used as
well as lack of fully convincing evidence that organizations
from higher level of maturity can develop better software
products [16, p. 111]. Hence attempts had been made to
develop other models, including various ISO/IEC standards
(see e.g., [11], [12], [13], [14]). However, works on enhancing
the rules introduced by the CMM had been going and are still
going on, and one of the main manifestations of this was
replacing a group of models built on it with the integrated

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1296International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

31
5.

pd
f

CMMI (CMM Integration) model and its evolution that
followed.

This integrated model, in its 1.1 version of 2002, allowed
for adjusting to the needs of given organization – as it made it
possible to assess both particular processes being
accomplished within it as well as an organization as a whole.
These results from the fact it is available in two variants:
continuous (CMMI Continuous Representation - CMMI-CR)
and staged (CMMI Staged Representation - CMMI-SR).
Although version CMMI 1.3 is the one that is valid at the
moment, both representations, however, are included to it
[10].

The structure of the currently valid version of CMMI is
based on the concept of the so-called constellation, understood
as „a collection of CMMI components that are used to
construct models, training materials, and appraisal related
documents for an area of interest” [10, p. 450]. At the moment
three areas of interest are being taken into consideration:
product development, product acquisition and services related
to a product. Version 1.3 of CMMI for Acquisition [17],
CMMI for Development ([10], [18]), and CMMI for Services
[19] were released in November 2010. First of the
constellations developed by SEI, and at the same time being
most interesting from the point of view of the subject matter
discussed in this paper, is CMMI for Development.

CMMI for Development is a set of the so-called best
practices that serve as a point of reference for activities
regarding product development and maintenance, mostly in
software engineering (but also e.g., in system engineering or

in hardware engineering). These practices cover the entire
product’s lifecycle: from the conception to delivery and
maintenance, while particular emphasis is being put on works

that are indispensable to develop and maintain complete
product.

Staged representation of the CMMI-DEV model is designed
for comprehensive assessment of organization’s software
process and this by qualifying organization to one of the five
maturity levels that are briefly characterized in Table I.

Analysis of the conditions which an organization must meet
in order to achieve subsequent levels of maturity indicates that
in the CMMI-DEV model a considerable importance is given
to measurement of software processes and products: the higher
the maturity level, the stronger orientation towards
quantitative approach. This means that what is of fundamental
significance are metrics while selection of objects and
attributes to be measured depends on the information available
on each of the levels.

All maturity levels in the CMMI-SR model, except lowest
one, are characterized by the specified set of the so-called
process areas (PA). Process area is understood as „a cluster of
related practices in an area that, when implemented
collectively, satisfies a set of goals considered important for
making improvement in that area” [10, p. 449]. Organization
being assessed is qualified to the given maturity level provided
that it satisfies all goals determined by all process areas that
are characteristic not only of given level but of lower levels as
well. All process areas are common to the staged as well as
continuous representation whereas in the CMMI-SR variant
they are organized according to maturity levels while in the
CMMI-CR variant the same process areas were grouped
according to the so-called category of process areas,

comprising categories such as: process management, project
management, engineering, and support (for more details see
[10, p. 33]).

TABLE I
SYNTHETIC CHARACTERISTICS OF MATURITY LEVELS IN THE CMMI-DEV MODEL – STAGED REPRESENTATION

Name of maturity level Synthetic description
Level 1:
Initial

In the organization the procedures according to which the projects are performed either do not exist at all or they do exist but
are not in fact performed – hence the processes usually proceed chaotically and ad hoc while success depends on the
competence of employees and their dedication. Such organization often provides functioning software products yet as a rule
with time and budget overruns.

Level 2:
Managed

Organization is obliged to implement process management procedures with regard to: project planning, managing its
requirements and configuration, procedure of ensuring quality of processes and products as well as measurement and
analysis. However there is no formal definition of processes. Project management is orientated towards monitoring
functionality, cost and time of execution. Procedures carried out within particular projects may differ significantly.

Level 3:
Defined

Processes are defined in the form of the set of formal general-organizational standards being executed and enhanced that
allows for attaining consistency within the entire organization. Projects are performed according to organization’s own
defined processes which, however, are developed on the basis of adaptation procedures based on general-organizational set
of standard processes. Main differences between this and the preceding level consist in the range of set standards, accuracy of
processes description and in the use of measures: on the discussed level, processes are managed with the use of detailed
measures of the process and product.

Level 4:
Quantitatively managed

Organization defines quantitative objectives with regard to processes and quality of products which it then follows and
monitors within the projects performed, thanks to which it can keep enhancing them; it also uses them as criteria in the
processes management. Quantitatively defined objectives are based first of all on client’s needs. Hence organization monitors
measures of process and quality of product that are collected in general-organizational repository designed for this
purpose. For selected subprocesses detailed measures of process execution are analyzed with the use of statistical methods in
order to identify extraordinary causes of differences, their improvement and preventing them in the future. Key difference
between this and the preceding level is quantitative predictability of processes execution – on the defined level, processes
are usually predictable only qualitatively.

Level 5:
Optimizing

Processes corresponding with projects executed by an organization are being constantly optimized on the basis of
quantitative management of the expected differences in their execution. Technological innovations and enhancements are
being introduced continuously. Quantitative objectives of processes enhancement are determined, reviewed and corrected
so they are adapted to the changes in business objectives of an organization.

Source: Author’s own analysis based on: [10, p. 27-29].

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1297International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

31
5.

pd
f

Continuous representation of CMMI-DEV model is
designed for autonomous assessment of particular process
areas that are classified into one of four capability levels,
concisely characterized in Table II.

Table III compares the four capability levels versus five
maturity levels.

In the current version of the CMMI-DEV there are 22
process areas that can be isolated (for more details see [10, p.
11]). Each of the PA is assigned one or several the so-called
specific goals which on the other hand are assigned specific
practices. Version 1.1 of the model was already widened with
general goals and practices which are not assigned to any
individual PA as the same goal and its practices are linked
with many PA. Whether given area is executed is proved by
achieving all specific goals assigned to it along with general
goals that are linked with them while achieving such goals in
case of the set of process areas characterizing given maturity
level (and lower levels as well) means achieving this very
level. In other words, maturity level (in CMMI-SR) is
determined on the basis of the achieved specific and general
goals linked with the each predefined set of process areas
while capability level (in CMMI-CR) – on the basis of general
goals linked with specific process area.

IV. MEASUREMENT AND ANALYSIS PROCESS AREA OF THE
CMMI FOR DEVELOPMENT MODEL

One of the 22 process areas isolated in CMMI-DEV model
is an area of Measurement and Analysis (MA) [10, pp. 175-
190]. Developing of MA area was made in close cooperation

with specialists from Practical Software and Systems
Measurement Support Center, ISO and International Function
Point Users Group (IFPUG). In CMMI-SR representation it
was assigned to the maturity level 2 (see Table I) while in

CMMI-CR representation it was classified into the category of
support process areas. Isolating this area explicitly proves to
managers the execution of the measurement process in order
to enhance software development processes is necessary –
predecessors of CMMI models lacked such a clear,
autonomous and consistent approach while scope of the
discussed PA is at the moment significantly larger.

The goal of the measurement and analysis process is „to
develop and sustain a measurement capability used to support
management information needs” [10, p. 175]. Therefore
integration of activities covered by measurement and analysis
into one process area is aimed to support:
• objective planning, including project estimation;
• monitoring factual course of the project with regard to its

correspondence with plans and goals;
• identifying and solving various problems concerning the

measured process that arise;
• developing bases designed for including measurement

into subsequent processes.
The MA PA involves the following activities [10, p. 175]:

(1) specifying goals of measurement and analysis so that they
are aligned with the identified information needs and project,
organizational, or business objectives; (2) specifying
measures, analysis techniques, and mechanisms for data
collection, data storage, reporting, and feedback; (3)
implementing the analysis techniques and mechanisms for
data collection, data reporting, and feedback; (4) providing
objective results that can be used in making informed
decisions and taking appropriate corrective action.

Measurement and analysis process area supports all process
areas of the CMMI-DEV model by providing set of practices
specific to it; those practices being helpful in sorting
measurement needs and goals in a way so that objective
results of measurement, necessary to make rational decisions
and right corrective action mostly with regard to projects and
therefore to organizations, would be achieved. Specific

TABLE II
SYNTHETIC CHARACTERISTICS OF CAPABILITY LEVELS IN THE CMMI-DEV MODEL – CONTINUOUS REPRESENTATION

Name of
capability level

Synthetic description

Level 0:
Incomplete

A process that either is not performed or is partially performed. One or more of the specific goals of the process area are not satisfied
and no generic goals exist for this level since there is no reason to institutionalize a partially performed process.

Level 1:
Performed

A process that accomplishes the needed work to produce work products; the specific goals of the process area are satisfied. Although
capability level 1 results in important improvements, those improvements can be lost over time if they are not institutionalized.

Level 2:
Managed

A performed process that is planned and executed in accordance with policy; employs skilled people having adequate resources to
produce controlled outputs; involves relevant stakeholders; is monitored, controlled, and reviewed; and is evaluated for adherence to its
process description.

Level 3:
Defined

A managed process that is tailored from the organization’s set of standard processes according to the organization’s tailoring
guidelines; has a maintained process description; and contributes process related experiences to the organizational process assets. A
critical distinction between capability levels 2 and 3 is the scope of standards, process descriptions, and procedures. At capability level
2, the standards, process descriptions, and procedures can be quite different in each specific instance of the process (e.g., on a particular
project). Another critical distinction is that at capability level 3 processes are typically described more rigorously than at capability
level 2. A defined process clearly states the purpose, inputs, entry criteria, activities, roles, measures, verification steps, outputs, and
exit criteria. At capability level 3, processes are managed more proactively using an understanding of the interrelationships of the
process activities and detailed measures of the process and its work products.

Source: Source: [10, pp. 24-25].

TABLE III
COMPARISON OF CAPABILITY AND MATURITY LEVELS

Level Capability Levels
(CMMI-CR)

Maturity Levels
(CMMI-SR)

Level 0 Incomplete
Level 1 Performed Initial
Level 2 Managed Managed
Level 3 Defined Defined
Level 4 Quantitatively Managed
Level 5 Optimizing
Source: [10, p. 23].

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1298International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

31
5.

pd
f

practices (SP) are grouped with regard to two specific goals
(SG) of the discussed PA [10, p. 176]:
• SG 1: Align measurement and analysis activities,

including: SP 1.1: Establish measurement objectives, SP
1.2: Specify Measures, SP 1.3: Specify data collection
and storage procedures, SP 1.4 Specify analysis
procedures;

• SG 2: Provide measurement results, including: SP 2.1:
Obtain measurement data, SP 2.2: Analyze measurement
data, SP 2.3: Store data and results, SP 2.4: Communicate
results.

Execution of practices specific to the first goal enables to
get answer to the question about measurement goal, its
subject, the way in which it is going to proceed as well as the
way of using data obtained. As a result these activities allow
for developing consistent measurement and analysis plan. As
for the specific practices assigned to the second goal – they
simply need to be performed [20, p. 21]. It is also worth
stressing that in the CMMI-DEV model there are no specific
methods indicated with the help of which measurement of
particular attributes of software processes and products should
be carried out; instead only framework structure of such
proceedings is determined. Analogous situation applies to
other process areas. Thus from this point of view CMMI-DEV
model is so general that it can be called metamodel – what’s
important is that the goals of the given PA, both specific and
general, are achieved.

Measurement and analysis process area is also associated
with a certain set of the above mentioned general goals of the
CMMI-DEV model, achieving of which is enabled by
effective execution of general practices (see [10, pp. 63-125]).
D. Goldenson and others [20, pp. 21-23] used to stress that
general practices on the one hand serve to institutionalize
measurement and analysis process as well as to enhance
capabilities with which these activities are performed in the
course of a product’s lifecycle, on the other hand, however,
they indicate general practices being strongly dependent on
measurement. Among them are first of all those concerning:
monitoring and control of a process, gathering information,
supporting enhancement, determining quantitative goals for
the process, stabilizing subprocesses, ensuring continuous
enhancement of processes and correction of the main causes of
problems. Additionally, with the use of correctly defined and
executed measurement process one may prove profitability of
SPA/SPI processes and therefore also of activities supporting
them, into which the discussed area belongs. What’s more,
every process area is to a lower or greater degree dependent on
the correct execution of measurement and analysis that help to
enhance these areas significantly while practices of MA area
go on in different ways as an organization achieves goals of
the subsequent PA of the CMMI-DEV model. Process areas of
the CMMI-DEV model, explicitly linked with measurement
and analysis, are displayed in Table IV.

As indicated in Table IV, process areas linked with MA PA
belong first of all to the category of project management
(although MA PA itself belongs to the category of support
process areas). Most among those PA are assigned to the

maturity level 2 yet MA supports also process areas of the
maturity level 3 and 4.

One of the process areas being strongly dependent on
measurement and analysis is project planning. Its goal is to
determine and maintain plans that define project-related
activities. This area covers development and monitoring of
agreed and approved project plan with adequate engagement
of its stakeholders. Planning begins with defining
requirements concerning product and project and it comprises
first of all assessment of their attributes, determining
necessary resources, developing works schedule, and
identification and analysis of the project risk. These activities,
as a rule carried out in an iterative way, lead to the
development of a project plan that constitutes basis for the
execution and control of project-related activities in
accordance with the needs agreed with a client. It is often
being revised which results from high changeability of client’s
requirements, inaccurate estimates, corrective activities and
changeability in the course of the project process itself (for
more details see [10, pp. 281-299]).

Another process area being strongly correlated with
measurement and analysis is quantitative project management.
The goal of this area is to provide quantitative management of
defined process corresponding with the project in a way so
that as a result of its execution the required quantitative goals
concerning process quality and execution are achieved. These
goals should be determined beforehand; in addition, within its
framework one should: identify right subprocesses making up
the defined process – based on benchmarking data on the
process execution; choose those subprocesses that are to be
managed using the selected measures, methods and statistical-
analytical techniques; monitor project in order to keep track of
how it adapts at a given time to quantitative requirements,
with particular attention given to subprocesses managed with
the use of the selected statistical methods and register data on
quality management in the organization’s repository designed
for measurements. Quantitative goals regarding process
execution concern both measures of process attributes (e.g.,
work effort, time of execution) as well as measures of product
attributes (e.g., reliability). Key characteristic of quantitative
project management is adequate credibility of estimates being
obtained as well as ability to identify threat to the set
quantitative goals coming out throughout project execution
(for more details see [10, pp. 307-324]).

TABLE IV
PROCESS AREAS OF THE CMMI-DEV MODEL RELATED TO THE MA PA

Process area Maturity
level

(CMMI-SR)

Category of process
areas

 (CMMI-CR)
Project Planning PA 2 Project management
Requirements Management PA 2 Project management
Project Monitoring and Control
PA

2 Project management

Quantitative Project
Management PA

4 Project management

Configuration Management PA 2 Support
Requirements Development PA 3 Engineering
Organizational Process
Definition PA

3 Process management

Source: Author’s own analysis based on [10, pp. 33, 176].

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1299International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

31
5.

pd
f

V. CONCLUDING REMARKS
As indicated by the presented considerations, in the current

version of the CMMI-DEV model (1.3) great importance is
being attached to the measurement of software processes and
products. This is one of the fundamental reasons why in the
organizations on the high maturity level of the CMMI model
([21, pp. 3-30], [22], [23]):
• costs and time of project execution is estimated more

accurately thanks to the proper collecting of reliable
benchmarking data: organizations on the maturity level 5
practically do not exceed estimates whereas
organizations on the maturity level 1 go beyond the
estimated time by 150% on average, and beyond the
estimated costs – by nearly 200% o average;

• quality of end products increases due to the lower
number of faults and this being thanks to control and
assessment of the intermediate products quality being
made at the earliest stages of product’s lifecycle which
allows for correcting them on a current basis;

• due to lower number of faults in intermediate products
total costs of improving their bad quality decline:
average cost of enhancing faults in organizations on the
level 5 is approx. 4% of the total software development
cost while in organizations on the initial level it amounts
to over 50% of such costs;

• due to decline in the costs of enhancing bad quality of
products, the costs of software development decrease
too: average cost of developing one function is more than
3 times lower in organizations on the highest level
comparing to that cost in organizations on the lowest
level;

• due to decrease of the above listed costs per unit, work
productivity increases;

• due to lower number of faults in products and thus
reduction of time designed for correcting them, total time
of product execution gets shorter too.

Studies by C.A. Dekker and B. Emmons [24, p. 22] indicate
that what for companies on the maturity level 1 is one of the
fundamental causes of difficulty in achieving the level 2 is
lack of measurement procedures while measure of the size of
products to be delivered is one of the measures that are leaved
out the most often. On the other hand, studies carried out by
M. Brown and D. Goldenson [25, pp. 131-133, 136] indicate
that in practice problems with measurement of attributes of
software products and processes occur regardless of the
organization’s maturity level: first – they are being noted on
every level, second – their structure is very similar for each of
the levels. At the top two maturity levels, comparing to the
defined level one declares somewhat more difficulties with
product measurement and less with process measurement.
With regard to the attributes of those objects, high or medium
level of difficulties with measurement was declared,
depending on the attribute, by 70% to even 90% of the
surveyed CIOs (Chief Information Officer), while those bigger
difficulties concern, among others, measurement of the project
risk, level of client’s satisfaction, product quality, however
estimation of its execution costs is included here as well.

The SEI data indicate that to achieve the highest maturity
level an organization needs 7.5 years on average. Each
organization, however, has to compare benefits coming from
the implementation of the CMMI-DEV model against its
costs. Main objection, however being raised to the discussed
SEI proposal is its complexity and inflexibility and therefore
need to create, often very extensive, bureaucratic apparatus to
control application of CMMI practices. As a result use of the
model requires considerable financial means which for small
and medium sized organizations is a factor that significantly
limits the possibility of using it. In addition, implementation of
the model at first slows down the software process which
often makes users feel reluctant to use it. Also, because of the
complexity of the model, one may sometimes in practice lose
sight of what its factual purpose is: high functionality and
quality of software product that are to be delivered as a result
of the execution of effective process, in turn getting theoretical
consistency of the process with model maturity. What’s more,
there is still no convincing evidence of the existence of
correlation between quality of process and quality of product
and this is what is assumed in the SEI: “The quality of a
system or product is highly influenced by the quality of the
process used to develop and maintain it” [10, p. 5]. This
premise, however, is widely accepted in software engineering
environment, including the ISO/IEC as well.

Due to the above reasons solutions have appeared that were
meant to be a counterweight to the excessive, according to
some, formalization of the CMMI model: agile, adaptive
methodologies, whose general assumption is effective
development of properly functioning software thanks to
concentrating on purely constructive activities and
minimization of other activities. In these approaches
measurement of software process and product key attributes
too is of significance yet as strictly defined and constant are
treated here costs and time of execution within which
functioning products should be delivered, even if they do not
cover complete functionality whereas in traditional approaches
product size is relatively least flexible variable (this, however,
does not apply to all cases and depends on client’s priorities).
However, in agile methodologies one resigns from benefits
coming from disciplined and systematic use of good practices,
or from the transfer of knowledge and skills between projects
whose effect is that, among others - as indicated by the studies
of B. Clark [26, p. 25] – change of maturity level by one level
causes reduction of project’s work costs by 4% to 11% on
average. Thus some compromises have been sought, in case of
which, however, weight is usually being attached too to the
measurement as a method leading to high functionality and
quality of software product as well as practical effectiveness
of software process.

Summing up it should be stated that considerable progress
in the development of the new formal approaches to
measurement has taken place in recent years. On the basis of
this observation Buglione and Abran used to stress that this
constitutes „strong evidence of increased “generally accepted”
recognition for a number of software measurement topics” [8,
p. 91]. These works, however, can hardly be considered

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1300International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

31
5.

pd
f

finished – software engineering still faces many challenges
related to measurement of software processes and products,
becoming of special significance in recession and post-
recession time alike.

REFERENCES
[1] M. Kasunic, “The state of software measurement practice: results of

2006 survey”, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, 2006, pp. 1-67.

[2] D. Goldenson, “Understanding CMMI measurement capabilities &
impact on performance: results from the 2007 SEI state of the
measurement practice survey”, CMMI Technology Conference,
November 14, 2007; http://www.sei.cmu.edu/library/assets/
measurement-survey2007.pdf (6.06.2012).

[3] D. Goldenson, J. McCurley, and R. Stoddard, "Use and organizational
effects of measurement and analysis in high maturity organizations:
results from the 2008 SEI state of measurement and analysis practice
surveys," Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania, Technical Report CMU/SEI-2008-TR-024,
2009; http://www.sei.cmu.edu/library/abstracts/reports/08tr024.cfm
(6.06.2012).

[4] B. Czarnacka-Chrobot, “Analysis of the functional size measurement
methods usage by Polish business software systems providers”, in
Software Process and Product Measurement, A. Abran, R. Braungarten,
R. Dumke, J. Cuadrado-Gallego, J. Brunekreef, Eds., Proc. of the 3rd
International Conference IWSM/Mensura 2009, Lecture Notes in
Computer Science, vol. 5891, Springer-Verlag, Berlin-Heidelberg, 2009,
pp. 17–34.

[5] ISO/IEC 14143 Information Technology – Software measurement –
Functional size measurement – Part 1-6, ISO, Geneva, 1998-2007.

[6] Standish Group, “CHAOS manifesto 2011”, West Yarmouth,
Massachusetts, 2011.

[7] Standish Group, “CHAOS summary 2009”, West Yarmouth,
Massachusetts, 2009, pp. 1-4.

[8] L. Buglione, A. Abran, “The software measurement body of
knowledge”, Proceedings of 1st Software Measurement European
Forum (SMEF), Rome, 2004.

[9] Project Management Institute, A Guide to the project management body
of knowledge, PMBOK 2000.

[10] CMMI Product Team, "CMMI for Development, Version 1.3," Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, Technical Report CMU/SEI-2010-TR-033, 2010;
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm
(6.06.2012).

[11] B. Czarnacka-Chrobot, “The ISO/IEC standards for the software
processes and products measurement”, in New Trends in Software
Methodologies, Tools and Techniques, H. Fujita and V. Marik, Eds.,
Proc. of the 8th International Conference SOMET’2009, Frontiers in
Artificial Intelligence and Applications, vol. 199, IOS Press,
Amsterdam-Berlin-Tokyo-Washington, 2009, pp. 187-200.

[12] B. Czarnacka-Chrobot, “Standardization of software size measurement”,
in Internet – Technical Development and Applications, E. Tkacz, A.
Kapczynski, Eds., Advances in Intelligent and Soft Computing, vol. 64,
Springer-Verlag, Berlin-Heidelberg, 2009, pp. 149-156.

[13] B. Czarnacka-Chrobot, “Standardization of software functional size
measurement methods”, in Advanced Information Technologies for
Management, J. Korczak, H. Dudycz, M. Dyczkowski, Eds., Proceeding
of Scientific International Conference AITM’2009, Wroclaw University
of Economics Research Papers, no 85, Wroclaw 2009, pp. 40-50.

[14] B. Czarnacka-Chrobot, “The effectiveness of business software systems
functional size measurement”, Proceedings of the 6th International
Multi-Conference on Computing in the Global Information Technology
(ICCGI 2011), 19-24 June 2011, Luxemburg City, Luxemburg,
Constantin Paleologu, Constandinos Mavromoustakis, Marius Minea,
Eds., International Academy, Research, and Industry Association,
Wilmington, Delaware, USA, 2011, pp. 63-71.

[15] K. Richins, “Measurement in CMMI”, Proceedings of a Seminar On
Metrics, International Council on System Engineering (INCOSE),
Hampton, Virginia, October 23-24, 2001.

[16] N. E. Fenton, “Ensuring quality and metrics of software” [„Zapewnienie
jakości i metryki oprogramowania”], in Software engineering in IT

project [Inżynieria oprogramowania w projekcie informatycznym],
extended 2nd edition, J. Górski, Ed., Mikom, Warsaw 2000.

[17] B. Gallagher, M. Phillips, K. Richter, and S. Shrum, “CMMI-ACQ:
guidelines for improving the acquisition of products and services”, 2nd
Edition, Addison-Wesley, Boston 2011.

[18] M. Chrissis, M. Konrad, and S. Shrum, “CMMI: guidelines for process
integration and product improvement”, 3rd Edition, Addison-Wesley,
Boston 2011.

[19] E. Forrester, B. Buteau, and S. Shrum, “CMMI for Services: guidelines
for superior service, 2nd Edition, Addison-Wesley, Boston 2011.

[20] D. Goldenson, J. Jarzombek, and T. Rout, “Measurement and analysis in
Capability Maturity Model Integration Models and Software Process
Improvement”, CrossTalk, July 2003, pp. 20-24.

[21] D. L. Gibson, D. Goldenson, and L. Kost, “Performance results of
CMMI-based process improvement”, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, August 2006.

[22] D. F. Rico, “ROI of software process improvement: metrics for project
managers and software engineers”, J. Ross Publishing, February 2004.

[23] Software Engineering Institute, http://www.sei.cmu.edu/cmmi/
why/benefits (6.06.2012).

[24] C. A. Dekkers, B. Emmons, “How function points support the Capability
Maturity Model Integration”, CrossTalk. The Journal of Defence
Software Engineering, February 2002, pp. 21–24.

[25] M. Brown, D. Goldenson, “Measurement and analysis: what can and
does go wrong?”, 10th IEEE International Symposium on Software
Metrics, September 2004.

[26] B. W. Boehm, R. E. Fairley, “Software estimation perspectives”, IEEE
Software, November/December 2000.

World Academy of Science, Engineering and Technology
International Journal of Computer and Systems Engineering

 Vol:6, No:11, 2012

1301International Scholarly and Scientific Research & Innovation 6(11) 2012 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
Sy

st
em

s
E

ng
in

ee
ri

ng
 V

ol
:6

, N
o:

11
, 2

01
2

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/8

31
5.

pd
f

