Search results for: enhanced OFDM
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 844

Search results for: enhanced OFDM

154 Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain

Authors: T. N. M. El Sebai, A. A.Khattab, Wafaa M. Abd-El Rahim, H. Moawad

Abstract:

Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process.

Keywords: Rice straw, composting, UV mutants, Penicillium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
153 The Effects of Increasing Unsaturation in Palm Oil and Incorporation of Carbon Nanotubes on Resinous Properties

Authors: Muhammad R. Islam, Mohammad Dalour H. Beg, Saidatul S. Jamari

Abstract:

Considering palm oil as non-drying oil owing to its low iodine value, an attempt was taken to increase the unsaturation in the fatty acid chains of palm oil for the preparation of alkyds. To increase the unsaturation in the palm oil, sulphuric acid (SA) and para-toluene sulphonic acid (PTSA) was used prior to alcoholysis for the dehydration process. The iodine number of the oil samples was checked for the unsaturation measurement by Wijs method. Alkyd resin was prepared using the dehydrated palm oil by following alcoholysis and esterification reaction. To improve the film properties 0.5wt.% multi-wall carbon nano tubes (MWCNTs) were used to manufacture polymeric film. The properties of the resins were characterized by various physico-chemical properties such as density, viscosity, iodine value, saponification value, etc. Structural elucidation was confirmed by Fourier transform of infrared spectroscopy and proton nuclear magnetic resonance; surfaces of the films were examined by field-emission scanning electron microscope. In addition, pencil hardness and chemical resistivity was also measured by using standard methods. The effect of enhancement of the unsaturation in the fatty acid chain found significant and motivational. The resin prepared with dehydrated palm oil showed improved properties regarding hardness and chemical resistivity testing. The incorporation of MWCNTs enhanced the thermal stability and hardness of the films as well.

Keywords: Alkyd resin, nano-coatings, dehydration, palm oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
152 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using Matlab computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: Thermal energy storage, phase change material, melting, solidification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
151 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: Thermal energy storage, phase change material, melting, solidification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
150 Evolution of Web Development Techniques in Modern Technology

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

The art of web development in new technologies is a dynamic journey, shaped by the constant evolution of tools and platforms. With the emergence of JavaScript frameworks and APIs, web developers are empowered to craft web applications that are not only robust but also highly interactive. The aim is to provide an overview of the developments in the field. The integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: Web development, software testing, progressive web apps, web and mobile native application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 381
149 Digestibility in Yankasa Rams Fed Brachiaria ruziziensis – Centrosema pascuorum Hay Mixtures with Concentrate

Authors: Ibrahim Sani, J. T. Amodu, M. R. Hassan, R. J. Tanko, N. Adamu

Abstract:

This study investigated the digestibility of Brachiaria ruziziensis and Centrosema pascuorum hay mixtures at varying proportions in Yankasa rams. Twelve Yankasa rams with average initial weight 10.25 ± 0.1 kg were assigned to three dietary treatments of B. ruziziensis and C. pascuorum hay at different mixtures (75BR:25CP, 50BR:50CP and 25BR:75CP, respectively) in a Completely Randomized Design (CRD) for a period of 14 days. Concentrate diet was given to the experimental animals as supplement at fixed proportion, while the forage mixture (basal diet) was fed at 3% body weight. Animals on 50BR:50CP had better nutrient digestibility (crude protein, acid and neutral detergent fibre, ether extract and nitrogen free extract) than other treatment diets, except in dry matter digestibility (87.35%) which compared with 87.54% obtained in 25BR:75CP treatment diet and also organic matter digestibility. All parameters taken on nitrogen balance with the exception of nitrogen retained were significantly higher (P < 0.05) in animals fed 25BR:75CP diet, but were statistically similar with values obtained for animals on 50BR:50CP diet. From results obtained in this study, it is concluded that mixture of 25%BR75%CP gave the best nutrient digestibility and nitrogen balance in Yankasa rams. It is therefore recommended that B. ruziziensis and C. pascuorum should be fed at 50:50 mixture ratio for enhanced animal growth and performance in Nigeria.

Keywords: B. ruziziensis, C. pascuorum, digestibility, rams, Yankasa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
148 Non-Coplanar Nuclei in Heavy-Ion Reactions

Authors: Sahila Chopra, Hemdeep, Arshdeep Kaur, Raj K. Gupta

Abstract:

In recent times, we noticed an interesting and important role of non-coplanar degree-of-freedom (Φ = 00) in heavy ion reactions. Using the dynamical cluster-decay model (DCM) with Φ degree-of-freedom included, we have studied three compound systems 246Bk∗, 164Yb∗ and 105Ag∗. Here, within the DCM with pocket formula for nuclear proximity potential, we look for the effects of including compact, non-coplanar configurations (Φc = 00) on the non-compound nucleus (nCN) contribution in total fusion cross section σfus. For 246Bk∗, formed in 11B+235U and 14N+232Th reaction channels, the DCM with coplanar nuclei (Φc = 00) shows an nCN contribution for 11B+235U channel, but none for 14N+232Th channel, which on including Φ gives both reaction channels as pure compound nucleus decays. In the case of 164Yb∗, formed in 64Ni+100Mo, the small nCN effects for Φ=00 are reduced to almost zero for Φ = 00. Interestingly, however, 105Ag∗ for Φ = 00 shows a small nCN contribution, which gets strongly enhanced for Φ = 00, such that the characteristic property of PCN presents a change of behaviour, like that of a strongly fissioning superheavy element to a weakly fissioning nucleus; note that 105Ag∗ is a weakly fissioning nucleus and Psurv behaves like one for a weakly fissioning nucleus for both Φ = 00 and Φ = 00. Apparently, Φ is presenting itself like a good degree-of-freedom in the DCM.

Keywords: Dynamical cluster-decay model, fusion cross sections, non-compound nucleus effects, non-coplanarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
147 Applying Theory of Inventive Problem Solving to Develop Innovative Solutions: A Case Study

Authors: Y. H. Wang, C. C. Hsieh

Abstract:

Good service design can increase organization revenue and consumer satisfaction while reducing labor and time costs. The problems facing consumers in the original serve model for eyewear and optical industry includes the following issues: 1. Insufficient information on eyewear products 2. Passively dependent on recommendations, insufficient selection 3. Incomplete records on progression of vision conditions 4. Lack of complete customer records. This study investigates the case of Kobayashi Optical, applying the Theory of Inventive Problem Solving (TRIZ) to develop innovative solutions for eyewear and optical industry. Analysis results raise the following conclusions and management implications: In order to provide customers with improved professional information and recommendations, Kobayashi Optical is suggested to establish customer purchasing records. Overall service efficiency can be enhanced by applying data mining techniques to analyze past consumer preferences and purchase histories. Furthermore, Kobayashi Optical should continue to develop a 3D virtual trial service which can allow customers for easy browsing of different frame styles and colors. This 3D virtual trial service will save customer waiting times in during peak service times at stores.

Keywords: Theory of inventive problem solving, service design, augmented reality, eyewear and optical industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
146 Exploring Causes of Homelessness and Shelter Entry: A Case Study Analysis of Shelter Data in New York

Authors: Lindsay Fink, Sarha Smith-Moyo, Leanne W. Charlesworth

Abstract:

In recent years, the number of individuals experiencing homelessness has increased in the United States. This paper analyzes 2019 data from 16 different emergency shelters in Monroe County, located in Upstate New York. The data were collected through the County’s Homeless Management Information System (HMIS), and individuals were de-identified and de-duplicated for analysis. The purpose of this study is to explore the basic characteristics of the homeless population in Monroe County, and the dynamics of shelter use. The results of this study showed gender as a significant factor when analyzing the relationship between demographic variables and recorded reasons for shelter entry. Results also indicated that age and ethnicity did not significantly influence odds of re-entering a shelter, but did significantly influence reasons for shelter entry. Overall, the most common recorded cause of shelter entry in 2019 in the examined county was eviction by primary tenant. Recommendations to better address recurrent shelter entry and potential chronic homelessness include more consideration for the diversity existing within the homeless population, and the dynamics leading to shelter stays, including enhanced funding and training for shelter staff, as well as expanded access to permanent supportive housing programs.

Keywords: Chronic homelessness, homeless shelter stays, permanent supportive housing, shelter population dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
145 Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production

Authors: Homa Torabizadeh, Mohaddeseh Mikani

Abstract:

Inulinase from Aspergillus niger was covalently immobilized on magnetic nanoparticles (MNPs/Fe3O4) covered with soy protein isolate (SPI/Fe3O4) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity. Fe3O4@SPI-BSA nanoparticles were synthesized as a novel carrier with narrow particle size distribution. Step by step fabrication monitoring of Fe3O4@SPI-BSA nanoparticles was performed using field emission scanning electron microscopy and dynamic light scattering. The results illustrated that nanomagnetite with the spherical morphology was well monodispersed with the diameter of about 35 nm. The average size of the SPI-BSA nanoparticles was 80 to 90 nm, and their zeta potential was around −34 mV. Finally, the mean diameter of fabricated Fe3O4@SPI-BSA NPs was less than 120 nm. Inulinase enzyme from Aspergillus niger was covalently immobilized through gluteraldehyde on Fe3O4@SPI-BSA nanoparticles successfully. Fourier transform infrared spectra and field emission scanning electron microscopy images provided sufficient proof for the enzyme immobilization on the nanoparticles with 80% enzyme loading.

Keywords: High fructose syrup, inulinase immobilization, functionalized magnetic nanoparticles, soy protein isolate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
144 Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory

Authors: Kiranmai S.Rai

Abstract:

The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.

Keywords: Anterior subventricular zone (aSVZ) neural stemcell, Clitoria ternatea, Learning and memory, Neurogenesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024
143 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network

Authors: M. Saravanan, M. Madheswaran

Abstract:

Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.

Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
142 Stability Optimization of Functionally Graded Pipes Conveying Fluid

Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed

Abstract:

This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.

Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
141 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6363
140 Effect of Silver Nanoparticles on Seed Germination of Crop Plants

Authors: Zainab M. Almutairi, Amjad Alharbi

Abstract:

The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2 and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.

Keywords: Citrullus lanatus, Cucurbita pepo, seed germination, seedling growth, silver nanoparticles, Zea mays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618
139 Computational Analysis of Cavity Effect over Aircraft Wing

Authors: P. Booma Devi, Dilip A. Shah

Abstract:

This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.

Keywords: Lift, square and rectangle dimples, enhancement of stall angle, cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
138 Starch Based Biofilms for Green Packaging

Authors: Roshafima R. Ali, W. A. Wan Abdul Rahman, Rafiziana M. Kasmani, N. Ibrahim

Abstract:

This current research focused on development of degradable starch based packaging film with enhanced mechanical properties. A series of low density polyethylene (LDPE)/tapioca starch compounds with various tapioca starch contents were prepared by twin screw extrusion with the addition of maleic anhydride grafted polyethylene as compatibilizer. Palm cooking oil was used as processing aid to ease the blown film process, thus, degradable film can be processed via conventional blown film machine. Studies on their characteristics, mechanical properties and biodegradation were carried out by Fourier Transform Infrared (FTIR) spectroscopy and optical properties, tensile test and exposure to fungi environment respectively. The presence of high starch contents had an adverse effect on the tensile properties of LDPE/tapioca starch blends. However, the addition of compatibilizer to the blends improved the interfacial adhesion between the two materials, hence, improved the tensile properties of the films. High content of starch amount also was found to increase the rate of biodegradability of LDPE/tapioca starch films. It can be proved by exposure of the film to fungi environment. A growth of microbes colony can be seen on the surface of LDPE/tapioca starch film indicates that the granular starch present on the surface of the polymer film is attacked by microorganisms, until most of it is assimilated as a carbon source.

Keywords: Degradable polymer, starch based biofilms, blown film extrusion, green food packaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5223
137 Technological Advancement in Fashion Online Retailing: A Comparative Study of Pakistan and UK Fashion E-Commerce

Authors: Sadia Idrees, Gianpaolo Vignali, Simeon Gill

Abstract:

The study aims to establish the virtual size and fit technology features to enhance fashion online retailing platforms, utilising digital human measurements to provide customised style and function to consumers. A few firms in the UK have launched advanced interactive fashion shopping domains for personalised shopping globally, aided by the latest internet technology. Virtual size and fit interfaces have a great potential to provide a personalised better-fitted garment to promote mass customisation globally. Made-to-measure clothing, consuming unstitched fabric is a common practice offered by fashion brands in Pakistan. This product is regarded as economical and sustainable to be utilised by consumers in Pakistan. Although the manual sizing system is practiced to sell garments online, virtual size and fit visualisation and recommendation technologies are uncommon in Pakistani fashion interfaces. A comparative assessment of Pakistani fashion brand websites and UK technology-driven fashion interfaces was conducted to highlight the vast potential of the virtual size and fit technology. The results indicated that web 2.0 technology adopted by Pakistani apparel brands has limited features, whereas companies practicing web 3.0 technology provide interactive online real-store shopping experience leading to enhanced customer satisfaction and globalisation of brands.

Keywords: E-commerce, mass customization, virtual size and fit, web 3.0 technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1151
136 Low Resolution Face Recognition Using Mixture of Experts

Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour

Abstract:

Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.

Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
135 Rank-Based Chain-Mode Ensemble for Binary Classification

Authors: Chongya Song, Kang Yen, Alexander Pons, Jin Liu

Abstract:

In the field of machine learning, the ensemble has been employed as a common methodology to improve the performance upon multiple base classifiers. However, the true predictions are often canceled out by the false ones during consensus due to a phenomenon called “curse of correlation” which is represented as the strong interferences among the predictions produced by the base classifiers. In addition, the existing practices are still not able to effectively mitigate the problem of imbalanced classification. Based on the analysis on our experiment results, we conclude that the two problems are caused by some inherent deficiencies in the approach of consensus. Therefore, we create an enhanced ensemble algorithm which adopts a designed rank-based chain-mode consensus to overcome the two problems. In order to evaluate the proposed ensemble algorithm, we employ a well-known benchmark data set NSL-KDD (the improved version of dataset KDDCup99 produced by University of New Brunswick) to make comparisons between the proposed and 8 common ensemble algorithms. Particularly, each compared ensemble classifier uses the same 22 base classifiers, so that the differences in terms of the improvements toward the accuracy and reliability upon the base classifiers can be truly revealed. As a result, the proposed rank-based chain-mode consensus is proved to be a more effective ensemble solution than the traditional consensus approach, which outperforms the 8 ensemble algorithms by 20% on almost all compared metrices which include accuracy, precision, recall, F1-score and area under receiver operating characteristic curve.

Keywords: Consensus, curse of correlation, imbalanced classification, rank-based chain-mode ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
134 Enhanced Differentiation of Stromal Cells and Embryonic Stem Cells with Vitamin D3

Authors: Mayada Alqaisi, Nasser Al-Shanti, Quiyu Wang, William S. Gilmore

Abstract:

In-vitro mouse co-culture of E14 embryonic stem cells (ESCs) and OP9 stromal cells can recapitulate the earliest stages of haematopoietic development, not accessible in human embryos, supporting both haemogenic precursors and their primitive haematopoietic progeny. 1α, 25-Dihydroxy-vitamin D3 (VD3) has been demonstrated to be a powerful differentiation inducer for a wide variety of neoplastic cells, and could enhance early differentiation of ESCs into blood cells in E14/OP9 co-culture. This study aims to ascertain whether VD3 is key in promoting differentiation and suppressing proliferation, by separately investigating the effects of VD3 on the proliferation phase of the E14 cell line and on stromal OP9 cells.The results showed that VD3 inhibited the proliferation of the cells in a dose-dependent manner, quantitatively by decreased cell number, and qualitatively by alkaline-phosphatase staining that revealed significant differences between VD3-treated and untreated cells, characterised by decreased enzyme expression (colourless cells). Propidium-iodide cell-cycle analyses showed no significant percentage change in VD3-treated E14 and OP9 cells within their G and S-phases, compared to the untreated controls, despite the increased percentage of G-phase compared to the S-phase in a dosedependent manner. These results with E14 and OP9 cells indicate that adequate VD3 concentration enhances cellular differentiation and inhibits proliferation. The results also suggest that if E14 and OP9 cells were co-cultured andVD3-treated, there would be furtherenhanced differentiation of ESCs into blood cells.

Keywords: Differentiation, embryonic stem cells, OP9 stromal cells, , 25-dihydroxy-vitamin D3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
133 Effect of Shell Dimensions on Buckling Behavior and Entropy Generation of Thin Welded Shells

Authors: Sima Ziaee, Khosro Jafarpur

Abstract:

Among all mechanical joining processes, welding has been employed for its advantage in design flexibility, cost saving, reduced overall weight and enhanced structural performance. However, for structures made of relatively thin components, welding can introduce significant buckling distortion which causes loss of dimensional control, structural integrity and increased fabrication costs. Different parameters can affect buckling behavior of welded thin structures such as, heat input, welding sequence, dimension of structure. In this work, a 3-D thermo elastic-viscoplastic finite element analysis technique is applied to evaluate the effect of shell dimensions on buckling behavior and entropy generation of welded thin shells. Also, in the present work, the approximated longitudinal transient stresses which produced in each time step, is applied to the 3D-eigenvalue analysis to ratify predicted buckling time and corresponding eigenmode. Besides, the possibility of buckling prediction by entropy generation at each time is investigated and it is found that one can predict time of buckling with drawing entropy generation versus out of plane deformation. The results of finite element analysis show that the length, span and thickness of welded thin shells affect the number of local buckling, mode shape of global buckling and post-buckling behavior of welded thin shells.

Keywords: Buckling behavior, Elastic viscoplastic model, Entropy generation, Finite element method, Shell dimensions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
132 Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro

Authors: V. R. Ahire, A. Kumar, B. N. Pandey, K. P. Mishra, G. R. Kulkarni

Abstract:

Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation.

Keywords: Apoptotic radiosensitivity, ellagic acid, mitochondrial potential, cell-cycle arrest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
131 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement

Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey

Abstract:

The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.

Keywords: BI, hybrid, hydrodynamic cavitation, wet air oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
130 Natural Ventilation for the Sustainable Tall Office Buildings of the Future

Authors: Ayşin Sev, Görkem Aslan

Abstract:

Sustainable tall buildings that provide comfortable, healthy and efficient indoor environments are clearly desirable as the densification of living and working space for the world’s increasing population proceeds. For environmental concerns, these buildings must also be energy efficient. One component of these tasks is the provision of indoor air quality and thermal comfort, which can be enhanced with natural ventilation by the supply of fresh air. Working spaces can only be naturally ventilated with connections to the outdoors utilizing operable windows, double facades, ventilation stacks, balconies, patios, terraces and skygardens. Large amounts of fresh air can be provided to the indoor spaces without mechanical air-conditioning systems, which are widely employed in contemporary tall buildings. This paper tends to present the concept of natural ventilation for sustainable tall office buildings in order to achieve healthy and comfortable working spaces, as well as energy efficient environments. Initially the historical evolution of ventilation strategies for tall buildings is presented, beginning with natural ventilation and continuing with the introduction of mechanical airconditioning systems. Then the emergence of natural ventilation due to the health and environmental concerns in tall buildings is handled, and the strategies for implementing this strategy are revealed. In the next section, a number of case studies that utilize this strategy are investigated. Finally, how tall office buildings can benefit from this strategy is discussed.

Keywords: Tall office building, natural ventilation, energy efficiency, double-skin façade, stack ventilation, air conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7883
129 Comparison of the Effects of Continuous Flow Microwave Pre-treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant

Authors: D. Hephzibah, P. Kumaran, N. M. Saifuddin

Abstract:

Anaerobic digestion is a well-known technique for sustainable energy recovery from sewage sludge. However, sewage sludge digestion is restricted due to certain factors. Pre-treatment methods have been established in various publications as a promising technique to improve the digestibility of the sewage sludge and to enhance the biogas generated which can be used for energy recovery. In this study, continuous flow microwave (MW) pre-treatment with different intensities were compared by using 5 L semi-continuous digesters at a hydraulic retention time of 27 days. We focused on the effects of MW at different intensities on the sludge solubilization, sludge digestibility, and biogas production of the untreated and MW pre-treated sludge. The MW pre-treatment demonstrated an increase in the ratio of soluble chemical oxygen demand to total chemical oxygen demand (sCOD/tCOD) and volatile fatty acid (VFA) concentration. Besides that, the total volatile solid (TVS) removal efficiency and tCOD removal efficiency also increased during the digestion of the MW pre-treated sewage sludge compared to the untreated sewage sludge. Furthermore, the biogas yield also subsequently increases due to the pre-treatment effect. A higher MW power level and irradiation time generally enhanced the biogas generation which has potential for sustainable energy recovery from sewage treatment plant. However, the net energy balance tabulation shows that the MW pre-treatment leads to negative net energy production.

Keywords: Anaerobic digestion, biogas, microwave pre-treatment, sewage sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
128 Experimental Investigation of Gas Bubble Behaviours in a Domestic Heat Pump Water Heating System

Authors: J. B. Qin, X. H. Jiang, Y. T. Ge

Abstract:

The growing awareness of global warming potential has internationally aroused interest and demand in reducing greenhouse gas emissions produced by human activity. Much national energy in the UK had been consumed in the residential sector mainly for space heating and domestic hot water production. Currently, gas boilers are mostly applied in the domestic water heating which contribute significantly to excessive CO2 emissions and consumption of primary energy resources. The issues can be solved by popularizing heat pump systems that are attributable to higher performance efficiency than those of traditional gas boilers. Even so, the heat pump system performance can be further enhanced if the dissolved gases in its hot water circuit can be efficiently discharged.  To achieve this target, the bubble behaviors in the heat pump water heating system need to be extensively investigated. In this paper, by varying different experimental conditions, the effects of various heat pump hot water side parameters on gas microbubble diameters were measured and analyzed. Correspondingly, the effect of each parameter has been investigated. These include varied system pressures, water flow rates, saturation ratios and heat outputs. The results measurement showed that the water flow rate is the most significant parameter to influence on gas microbubble productions. The research outcomes can significantly contribute to the understanding of gas bubble behaviors at domestic heat pump water heating systems and thus the efficient way for the discharging of the associated dissolved gases.  

Keywords: Dissolved gases in water, heat pump, domestic water heating system, microbubble formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
127 Removal of Cationic Heavy Metal and HOC from Soil-Washed Water Using Activated Carbon

Authors: Chi Kyu Ahn, Young Mi Kim, Seung Han Woo, Jong Moon Park

Abstract:

Soil washing process with a surfactant solution is a potential technology for the rapid removal of hydrophobic organic compound (HOC) from soil. However, large amount of washed water would be produced during operation and this should be treated effectively by proper methods. The soil washed water for complex contaminated site with HOC and heavy metals might contain high amount of pollutants such as HOC and heavy metals as well as used surfactant. The heavy metals in the soil washed water have toxic effects on microbial activities thus these should be removed from the washed water before proceeding to a biological waste-water treatment system. Moreover, the used surfactant solutions are necessary to be recovered for reducing the soil washing operation cost. In order to simultaneously remove the heavy metals and HOC from soil-washed water, activated carbon (AC) was used in the present study. In an anionic-nonionic surfactant mixed solution, the Cd(II) and phenanthrene (PHE) were effectively removed by adsorption on activated carbon. The removal efficiency for Cd(II) was increased from 0.027 mmol-Cd/g-AC to 0.142 mmol-Cd/g-AC as the mole ratio of SDS increased in the presence of PHE. The adsorptive capacity of PHE was also increased according to the SDS mole ratio due to the decrement of molar solubilization ratios (MSR) for PHE in an anionic-nonionic surfactant mixture. The simultaneous adsorption of HOC and cationic heavy metals using activated carbon could be a useful method for surfactant recovery and the reduction of heavy metal toxicity in a surfactant-enhanced soil washing process.

Keywords: Activated carbon, Anionic-nonionic surfactant mixture, Cationic heavy metal, HOC, Soil washing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
126 Ovshinsky Effect by Quantum Mechanics

Authors: Thomas V. Prevenslik

Abstract:

Ovshinsky initiated scientific research in the field of amorphous and disordered materials that continues to this day. The Ovshinsky Effect where the resistance of thin GST films is significantly reduced upon the application of low voltage is of fundamental importance in phase-change - random access memory (PC-RAM) devices.GST stands for GdSbTe chalcogenide type glasses.However, the Ovshinsky Effect is not without controversy. Ovshinsky thought the resistance of GST films is reduced by the redistribution of charge carriers; whereas, others at that time including many PC-RAM researchers today argue that the GST resistance changes because the GST amorphous state is transformed to the crystalline state by melting, the heat supplied by external heaters. In this controversy, quantum mechanics (QM) asserts the heat capacity of GST films vanishes, and therefore melting cannot occur as the heat supplied cannot be conserved by an increase in GST film temperature.By precluding melting, QM re-opens the controversy between the melting and charge carrier mechanisms. Supporting analysis is presented to show that instead of increasing GST film temperature, conservation proceeds by the QED induced creation of photons within the GST film, the QED photons confined by TIR. QED stands for quantum electrodynamics and TIR for total internal reflection. The TIR confinement of QED photons is enhanced by the fact the absorbedheat energy absorbed in the GST film is concentrated in the TIR mode because of their high surface to volume ratio. The QED photons having Planck energy beyond the ultraviolet produce excitons by the photoelectric effect, the electrons and holes of which reduce the GST film resistance.

Keywords: Ovshinsky, phase change memory, PC-RAM, chalcogenide, quantummechanics, quantum electrodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
125 An Effect of Organic Supplements on Stimulating Growth of Dendrobium Protocorms and Seedlings

Authors: Sunthari Tharapan, Chockpisit Thepsithar, Kullanart Obsuwan

Abstract:

This study was aimed to investigate the effect of various organic supplements on growth and development of Dendrobium discolor’s protocorms and seedlings growth of Dendrobium Judy Rutz. Protocorms of Dendrobium discolor with 2.0 cm. in diameter and seedlings of Dendrobium Judy Rutz at the same size (0.5 cm. height) were sub-cultured on Hyponex medium supplemented with cow milk (CM), soy milk (SM), potato extract (PE) and peptone (P) for 2 months. The protocorms were developed to seedlings in all treatments after cultured for 2 months. However, the best results were found on Hyponex medium supplemented with P was the best in which the maximum fresh and dry weight and maximum shoot height were obtained in this treatment statistically different (p ≤ 0.05) to other treatments. Moreover, Hyponex medium supplemented with P also stimulated the maximum mean number of 5.7 shoots per explant which also showed statistically different (p ≤ 0.05) when compared to other treatments. The results of growth of Dendrobium Judy Rutz seedlings indicated the medium supplemented with 100 mL/L PE enhanced the maximum fresh and dry weigh per explants with significantly different (p ≤ 0.05) in fresh weight from other treatments including the control medium without any organic supplementation. However, the dry weight was not significantly different (p ≤ 0.05) from medium supplemented with SM and P. There was multiple shoots induction in all media with or without organic supplementation ranging from 2.6 to 3 shoots per explants. The maximum shoot height was also obtained in the seedlings cultured on medium supplemented with PE while the longest root length was found in medium supplemented with SM.

Keywords: Fresh weight, in vitro propagation, orchid, plant height.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667