Search results for: solar cooling
125 The Mitigation Strategy Analysis of Kuosheng Nuclear Power Plant Spent Fuel Pool Using MELCOR2.1/SNAP
Authors: Y. Chiang, J. R. Wang, J. H. Yang, Y. S. Tseng, C. Shih, S. W. Chen
Abstract:
Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of Spent Fuel Pools (SFPs) in Taiwan after Fukushima event. In order to estimate the safety of Kuosheng NPP SFP, by using MELCOR2.1 and SNAP, the safety analysis of Kuosheng NPP SFP was performed combined with the mitigation strategy of NEI 06-12 report. There were several steps in this research. First, the Kuosheng NPP SFP models were established by MELCOR2.1/SNAP. Second, the Station Blackout (SBO) analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition. The results showed that the calculations of MELCOR and TRACE were very similar in this case. Second, the mitigation strategy analysis was done with the MELCOR model by following the NEI 06-12 report. The results showed the effectiveness of NEI 06-12 strategy in Kuosheng NPP SFP. Finally, a sensitivity study of SFP quenching was done to check the differences of different water injection time and the phenomena during the quenching. The results showed that if the cladding temperature was over 1600 K, the water injection may have chance to cause the accident more severe with more hydrogen generation. It was because of the oxidation heat and the “Breakaway” effect of the zirconium-water reaction. An animation model built by SNAP was also shown in this study.
Keywords: MELCOR, SNAP, spent fuel pool, quenching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957124 Performance of an Improved Fluidized System for Processing Green Tea
Authors: Nickson Kipng’etich Lang’at, Thomas Thoruwa, John Abraham, John Wanyoko
Abstract:
Green tea is made from the top two leaves and buds of a shrub, Camellia sinensis, of the family Theaceae and the order Theales. The green tea leaves are picked and immediately sent to be dried or steamed to prevent fermentation. Fluid bed drying technique is a common drying method used in drying green tea because of its ease in design and construction and fluidization of fine tea particles. Major problems in this method are significant loss of chemical content of the leaf and green appearance of tea, retention of high moisture content in the leaves and bed channeling and defluidization. The energy associated with the drying technology has been shown to be a vital factor in determining the quality of green tea. As part of the implementation, prototype dryer was built that facilitated sequence of operations involving steaming, cooling, pre-drying and final drying. The major findings of the project were in terms of quality characteristics of tea leaves and energy consumption during processing. The optimal design achieved a moisture content of 4.2 ± 0.84%. With the optimum drying temperature of 100 ºC, the specific energy consumption was 1697.8 kj.Kg-1 and evaporation rate of 4.272 x 10-4 Kg.m-2.s-1. The energy consumption in a fluidized system can be further reduced by focusing on energy saving designs.
Keywords: Evaporation rate, fluid bed dryer, maceration, specific energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703123 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed. F. Zobaa
Abstract:
Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), andParticle Swarm Optimization (PSO) algorithmfor (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC cuk converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.
Keywords: Incremental Conductance (IncCond) Method, Perturb and Observe (P&O) Method, Photovoltaic Systems (PV) and Practical Swarm Optimization Algorithm (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5734122 Aiming at Optimization of Tracking Technology through Seasonally Tilted Sun Trackers: An Indian Perspective
Authors: Sanjoy Mukherjee
Abstract:
Discussions on concepts of Single Axis Tracker (SAT) are becoming more and more apt for developing countries like India not just as an advancement in racking technology but due to the utmost necessity of reaching at the lowest Levelized Cost of Energy (LCOE) targets. With this increasing competition and significant fall in feed-in tariffs of solar PV projects, developers are under constant pressure to secure investment for their projects and eventually earn profits from them. Moreover, being the second largest populated country, India suffers from scarcity of land because of higher average population density. So, to mitigate the risk of this dual edged sword with reducing trend of unit (kWh) cost at one side and utilization of land on the other, tracking evolved as the call of the hour. Therefore, the prime objectives of this paper are not only to showcase how STT proves to be an effective mechanism to get more gain in Global Incidence in collector plane (Ginc) with respect to traditional mounting systems but also to introduce Seasonally Tilted Tracker (STT) technology as a possible option for high latitude locations.
Keywords: Tracking system, grid-connected PV systems, cost reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1042121 Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils
Authors: Samir J. Deshmukh, Lalit B. Bhuyar, Shashank B. Thakre, Sachin S. Ingole
Abstract:
The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.Keywords: Esters, emission, performance, and vegetable oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219120 Parametric Urban Comfort Envelope an Approach toward a Responsive Sustainable Urban Morphology
Authors: Mohamed M. Saleh, Khalid S. Al-Hagla
Abstract:
By taking advantage of computer-s processing power, an unlimited number of variations and parameters in both spatial and environmental can be provided while following the same set of rules and constraints. This paper focuses on using the tools of parametric urbanism towards a more responsive environmental and sustainable urban morphology. It presents an understanding to Parametric Urban Comfort Envelope (PUCE) as an interactive computational assessment urban model. In addition, it investigates the applicability potentials of this model to generate an optimized urban form to Borg El Arab city (a new Egyptian Community) concerning the human comfort values specially wind and solar envelopes. Finally, this paper utilizes its application outcomes -both visual and numerical- to extend the designer-s limitations by decrease the concern of controlling and manipulation of geometry, and increase the designer-s awareness about the various potentials of using the parametric tools to create relationships that generate multiple geometric alternatives.
Keywords: Assessment model, human comfort, parametric urbanism, sustainable urban morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3808119 The Investigation of Green Roof and White Roof Cooling Potential on Single Storey Residential Building in the Malaysian Climate
Authors: Asmat Ismail, Muna Hanim Abdul Samad, Abdul Malek Abdul Rahman
Abstract:
The phenomenon of global warming or climate change has led to many environmental issues including higher atmospheric temperatures, intense precipitation, increased greenhouse gaseous emissions and increased indoor discomfort. Studies have shown that bringing nature to the roof such as constructing green roof and implementing high-reflective roof may give positive impact in mitigating the effects of global warming and in increasing thermal comfort sensation inside buildings. However, no study has been conducted to compare both types of passive roof treatments in Malaysia in order to increase thermal comfort in buildings. Therefore, this study is conducted to investigate the effect of green roof and white painted roof as passive roof treatment in improving indoor comfort of Malaysian homes. This study uses an experimental approach in which the measurements of temperatures are conducted on the case study building. The measurements of outdoor and indoor environments were conducted on the flat roof with two different types of roof treatment that are green roof and white roof. The measurement of existing black bare roof was also conducted to act as a control for this study.Keywords: global warming, green roof, white painted roof, indoor temperature reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744118 Data Mining Determination of Sunlight Average Input for Solar Power Plant
Authors: Fl. Loury, P. Sablonière, C. Lamoureux, G. Magnier, Th. Gutierrez
Abstract:
A method is proposed to extract faithful representative patterns from data set of observations when they are suffering from non-negligible fluctuations. Supposing time interval between measurements to be extremely small compared to observation time, it consists in defining first a subset of intermediate time intervals characterizing coherent behavior. Data projection on these intervals gives a set of curves out of which an ideally “perfect” one is constructed by taking the sup limit of them. Then comparison with average real curve in corresponding interval gives an efficiency parameter expressing the degradation consecutive to fluctuation effect. The method is applied to sunlight data collected in a specific place, where ideal sunlight is the one resulting from direct exposure at location latitude over the year, and efficiency is resulting from action of meteorological parameters, mainly cloudiness, at different periods of the year. The extracted information already gives interesting element of decision, before being used for analysis of plant control.
Keywords: Base Input Reconstruction, Data Mining, Efficiency Factor, Information Pattern Operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529117 Condition Monitoring for Twin-Fluid Nozzles with Internal Mixing
Authors: C. Lanzerstorfer
Abstract:
Liquid sprays of water are frequently used in air pollution control for gas cooling purposes and for gas cleaning. Twin-fluid nozzles with internal mixing are often used for these purposes because of the small size of the drops produced. In these nozzles the liquid is dispersed by compressed air or another pressurized gas. In high efficiency scrubbers for particle separation, several nozzles are operated in parallel because of the size of the cross section. In such scrubbers, the scrubbing water has to be re-circulated. Precipitation of some solid material can occur in the liquid circuit, caused by chemical reactions. When such precipitations are detached from the place of formation, they can partly or totally block the liquid flow to a nozzle. Due to the resulting unbalanced supply of the nozzles with water and gas, the efficiency of separation decreases. Thus, the nozzles have to be cleaned if a certain fraction of blockages is reached. The aim of this study was to provide a tool for continuously monitoring the status of the nozzles of a scrubber based on the available operation data (water flow, air flow, water pressure and air pressure). The difference between the air pressure and the water pressure is not well suited for this purpose, because the difference is quite small and therefore very exact calibration of the pressure measurement would be required. Therefore, an equation for the reference air flow of a nozzle at the actual water flow and operation pressure was derived. This flow can be compared with the actual air flow for assessment of the status of the nozzles.Keywords: Twin-fluid nozzles, operation data, condition monitoring, flow equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160116 Spectral Analysis of Radiation-Induced Natural Convection in Littoral Waters
Authors: Yadan Mao, Chengwang Lei, John C. Patterson
Abstract:
The mixing of pollutions and sediments in near shore regions of natural water bodies depends heavily on the characteristics such as the strength and frequency of flow instability. In the present paper, the instability of natural convection induced by absorption of solar radiation in littoral regions is considered. Spectral analysis is conducted on the quasi-steady state flow to reveal the power and frequency modes of the instability at various positions. Results indicate that the power of instability, the number of frequency modes, the prominence of higher frequency modes, and the highest frequency mode increase with the offshore distance and/or Rayleigh number. Harmonic modes are present at relatively low Rayleigh numbers. For a given offshore distance, the position with the strongest power of instability is located adjacent to the sloping bottom while the frequency modes are the same over the local depth. As the Rayleigh number increases, the unstable region extends toward the shore.
Keywords: Instability, Littoral waters, natural convection, Spectral analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360115 Dew and Rain Water Collection in South Croatia
Authors: Daniel Beysens, Imad Lekouch, Marina Mileta, Iryna Milimouk, Marc Muselli
Abstract:
Dew harvesting needs only weak investment and exploits a free, clean and inexhaustible energy. This study aims to measure the relative contributions of dew and rain water in the Mediterranean Dalmatian coast and islands of Croatia and determine whether dew water is potable. Two sites were chosen, an open site on the coast favourable to dew formation (Zadar) and a less favourable site in a circus of mountains in Komiža (Vis Island). Between July 1st, 2003 and October 31st, 2006, dew hasbeen daily collected on a 1 m2 tilted (30°) test dew condenser together with ordinary meteorological data (air temperature and relative humidity, cloud coverage, windspeed and direction). The mean yearly cumulative dew yields were found to be 20 mm (Zadar) and 9.3 mm (Komiža ). During the dry season (May to October), monthly cumulative dew water yield can represent up to 38% of water collected by rain fall. In July 2003 and 2006, dew water represented about 120% of the monthly cumulative rain water. Dew and rain water were analyzed in Zadar. The corresponding parameters were measured: pH, electrical conductivity, major anions (HCO3 -, Cl-, SO4 2- , NO3 - , ,) and major cations (NH4 +, Na+, K+, Ca2+, Mg2+. Both dew and rain water are in conformity with the WHO directives for potability except Mg2+. Using existing roofs and refurbishing the abandoned impluviums to permit dew collection could then provide a useful supplementary amount of water, especially during the dry season.Keywords: atmospheric water, dew chemistry, dew collection, radiative cooling, rain chemistry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077114 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T
Authors: M. N. Islam, B. Boswell, Y. R. Ginting
Abstract:
The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.Keywords: Circularity, diameter error, drilling canned cycle, Pareto ANOVA, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145113 A Previously Underappreciated Impact on Global Warming caused by the Geometrical and Physical Properties of desert sand
Authors: Y. F. Yang, B. T. Wang, J. J. Fan, J. Yin
Abstract:
The previous researches focused on the influence of anthropogenic greenhouse gases exerting global warming, but not consider whether desert sand may warm the planet, this could be improved by accounting for sand's physical and geometric properties. Here we show, sand particles (because of their geometry) at the desert surface form an extended surface of up to 1 + π/4 times the planar area of the desert that can contact sunlight, and at shallow depths of the desert form another extended surface of at least 1 + π times the planar area that can contact air. Based on this feature, an enhanced heat exchange system between sunlight, desert sand, and air in the spaces between sand particles could be built up automatically, which can increase capture of solar energy, leading to rapid heating of the sand particles, and then the heating of sand particles will dramatically heat the air between sand particles. The thermodynamics of deserts may thus have contributed to global warming, especially significant to future global warming if the current desertification continues to expand.Keywords: global warming, desert sand, extended surface, heat exchange, thermodynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633112 Development and in vitro Characterization of Self-nanoemulsifying Drug Delivery Systems of Valsartan
Authors: P. S. Rajinikanth, Yeoh Suyu, Sanjay Garg
Abstract:
The present study is aim to prepare and evaluate the selfnanoemulsifying drug delivery (SNEDDS) system of a poorly water soluble drug valsartan in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. The present research work describes a SNEDDS of valsartan using labrafil M 1944 CS, Tween 80 and Transcutol HP. The pseudoternary phase diagrams with presence and absence of drug were plotted to check for the emulsification range and also to evaluate the effect of valsartan on the emulsification behavior of the phases. The mixtures consisting of oil (labrafil M 1944 CS) with surfactant (tween 80), co-surfactant (Transcutol HP) were found to be optimum formulations. Prepared formulations were evaluated for its particle size distribution, nanoemulsifying properties, robustness to dilution, self emulsication time, turbidity measurement, drug content and invitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The prepared formulation revealed t a significant improvement in terms of the drug solubility as compared with marketed tablet and pure drug.
Keywords: Self Emulsifying Drug Delivery System, Valsartan, Bioavailability, poorly soluble drug.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2681111 Miocene Warm Tropical Climate: Evidence Based on Oxygen Isotope in Central Java, Indonesia
Authors: Akmaluddin, Koichiro Watanabe, Akihiro Kano, Wartono Rahardjo
Abstract:
Oxygen and carbon isotopes records of multi-species planktonic, benthic foraminifera and bulk carbonate sample from Central Java Indonesia demonstrate that warm sea surface temperature occurred during the Miocene. Planktonic δ18O values from this study consistently lighter (-4 to -3 ‰PDB) than previous studies that indicate sea surface temperature during Miocene in this area was warm than tropical/equatorial localities. A surprising decrease of oxygen isotopic composition was recorded at ±14 Ma where the maximum of δ18O values is -4.87 ‰PDB for Orbulina universa, -5.02 ‰PDB for Globigerinoides sacculifer and -4.30 ‰PDB for Globoquadrina dehiscens, this event we predict as Middle Miocene Optimum. Warming of sea surface temperature we interpret as related to the development of Western Pacific Warm Pool where warm water from Pacific Ocean through the Indonesian seaway appears to remain during Miocene. Our result also show increasing suddenly of oxygen isotope values of planktic, benthic and bulk carbonate sample from ± 12 Ma, the increasing cooled surface water relatively high degree with Late Miocene global cooling climate or we predict that due to closing of Indonesian Gateway.
Keywords: Oxygen isotope, Foraminifera, Miocene, Paleoclimate, Indonesian.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653110 Grid-Connected Photovoltaic System: System Overview and Sizing Principles
Authors: Najiya Omar, Hamed Aly, Timothy Little
Abstract:
The optimal size of a photovoltaic (PV) array is considered a critical factor in designing an efficient PV system due to the dependence of the PV cell performance on temperature. A high temperature can lead to voltage losses of solar panels, whereas a low temperature can cause voltage overproduction. There are two possible scenarios of the inverter’s operation in which they are associated with the erroneous calculations of the number of PV panels: 1) If the number of the panels is scant and the temperature is high, the minimum voltage required to operate the inverter will not be reached. As a result, the inverter will shut down. 2) Comparably, if the number of panels is excessive and the temperature is low, the produced voltage will be more than the maximum limit of the inverter which can cause the inverter to get disconnected or even damaged. This article aims to assess theoretical and practical methodologies to calculate size and determine the topology of a PV array. The results are validated by applying an experimental evaluation for a 100 kW Grid-connected PV system for a location in Halifax, Nova Scotia and achieving a satisfactory system performance compared to the previous work done.
Keywords: Sizing PV panels, grid-connected PV, topology of PV array, theoretical and practical methodologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827109 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car
Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga
Abstract:
Starting in 2020, an EU-wide CO2-limitation of 95 g/km is scheduled for the average of an OEMs passenger car fleet. Taking that into consideration additional improvement measures of the Diesel cycle are necessary in order to reduce fuel consumption and emissions while boosting, or at the least, keeping performance values at the same time. The present article deals with the possibilities of an optimized air/water charge air cooler, also called iCAC (indirect Charge Air Cooler) for a Diesel passenger car amongst extreme-boundary conditions. In this context, the precise objective was to show the impact of improved intercooling with reference to the engine working process (fuel consumption and NOx-emissions). Several extremeboundaries - e.g. varying ambient temperatures or mountainous routes - that will become very important in the near future regarding RDE (Real Driving emissions) were subject of the investigation. With the introduction of RDE in 2017 (EU6c measure), the controversial NEDC (New European Driving Cycle) will belong to the past and the OEMs will have to avoid harmful emissions in any conceivable real life situation. This is certainly going to lead to optimization-measurements at the powertrain, which again is going to make the implementation of iCACs, presently solely used for the premium class, more and more attractive for compact class cars. The investigations showed a benefit in FC between 1 and 3% for the iCAC in real world conditions.
Keywords: Air/Water-Charge Air Cooler, Co-Simulation, Diesel Working Process, EURO VI Fuel Consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905108 Controlling Water Temperature during the Electrocoagulation Process Using an Innovative Flow Column-Electrocoagulation Reactor
Authors: Khalid S. Hashim, Andy Shaw, Rafid Alkhaddar, Montserrat Ortoneda Pedrola
Abstract:
A flow column has been innovatively used in the design of a new electrocoagulation reactor (ECR1) that will reduce the temperature of water being treated; where the flow columns work as a radiator for the water being treated. In order to investigate the performance of ECR1 and compare it to that of traditional reactors; 600 mL water samples with an initial temperature of 350C were pumped continuously through these reactors for 30 min at current density of 1 mA/cm2. The temperature of water being treated was measured at 5 minutes intervals over a 30 minutes period using a thermometer. Additional experiments were commenced to investigate the effects of initial temperature (15-350C), water conductivity (0.15 – 1.2 S) and current density (0.5 -3 mA/cm2) on the performance of ECR1. The results obtained demonstrated that the ECR1, at a current density of 1 mA/cm2 and continuous flow model, reduced water temperature from 350C to the vicinity of 280C during the first 15 minutes and kept the same level till the end of the treatment time. While, the temperature increased from 28.1 to 29.80C and from 29.8 to 31.90C in the batch and the traditional continuous flow models respectively. In term of initial temperature, ECR1 maintained the temperature of water being treated within the range of 22 to 280C without the need for external cooling system even when the initial temperatures varied over a wide range (15 to 350C). The influent water conductivity was found to be a significant variable that affect the temperature. The desirable value of water conductivity is 0.6 S. However, it was found that the water temperature increased rapidly with a higher current density.Keywords: Water temperature, flow column, electrocoagulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352107 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe
Authors: Ziya Uddin
Abstract:
This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.
Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310106 Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development
Authors: Nadiah Yola Putri, Nesia Putri Sharfina, Traviata Prakarti
Abstract:
This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.
Keywords: Green building, urban area, sky farming, vertical landscape.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345105 Analysis of Thermoelectric Coolers as Energy Harvesters for Low Power Embedded Applications
Authors: Yannick Verbelen, Sam De Winne, Niek Blondeel, Ann Peeters, An Braeken, Abdellah Touhafi
Abstract:
The growing popularity of solid state thermoelectric devices in cooling applications has sparked an increasing diversity of thermoelectric coolers (TECs) on the market, commonly known as “Peltier modules”. They can also be used as generators, converting a temperature difference into electric power, and opportunities are plentiful to make use of these devices as thermoelectric generators (TEGs) to supply energy to low power, autonomous embedded electronic applications. Their adoption as energy harvesters in this new domain of usage is obstructed by the complex thermoelectric models commonly associated with TEGs. Low cost TECs for the consumer market lack the required parameters to use the models because they are not intended for this mode of operation, thereby urging an alternative method to obtain electric power estimations in specific operating conditions. The design of the test setup implemented in this paper is specifically targeted at benchmarking commercial, off-the-shelf TECs for use as energy harvesters in domestic environments: applications with limited temperature differences and space available. The usefulness is demonstrated by testing and comparing single and multi stage TECs with different sizes. The effect of a boost converter stage on the thermoelectric end-to-end efficiency is also discussed.Keywords: Thermoelectric cooler, TEC, complementary balanced energy harvesting, step-up converter, DC/DC converter, embedded systems, energy harvesting, thermal harvesting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403104 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.
Keywords: Injection molding, shrinkage, six sigma, Taguchi parameter design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388103 Study of Two MPPTs for Photovoltaic Systems Using Controllers Based in Fuzzy Logic and Sliding Mode
Authors: N. Ouldcherchali, M. S. Boucherit, L. Barazane, A. Morsli
Abstract:
In this study, we proposed two techniques to track the maximum power point (MPPT) of a photovoltaic system. The first is an intelligent control technique, and the second is robust used for variable structure system. In fact the characteristics I-V and P–V of the photovoltaic generator depends on the solar irradiance and temperature. These climate changes cause the fluctuation of maximum power point; a maximum power point tracking technique (MPPT) is required to maximize the output power. For this we have adopted a control by fuzzy logic (FLC) famous for its stability and robustness. And a Siding Mode Control (SMC) widely used for variable structure system. The system comprises a photovoltaic panel (PV), a DC-DC converter, which is considered as an adaptation stage between the PV and the load. The modelling and simulation of the system is developed using MATLAB/Simulink. SMC technique provides a good tracking speed in fast changing irradiation and when the irradiation changes slowly or it is constant the panel power of FLC technique presents a much smoother signal with less fluctuations.Keywords: Fuzzy logic controller, maximum power point, photovoltaic system, tracker, sliding mode controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106102 The Analysis of Defects Prediction in Injection Molding
Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian
Abstract:
This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.Keywords: Injection molding, plastic defects, short shot, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536101 ROSA/LSTF Test on Pressurized Water Reactor Steam Generator Tube Rupture Accident Induced by Main Steam Line Break with Recovery Actions
Authors: Takeshi Takeda
Abstract:
An experiment was performed for the OECD/NEA ROSA-2 Project employing the ROSA/LSTF (rig of safety assessment/large-scale test facility), which simulated a steam generator tube rupture (SGTR) accident induced by main steam line break (MSLB) with operator recovery actions in a pressurized water reactor (PWR). The primary pressure decreased to the pressure level nearly-equal to the intact steam generator (SG) secondary-side pressure even with coolant injection from the high-pressure injection (HPI) system of emergency core cooling system (ECCS) into cold legs. Multi-dimensional coolant behavior appeared such as thermal stratification in both hot and cold legs in intact loop. The RELAP5/MOD3.3 code indicated the insufficient predictions of the primary pressure, the SGTR break flow rate, and the HPI flow rate, and failed to predict the fluid temperatures in the intact loop hot and cold legs. Results obtained from the comparison among three LSTF SGTR-related tests clarified that the thermal stratification occurs in the horizontal legs by different mechanisms.
Keywords: LSTF, SGTR, thermal stratification, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788100 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi
Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.
Abstract:
The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.Keywords: Ecological farming system, energy simulation, evaporative cooling system, treated wastewater, temperature, humidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131599 Performance Evaluation of Conventional and Wiper Carbide Tools When Turning 6060 Aluminium Alloy: Analysis of Surface Roughness
Authors: Salah Gariani, Taher Dao, Khaled Jegandi
Abstract:
Wiper inserts are widely used nowadays, particularly in turning and milling operations, due to their unique geometric characteristics that generate superb surface finish and improve productivity. Wiper inserts can produce double the feed rate while preserving comparable surface roughness compared to that produced by conventional cutting tools. This paper reports an experimental investigation of surface quality generated in the precision dry turning of 6060 Aluminium alloy using conventional and wiper inserts at different cutting conditions. The Taguchi L9 array, Analysis of Means (AOM) and variance (ANOVA) were employed in the development of the experimental design and to optimise the process parameter identified: average surface roughness (Ra). The experimental results show that the wiper inserts substantially improved the surface quality of the machined samples by a factor of two compared to those for the conventional insert under all cutting conditions. The ANOVA and AOM analysis showed that the type of insert is the most significant factor affecting surface roughness, with a Percentage Contribution Ratio (PCR) value of 67.41%. Feed rate also significantly affected surface roughness but contributed less to its variation. No significant difference was found between values of Ra using wiper inserts under dry and wet cooling modes when turning 6060 Aluminium alloy.
Keywords: 6060 Aluminium alloy, conventional and wiper carbide tools, dry turning, average surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32398 Estimating Marine Tidal Power Potential in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.
Keywords: Energy data assessment, environmental legislation, renewable energy, tidal-in-stream turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136997 Calculation of Density for Refrigerant Mixtures in Sub Critical Regions for Use in the Buildings
Authors: Mohammad Reza Mobinipouya, Zahra Barzegar
Abstract:
Accurate and comprehensive thermodynamic properties of pure and mixture of refrigerants are in demand by both producers and users of these materials. Information about thermodynamic properties is important initially to qualify potential candidates for working fluids in refrigeration machinery. From practical point of view, Refrigerants and refrigerant mixtures are widely used as working fluids in many industrial applications, such as refrigerators, heat pumps, and power plants The present work is devoted to evaluating seven cubic equations of state (EOS) in predicting gas and liquid phase volumetric properties of nine ozone-safe refrigerants both in super and sub-critical regions. The evaluations, in sub-critical region, show that TWU and PR EOS are capable of predicting PVT properties of refrigerants R32 within 2%, R22, R134a, R152a and R143a within 1% and R123, R124, R125, TWU and PR EOS's, from literature data are 0.5% for R22, R32, R152a, R143a, and R125, 1% for R123, R134a, and R141b, and 2% for R124. Moreover, SRK EOS predicts PVT properties of R22, R125, and R123 to within aforementioned errors. The remaining EOS's predicts volumetric properties of this class of fluids with higher errors than those above mentioned which are at most 8%.In general, the results are in favor of the preference of TWU and PR EOS over other remaining EOS's in predicting densities of all mentioned refrigerants in both super and sub critical regions. Typically, this refrigerant is known to offer advantages such as ozone depleting potential equal to zero, Global warming potential equal to 140, and no toxic.
Keywords: Refrigerant, cooling systems, Sub-CriticalRegions, volumetric properties, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216096 Simulating Climate Change (Temperature and Soil Moisture) in a Mixed-Deciduous Forest, Ontario, Canada
Authors: David Goldblum, Lesley S. Rigg
Abstract:
To simulate expected climate change, we implemented a two-factor (temperature and soil moisture) field design in a forest in Ontario, Canada. To manipulate moisture input, we erected rain-exclusion structures. Under each structure, plots were watered with one of three treatments and thermally controlled with three heat treatments to simulate changes in air temperature and rainfall based on the climate model (GCM) predictions for the study area. Environmental conditions (including untreated controls) were monitored tracking air temperature, soil temperature, soil moisture, and photosynthetically active radiation. We measured rainfall and relative humidity at the site outside the rain-exclusion structures. Analyses of environmental conditions demonstrates that the temperature manipulation was most effective at maintaining target temperature during the early part of the growing season, but it was more difficult to keep the warmest treatment at 5º C above ambient by late summer. Target moisture regimes were generally achieved however incoming solar radiation was slightly attenuated by the structures.
Keywords: Acer saccharum, climate change, forest, environmental manipulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729