Search results for: filtering and estimation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1273

Search results for: filtering and estimation.

583 Wavelet Based Identification of Second Order Linear System

Authors: Sudipta Majumdar, Harish Parthasarathy

Abstract:

In this paper, a wavelet based method is proposed to identify the constant coefficients of a second order linear system and is compared with the least squares method. The proposed method shows improved accuracy of parameter estimation as compared to the least squares method. Additionally, it has the advantage of smaller data requirement and storage requirement as compared to the least squares method.

Keywords: Least squares method, linear system, system identification, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
582 A New Distribution and Application on the Lifetime Data

Authors: Gamze Ozel, Selen Cakmakyapan

Abstract:

We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of a simulation study. 

Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
581 Estimation of Bayesian Sample Size for Binomial Proportions Using Areas P-tolerance with Lowest Posterior Loss

Authors: H. Bevrani, N. Najafi

Abstract:

This paper uses p-tolerance with the lowest posterior loss, quadratic loss function, average length criteria, average coverage criteria, and worst outcome criterion for computing of sample size to estimate proportion in Binomial probability function with Beta prior distribution. The proposed methodology is examined, and its effectiveness is shown.

Keywords: Bayesian inference, Beta-binomial Distribution, LPLcriteria, quadratic loss function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
580 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
579 Use of Magnesium as a Renewable Energy Source

Authors: Rafayel K. Kostanyan

Abstract:

The opportunities of use of metallic magnesium as a generator of hydrogen gas, as well as thermal and electric energy is presented in the paper. Various schemes of magnesium application are discussed and power characteristics of corresponding devices are presented. Economic estimation of hydrogen price obtained by different methods is made, including the use of magnesium as a source of hydrogen for transportation in comparison with gasoline. Details and prospects of our new inexpensive technology of magnesium production from magnesium hydroxide and magnesium bearing rocks (which are available worldwide and in Armenia) are analyzed. It is estimated the threshold cost of Mg production at which application of this metal in power engineering is economically justified.

Keywords: Magnesium, power generation, production, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
578 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
577 Performance and Availability Analyses of PV Generation Systems in Taiwan

Authors: H. S. Huang, J. C. Jao, K. L. Yen, C. T. Tsai

Abstract:

The purpose of this article applies the monthly final energy yield and failure data of 202 PV systems installed in Taiwan to analyze the PV operational performance and system availability. This data is collected by Industrial Technology Research Institute through manual records. Bad data detection and failure data estimation approaches are proposed to guarantee the quality of the received information. The performance ratio value and system availability are then calculated and compared with those of other countries. It is indicated that the average performance ratio of Taiwan-s PV systems is 0.74 and the availability is 95.7%. These results are similar with those of Germany, Switzerland, Italy and Japan.

Keywords: availability, performance ratio, PV system, Taiwan

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4441
576 Embedding a Large Amount of Information Using High Secure Neural Based Steganography Algorithm

Authors: Nameer N. EL-Emam

Abstract:

In this paper, we construct and implement a new Steganography algorithm based on learning system to hide a large amount of information into color BMP image. We have used adaptive image filtering and adaptive non-uniform image segmentation with bits replacement on the appropriate pixels. These pixels are selected randomly rather than sequentially by using new concept defined by main cases with sub cases for each byte in one pixel. According to the steps of design, we have been concluded 16 main cases with their sub cases that covere all aspects of the input information into color bitmap image. High security layers have been proposed through four layers of security to make it difficult to break the encryption of the input information and confuse steganalysis too. Learning system has been introduces at the fourth layer of security through neural network. This layer is used to increase the difficulties of the statistical attacks. Our results against statistical and visual attacks are discussed before and after using the learning system and we make comparison with the previous Steganography algorithm. We show that our algorithm can embed efficiently a large amount of information that has been reached to 75% of the image size (replace 18 bits for each pixel as a maximum) with high quality of the output.

Keywords: Adaptive image segmentation, hiding with high capacity, hiding with high security, neural networks, Steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
575 Low Resolution Single Neural Network Based Face Recognition

Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum

Abstract:

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
574 The Introduction of Compulsory Electronic Exchange of Documents in the Czech Republic: Comparing Expectation and Reality

Authors: Kamila Tišlerová

Abstract:

This contribution aims to outline some topics around the process of introduction of compulsory electronic exchange of documents (so called e-Boxes) in public administration. The research was conducted in order to gauge the difference between the expectation of those using internal email and their experience in reality. Both qualitative and quantitative research is employed to lead also to an estimation of the willingness and readiness of government bodies, business units and citizens to adopt new technologies. At the same time the most potent barriers to successful e-communication through the e-Boxes are identified.

Keywords: E-Box, e-Government, electronic document exchange, digitalisation, public administration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
573 Retaining Structural System Active Vibration Control

Authors: Ming-Hui Lee, Shou-Jen Hsu

Abstract:

This study presents an active vibration control technique to reduce the earthquake responses of a retained structural system. The proposed technique is a synthesis of the adaptive input estimation method (AIEM) and linear quadratic Gaussian (LQG) controller. The AIEM can estimate an unknown system input online. The LQG controller offers optimal control forces to suppress wall-structural system vibration. The numerical results show robust performance in the active vibration control technique.

Keywords: Active vibration control, AIEM, LQG, Optimal control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
572 Performance Evaluation of Music and Minimum Norm Eigenvector Algorithms in Resolving Noisy Multiexponential Signals

Authors: Abdussamad U. Jibia, Momoh-Jimoh E. Salami

Abstract:

Eigenvector methods are gaining increasing acceptance in the area of spectrum estimation. This paper presents a successful attempt at testing and evaluating the performance of two of the most popular types of subspace techniques in determining the parameters of multiexponential signals with real decay constants buried in noise. In particular, MUSIC (Multiple Signal Classification) and minimum-norm techniques are examined. It is shown that these methods perform almost equally well on multiexponential signals with MUSIC displaying better defined peaks.

Keywords: Eigenvector, minimum norm, multiexponential, subspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
571 Estimating Enzyme Kinetic Parameters from Apparent KMs and Vmaxs

Authors: Simon Brown, Noorzaid Muhamad, David C Simcock

Abstract:

The kinetic properties of enzymes are often reported using the apparent KM and Vmax appropriate to the standard Michaelis-Menten enzyme. However, this model is inappropriate to enzymes that have more than one substrate or where the rate expression does not apply for other reasons. Consequently, it is desirable to have a means of estimating the appropriate kinetic parameters from the apparent values of KM and Vmax reported for each substrate. We provide a means of estimating the range within which the parameters should lie and apply the method to data for glutamate dehydrogenase from the nematode parasite of sheep Teladorsagia circumcincta.

Keywords: enzyme kinetics, glutamate dehydrogenase, intervalanalysis, parameter estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
570 Locating Center Points for Radial Basis Function Networks Using Instance Reduction Techniques

Authors: Rana Yousef, Khalil el Hindi

Abstract:

The behavior of Radial Basis Function (RBF) Networks greatly depends on how the center points of the basis functions are selected. In this work we investigate the use of instance reduction techniques, originally developed to reduce the storage requirements of instance based learners, for this purpose. Five Instance-Based Reduction Techniques were used to determine the set of center points, and RBF networks were trained using these sets of centers. The performance of the RBF networks is studied in terms of classification accuracy and training time. The results obtained were compared with two Radial Basis Function Networks: RBF networks that use all instances of the training set as center points (RBF-ALL) and Probabilistic Neural Networks (PNN). The former achieves high classification accuracies and the latter requires smaller training time. Results showed that RBF networks trained using sets of centers located by noise-filtering techniques (ALLKNN and ENN) rather than pure reduction techniques produce the best results in terms of classification accuracy. The results show that these networks require smaller training time than that of RBF-ALL and higher classification accuracy than that of PNN. Thus, using ALLKNN and ENN to select center points gives better combination of classification accuracy and training time. Our experiments also show that using the reduced sets to train the networks is beneficial especially in the presence of noise in the original training sets.

Keywords: Radial basis function networks, Instance-based reduction, PNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
569 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

Authors: C. Lodato, S. Lopes

Abstract:

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758
568 Solvatochromic Shift and Estimation of Dipole Moment of Quinine Sulphate Dication

Authors: S. Joshi, D. Pant

Abstract:

Absorption and fluorescence spectra of quinine sulphate (QSD) have been recorded at room temperature in wide range of solvents of different polarities. The ground-state dipole moment of QSD was obtained from quantum mechanical calculations and the excited state dipole moment of QSD was estimated from Bakhshiev-s and Kawski-Chamma-Viallet-s equations by means of solvatochromic shift method. Higher value of dipole moment is observed for excited state as compared to the corresponding ground state value and this is attributed to the more polar excited state of QSD.

Keywords: Dipole moment, Quinine sulphate dication, Solvatochromic shift

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
567 Kalman Filter Based Adaptive Reduction of Motion Artifact from Photoplethysmographic Signal

Authors: S. Seyedtabaii, L. Seyedtabaii

Abstract:

Artifact free photoplethysmographic (PPG) signals are necessary for non-invasive estimation of oxygen saturation (SpO2) in arterial blood. Movement of a patient corrupts the PPGs with motion artifacts, resulting in large errors in the computation of Sp02. This paper presents a study on using Kalman Filter in an innovative way by modeling both the Artillery Blood Pressure (ABP) and the unwanted signal, additive motion artifact, to reduce motion artifacts from corrupted PPG signals. Simulation results show acceptable performance regarding LMS and variable step LMS, thus establishing the efficacy of the proposed method.

Keywords: Kalman filter, Motion artifact, PPG, Photoplethysmography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4262
566 Design, Construction and Performance Evaluation of a HPGe Detector Shield

Authors: M. Sharifi, M. Mirzaii, F. Bolourinovin, H. Yousefnia, M. Akbari, K. Yousefi-Mojir

Abstract:

A multilayer passive shield composed of low-activity lead (Pb), copper (Cu), tin (Sn) and iron (Fe) was designed and manufactured for a coaxial HPGe detector placed at a surface laboratory for reducing background radiation and radiation dose to the personnel. The performance of the shield was evaluated and efficiency curves of the detector were plotted by using of various standard sources in different distances. Monte Carlo simulations and a set of TLD chips were used for dose estimation in two distances of 20 and 40 cm. The results show that the shield reduced background spectrum and the personnel dose more than 95%.

Keywords: HPGe shield, background count, personnel dose, efficiency curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2939
565 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
564 New Design Constraints of FIR Filter on Magnitude and Phase of Error Function

Authors: Raghvendra Kumar, Lillie Dewan

Abstract:

Exchange algorithm with constraints on magnitude and phase error separately in new way is presented in this paper. An important feature of the algorithms presented in this paper is that they allow for design constraints which often arise in practical filter design problems. Meeting required minimum stopband attenuation or a maximum deviation from the desired magnitude and phase responses in the passbands are common design constraints that can be handled by the methods proposed here. This new algorithm may have important advantages over existing technique, with respect to the speed and stability of convergence, memory requirement and low ripples.

Keywords: Least square estimation, Constraints, Exchange algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
563 Evaluation of Ultrasonic C-Scan Images by Fractal Dimension

Authors: S. Samanta, D. Datta, S. S. Gautam

Abstract:

In this paper, quantitative evaluation of ultrasonic Cscan images through estimation of their Fractal Dimension (FD) is discussed. Necessary algorithm for evaluation of FD of any 2-D digitized image is implemented by developing a computer code. For the evaluation purpose several C-scan images of the Kevlar composite impacted by high speed bullet and glass fibre composite having flaw in the form of inclusion is used. This analysis automatically differentiates a C-scan image showing distinct damage zone, from an image that contains no such damage.

Keywords: C-scan, Impact, Fractal Dimension, Kevlar composite and Inclusion Flaw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
562 Extended Least Squares LS–SVM

Authors: József Valyon, Gábor Horváth

Abstract:

Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.

Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013
561 Simple and Advanced Models for Calculating Single-Phase Diode Rectifier Line-Side Harmonics

Authors: Hussein A. Kazem, Abdulhakeem Abdullah Albaloshi, Ali Said Ali Al-Jabri, Khamis Humaid AlSaidi

Abstract:

This paper proposes different methods for estimation of the harmonic currents of the single-phase diode bridge rectifier. Both simple and advanced methods are compared and the models are put into a context of practical use for calculating the harmonic distortion in a typical application. Finally, the different models are compared to measurements of a real application and convincing results are achieved.

Keywords: Single-phase rectifier, line side Harmonics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4641
560 Continuous Adaptive Robust Control for Nonlinear Uncertain Systems

Authors: Dong Sang Yoo

Abstract:

We consider nonlinear uncertain systems such that a  priori information of the uncertainties is not available. For such  systems, we assume that the upper bound of the uncertainties is  represented as a Fredholm integral equation of the first kind and we  propose an adaptation law that is capable of estimating the upper  bound and design a continuous robust control which renders nonlinear  uncertain systems ultimately bounded.

 

Keywords: Adaptive Control, Estimation, Fredholm Integral, Uncertain System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
559 Modeling of Sensitivity for SPR Biosensors- New Aspects

Authors: Volodymyr Chegel

Abstract:

The computer modeling is carried out for parameter of sensitivity of optoelectronic chemical and biosensors, using phenomena of surface plasmon resonance (SPR). The physical model of SPR-sensor-s is described with (or without) of modifications of sensitive gold film surface by a dielectric layer. The variants of increasing of sensitivity for SPR-biosensors, constructed on the principle gold – dielectric – biomolecular layer are considered. Two methods of mathematical treatment of SPR-curve are compared – traditional, with estimation of sensor-s response as shift of the SPRcurve minimum and proposed, for system with dielectric layer, using calculating of the derivative in the point of SPR-curve half-width.

Keywords: Surface Plasmon Resonance, modeling, sensitivity, biosensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
558 Assessment the Quality of Telecommunication Services by Fuzzy Inferences System

Authors: Oktay Nusratov, Ramin Rzaev, Aydin Goyushov

Abstract:

Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IPprotocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network.

Keywords: Quality of communication, IP-telephony, Fuzzy set, Fuzzy implication, Neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
557 Performance Comparison of Cooperative Banks in the EU, USA and Canada

Authors: Matěj Kuc

Abstract:

This paper compares different types of profitability measures of cooperative banks from two developed regions: the European Union and the United States of America together with Canada. We created balanced dataset of more than 200 cooperative banks covering 2011-2016 period. We made series of tests and run Random Effects estimation on panel data. We found that American and Canadian cooperatives are more profitable in terms of return on assets (ROA) and return on equity (ROE). There is no significant difference in net interest margin (NIM). Our results show that the North American cooperative banks accommodated better to the current market environment.

Keywords: Cooperative banking, panel data, profitability measures, random effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 653
556 A New Model for Question Answering Systems

Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour

Abstract:

Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems. If this module doesn't work properly, it will make problems for other sections. Moreover answer processing module is an emerging topic in Question Answering, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic classification. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. Answer processing module, consists of candidate answer filtering, candidate answer ordering components and also it has a validation section for interacting with user. This module makes it more suitable to find exact answer. In this paper we have described question and answer processing modules with modeling, implementing and evaluating the system. System implemented in two versions. Results show that 'Version No.1' gave correct answer to 70% of questions (30 correct answers to 50 asked questions) and 'version No.2' gave correct answers to 94% of questions (47 correct answers to 50 asked questions).

Keywords: Answer Processing, Classification, QuestionAnswering and Query Reformulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
555 Effect of Wood Vinegar for Controlling on Housefly (Musca domestica L.)

Authors: U. Pangnakorn, S. Kanlaya, C. Kuntha

Abstract:

Raw wood vinegar was purified by both standing and filtering methods. Toxicity tests were conducted under laboratory conditions by the topical application method (contact poison) and feeding method (stomach poison). Larvicidal activities of wood vinegar at four different concentrations (10, 15, 20, 25 and 30 %) were studied against second instar larvae of housefly (Musca domestica L.). Four replicates were maintained for all treatments and controls. Larval mortality was recorded up to 96 hours and compared with the larval survivability by two methods of larvicidal bioassay. Percent pupation and percent adult emergence were observed in treated M. domestica. The study revealed that the feeding method gave higher efficiency compared with the topical application method. Larval mortality increased with increasing concentration of wood vinegar and the duration of exposure. No mortality was found in treated M. domestica larvae at minimum 10% concentration of wood vinegar through the experiments. The treated larvae were maintained up to pupa and adult emergence. At 30% maximum concentration larval duration was extended to 11 days in M. domestica for topical application method and 9 days for feeding method. Similarly the pupal durations were also increased with increased concentrations (16 and 24 days for topical application method and feeding method respectively at 30% concentration) of the treatments.

Keywords: Housefly (Musca domestica L.), wood vinegar, mortality, topical application, feeding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160
554 Improving the Quantification Model of Internal Control Impact on Banking Risks

Authors: M. Ndaw, G. Mendy, S. Ouya

Abstract:

Risk management in banking sector is a key issue linked to financial system stability and its importance has been elevated by technological developments and emergence of new financial instruments. In this paper, we improve the model previously defined for quantifying internal control impact on banking risks by automatizing the residual criticality estimation step of FMECA. For this, we defined three equations and a maturity coefficient to obtain a mathematical model which is tested on all banking processes and type of risks. The new model allows an optimal assessment of residual criticality and improves the correlation rate that has become 98%.

Keywords: Risk, Control, Banking, FMECA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525