Search results for: Awareness and training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1395

Search results for: Awareness and training

705 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. Brain-computer interface is a promising option to overcome the limitations of tedious manual control and operation of robots in the urgent search-and-rescue tasks. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: Consensus assessment, electroencephalogram, EEG, emergency response, human-robot collaboration, intention recognition, search and rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 350
704 The Relationship of Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance

Authors: P. F. Wong, H. Salleh, F. A. Rahim

Abstract:

The adoption of building information modeling (BIM) is increasing in the construction industry. However, quantity surveyors are slow in adoption compared to other professions due to lack of awareness of the BIM’s potential in their profession. It is still unclear on how BIM application can enhance quantity surveyors’ work performance and project performance. The aim of this research is to identify the capabilities of BIM in quantity surveying practices and examine the relationship between BIM capabilities and project performance. Questionnaire survey and interviews were adopted for data collection. Literature reviews identified there are eleven BIM capabilities in quantity surveying practice. Questionnaire results showed that there are several BIM capabilities significantly correlated with project performance in time, cost and quality aspects and the results were validated through interviews. These findings show that BIM has the capabilities to enhance quantity surveyors’ performances and subsequently improved project performance.

Keywords: Building information modeling (BIM), quantity surveyors, capability, project performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7258
703 Head-Mounted Displays for HCI Validations While Driving

Authors: D. Reich, R. Stark

Abstract:

To provide reliable and valid findings when evaluating innovative in-car devices in the automotive context highly realistic driving environments are recommended. Nowadays, in-car devices are mostly evaluated due to driving simulator studies followed by real car driving experiments. Driving simulators are characterized by high internal validity, but weak regarding ecological validity. Real car driving experiments are ecologically valid, but difficult to standardize, more time-robbing and costly. One economizing suggestion is to implement more immersive driving environments when applying driving simulator studies. This paper presents research comparing non-immersive standard PC conditions with mobile and highly immersive Oculus Rift conditions while performing the Lane Change Task (LCT). Subjective data with twenty participants show advantages regarding presence and immersion experience when performing the LCT with the Oculus Rift, but affect adversely cognitive workload and simulator sickness, compared to non-immersive PC condition.

Keywords: LCT, immersion, oculus rift, presence, situation awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
702 The Experiences of South-African High-School Girls in a Fab Lab Environment

Authors: Nomusa Dlodlo, Ronald Noel Beyers

Abstract:

This paper reports on an effort to address the issue of inequality in girls- and women-s access to science, engineering and technology (SET) education and careers through raising awareness on SET among secondary school girls in South Africa. Girls participated in hands-on high-tech rapid prototyping environment of a fabrication laboratory that was aimed at stimulating creativity and innovation as part of a Fab Kids initiative. The Fab Kids intervention is about creating a SET pipeline as part of the Young Engineers and Scientists of Africa Initiative.The methodology was based on a real world situation and a hands-on approach. In the process, participants acquired a number of skills including computer-aided design, research skills, communication skills, teamwork skills, technical drawing skills, writing skills and problem-solving skills. Exposure to technology enhanced the girls- confidence in being able to handle technology-related tasks.

Keywords: Girls, design engineering, gender, science, women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
701 A Context-Aware based Authorization System for Pervasive Grid Computing

Authors: Marilyn Lim Chien Hui, Nabil Elmarzouqi, Chan Huah Yong

Abstract:

This paper describes the authorization system architecture for Pervasive Grid environment. It discusses the characteristics of classical authorization system and requirements of the authorization system in pervasive grid environment as well. Based on our analysis of current systems and taking into account the main requirements of such pervasive environment, we propose new authorization system architecture as an extension of the existing grid authorization mechanisms. This architecture not only supports user attributes but also context attributes which act as a key concept for context-awareness thought. The architecture allows authorization of users dynamically when there are changes in the pervasive grid environment. For this, we opt for hybrid authorization method that integrates push and pull mechanisms to combine the existing grid authorization attributes with dynamic context assertions. We will investigate the proposed architecture using a real testing environment that includes heterogeneous pervasive grid infrastructures mapped over multiple virtual organizations. Various scenarios are described in the last section of the article to strengthen the proposed mechanism with different facilities for the authorization procedure.

Keywords: Pervasive Grid, Authorization System, Contextawareness, Ubiquity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
700 Content-based Indoor/Outdoor Video Classification System for a Mobile Platform

Authors: Mitko Veta, Tomislav Kartalov, Zoran Ivanovski

Abstract:

Organization of video databases is becoming difficult task as the amount of video content increases. Video classification based on the content of videos can significantly increase the speed of tasks such as browsing and searching for a particular video in a database. In this paper, a content-based videos classification system for the classes indoor and outdoor is presented. The system is intended to be used on a mobile platform with modest resources. The algorithm makes use of the temporal redundancy in videos, which allows using an uncomplicated classification model while still achieving reasonable accuracy. The training and evaluation was done on a video database of 443 videos downloaded from a video sharing service. A total accuracy of 87.36% was achieved.

Keywords: Indoor/outdoor, video classification, imageclassification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
699 Factors Paving the Way towards Islamic Banking in Pakistan

Authors: Muhammad Mazhar Manzoor, Muhammad Aqeel, Abdul Sattar

Abstract:

Islamic banking is one the most blossoming doctrine in economic system of the world. The Fast growing awareness about Islamic financial system has brought strong feeling to Muslims to confront the western interest-based economic cycle. The Islamic economic system is emerging as a reliable alternative to the interest based system. This study is proposed to ascertain the motivational factors encouraging people to go for Islamic banking in Pakistan. These pulsing factors are determined by generation of hypothesis that there are certain factors which are urging people to opt Islamic banking system and to see the differences in their ranking by applying Friedman test. These factors include: Economically derived factors such as stability of Islamic banks in crisis, profit and loss sharing doctrine and equity sharing etc. This study also highlights the religiously derived factors such as interest free banking, Shariah tenets and supervisory of Islamic Shariah board and sociopsychological factors.

Keywords: Islamic banking, motivational factors, religiousfactors, socio-psychological factors and economic factors

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
698 Justification and Classification of Issues for the Selection and Implementation of Advanced Manufacturing Technologies

Authors: Zahra Banakar, Farzad Tahriri

Abstract:

It has often been said that the strength of any country resides in the strength of its industrial sector, and Progress in industrial society has been accomplished by the creation of new technologies. Developments have been facilitated by the increasing availability of advanced manufacturing technology (AMT), in addition the implementation of advanced manufacturing technology (AMT) requires careful planning at all levels of the organization to ensure that the implementation will achieve the intended goals. Justification and implementation of advanced manufacturing technology (AMT) involves decisions that are crucial for the practitioners regarding the survival of business in the present days of uncertain manufacturing world. This paper assists the industrial managers to consider all the important criteria for success AMT implementation, when purchasing new technology. Concurrently, this paper classifies the tangible benefits of a technology that are evaluated by addressing both cost and time dimensions, and the intangible benefits are evaluated by addressing technological, strategic, social and human issues to identify and create awareness of the essential elements in the AMT implementation process and identify the necessary actions before implementing AMT.

Keywords: Advanced Manufacturing Technology (AMT), Justification and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
697 Finding Sparse Features in Face Detection Using Genetic Algorithms

Authors: H. Sagha, S. Kasaei, E. Enayati, M. Dehghani

Abstract:

Although Face detection is not a recent activity in the field of image processing, it is still an open area for research. The greatest step in this field is the work reported by Viola and its recent analogous is Huang et al. Both of them use similar features and also similar training process. The former is just for detecting upright faces, but the latter can detect multi-view faces in still grayscale images using new features called 'sparse feature'. Finding these features is very time consuming and inefficient by proposed methods. Here, we propose a new approach for finding sparse features using a genetic algorithm system. This method requires less computational cost and gets more effective features in learning process for face detection that causes more accuracy.

Keywords: Face Detection, Genetic Algorithms, Sparse Feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
696 A Study on the Impacts of Computer Aided Design on the Architectural Design Process

Authors: Halleh Nejadriahi, Kamyar Arab

Abstract:

Computer-aided design (CAD) tools have been extensively used by the architects for the several decades. It has evolved from being a simple drafting tool to being an intelligent architectural software and a powerful means of communication for architects. CAD plays an essential role in the profession of architecture and is a basic tool for any architectural firm. It is not possible for an architectural firm to compete without taking the advantage of computer software, due to the high demand and competition in the architectural industry. The aim of this study is to evaluate the impacts of CAD on the architectural design process from conceptual level to final product, particularly in architectural practice. It examines the range of benefits of integrating CAD into the industry and discusses the possible defects limiting the architects. Method of this study is qualitatively based on data collected from the professionals’ perspective. The identified benefits and limitations of CAD on the architectural design process will raise the awareness of professionals on the potentials of CAD and proper utilization of that in the industry, which would result in a higher productivity along with a better quality in the architectural offices.

Keywords: Architecture, architectural practice, computer aided design, CAD, design process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920
695 Blending Processing of Industrial Residues: A Specific Case of an Enterprise Located in the Municipality of Belo Horizonte, MG, Brazil

Authors: S. R. De Oliveira, A. De Almeida, I. M. Dal Fabbro

Abstract:

Residues are produced in all stages of human activities in terms of composition and volume which vary according to consumption practices and to production methods. Forms of significant harm to the environment are associated to volume of generated material as well as to improper disposal of solid wastes, whose negative effects are noticed more frequently in the long term. The solution to this problem constitutes a challenge to the government, industry and society, because they involve economic, social, environmental and, especially, awareness of the population in general. The main concerns are focused on the impact it can have on human health and on the environment (soil, water, air and sights). The hazardous waste produced mainly by industry, are particularly worrisome because, when improperly managed, they become a serious threat to the environment. In view of this issue, this study aimed to evaluate the management system of solid waste of a coprocessing industrial waste company, to propose improvements to the rejects generation management in a specific step of the Blending production process.

Keywords: Blending, environment, industrial residues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
694 Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method

Authors: J. Satonsaowapak, M. Krapeedang, R. Oonsivilai, A. Oonsivilai

Abstract:

The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.

Keywords: Gasified System, Identification, Response SurfaceMethod

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248
693 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: RELAP5, TRACE, SNAP, BWR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1187
692 The Performance of Predictive Classification Using Empirical Bayes

Authors: N. Deetae, S. Sukparungsee, Y. Areepong, K. Jampachaisri

Abstract:

This research is aimed to compare the percentages of correct classification of Empirical Bayes method (EB) to Classical method when data are constructed as near normal, short-tailed and long-tailed symmetric, short-tailed and long-tailed asymmetric. The study is performed using conjugate prior, normal distribution with known mean and unknown variance. The estimated hyper-parameters obtained from EB method are replaced in the posterior predictive probability and used to predict new observations. Data are generated, consisting of training set and test set with the sample sizes 100, 200 and 500 for the binary classification. The results showed that EB method exhibited an improved performance over Classical method in all situations under study.

Keywords: Classification, Empirical Bayes, Posterior predictive probability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
691 Effect of the Portland-Limestone Cement Grades on the Compressive Strength of Hollow Sandcrete Blocks

Authors: Kazeem K. Adewole, Gbenga. M. Ayininula, Wasiu O. Ajagbe, Olabisi Akinade

Abstract:

The commercial sandcrete block makers in Nigeria use the same cement-sand mix ratio for sandcrete blocks production irrespective of the cement grade. Investigation revealed that the compressive strengths of hollow sandcrete blocks produced with Portland-limestone cement grade 42.5 are higher than the sandcrete blocks produced with cement grade 32.5. The use of stronger sandcrete blocks produced with cement grade 42.5 will ensure the construction of stronger buildings and other sandcrete blocks-based infrastructures and reduce the incessant failure of building and other sandcrete blocks-based infrastructures in Nigeria at no additional cost as both cement grades cost the same amount in Nigeria. It is recommended that the Standards Organisation of Nigeria should create grassroots awareness on the different cement grades in Nigeria and specify that Portland-limestone cement grade 42.5 be used for sandcrete blocks production.

 

Keywords: Cement grades, Compressive strength, Sandcrete blocks, Portland-limestone cement, Nigerian cement market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3795
690 Strategies of Education and Training Practice of Small and Medium Sized Enterprises

Authors: A. Bencsik, - A. Sólyom

Abstract:

The role of knowledge is a determinative factor in the life of economy and society. To determine knowledge is not an easy task yet the real task is to determine the right knowledge. From this view knowledge is a sum of experience, ideas and cognitions which can help companies to remain in markets and to realize a maximum profit. At the same time changes of circumstances project in advance that contents and demands of the right knowledge are changing. In this paper we will analyse a special segment on the basis of an empirical survey. We investigated the behaviour and strategies of small and medium sized enterprises (SMEs) in the area of knowledge-handling. This survey was realized by questionnaires and wide range statistical methods were used during processing. As a result we will show how these companies are prepared to operate in a knowledge-based economy and in which areas they have prominent deficiencies.

Keywords: education, knowledge, knowledgemanagement, strategy, SME

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
689 A Cognitive Robot Collaborative Reinforcement Learning Algorithm

Authors: Amit Gil, Helman Stern, Yael Edan

Abstract:

A cognitive collaborative reinforcement learning algorithm (CCRL) that incorporates an advisor into the learning process is developed to improve supervised learning. An autonomous learner is enabled with a self awareness cognitive skill to decide when to solicit instructions from the advisor. The learner can also assess the value of advice, and accept or reject it. The method is evaluated for robotic motion planning using simulation. Tests are conducted for advisors with skill levels from expert to novice. The CCRL algorithm and a combined method integrating its logic with Clouse-s Introspection Approach, outperformed a base-line fully autonomous learner, and demonstrated robust performance when dealing with various advisor skill levels, learning to accept advice received from an expert, while rejecting that of less skilled collaborators. Although the CCRL algorithm is based on RL, it fits other machine learning methods, since advisor-s actions are only added to the outer layer.

Keywords: Robot learning, human-robot collaboration, motion planning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
688 Six Sigma Process and its Impact on the Organizational Productivity

Authors: Masoud Hekmatpanah, Mohammad Sadroddin, Saeid Shahbaz, Farhad Mokhtari, Farahnaz Fadavinia

Abstract:

The six sigma method is a project-driven management approach to improve the organization-s products, services, and processes by continually reducing defects in the organization. Understanding the key features, obstacles, and shortcomings of the six sigma method allows organizations to better support their strategic directions, and increasing needs for coaching, mentoring, and training. It also provides opportunities to better implement six sigma projects. The purpose of this paper is the survey of six sigma process and its impact on the organizational productivity. So I have studied key concepts , problem solving process of six sigmaas well as the survey of important fields such as: DMAIC, six sigma and productivity applied programme, and other advantages of six sigma. In the end of this paper, present research conclusions. (direct and positive relation between six sigma and productivity)

Keywords: Six sigma, project management, quality, theory, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6979
687 Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
686 Fuzzy Approach for Ranking of Motor Vehicles Involved in Road Accidents

Authors: Lazim Abdullah, N orhanadiah Zam

Abstract:

Increasing number of vehicles and lack of awareness among road users may lead to road accidents. However no specific literature was found to rank vehicles involved in accidents based on fuzzy variables of road users. This paper proposes a ranking of four selected motor vehicles involved in road accidents. Human and non-human factors that normally linked with road accidents are considered for ranking. The imprecision or vagueness inherent in the subjective assessment of the experts has led the application of fuzzy sets theory to deal with ranking problems. Data in form of linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. The Multi Criteria Decision Making, fuzzy TOPSIS was applied in computational procedures. From the analysis, it shows that motorcycles vehicles yielded the highest closeness coefficient at 0.6225. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the motorcycles recorded the first rank.

Keywords: Road accidents, decision making, closeness coefficient, fuzzy number

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
685 Parametric Urban Comfort Envelope an Approach toward a Responsive Sustainable Urban Morphology

Authors: Mohamed M. Saleh, Khalid S. Al-Hagla

Abstract:

By taking advantage of computer-s processing power, an unlimited number of variations and parameters in both spatial and environmental can be provided while following the same set of rules and constraints. This paper focuses on using the tools of parametric urbanism towards a more responsive environmental and sustainable urban morphology. It presents an understanding to Parametric Urban Comfort Envelope (PUCE) as an interactive computational assessment urban model. In addition, it investigates the applicability potentials of this model to generate an optimized urban form to Borg El Arab city (a new Egyptian Community) concerning the human comfort values specially wind and solar envelopes. Finally, this paper utilizes its application outcomes -both visual and numerical- to extend the designer-s limitations by decrease the concern of controlling and manipulation of geometry, and increase the designer-s awareness about the various potentials of using the parametric tools to create relationships that generate multiple geometric alternatives.

Keywords: Assessment model, human comfort, parametric urbanism, sustainable urban morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3808
684 An Enhanced Artificial Neural Network for Air Temperature Prediction

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

Keywords: Time-series forecasting, weather modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
683 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: LiDAR, real-time system, clustering, tracking, data association.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4674
682 Evolutionary Feature Selection for Text Documents using the SVM

Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.

Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
681 Feature Selection Methods for an Improved SVM Classifier

Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, three feature selection methods are evaluated: Random Selection, Information Gain (IG) and Support Vector Machine feature selection (called SVM_FS). We show that the best results were obtained with SVM_FS method for a relatively small dimension of the feature vector. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

Keywords: Feature Selection, Learning with Kernels, SupportVector Machine, and Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
680 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: Adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
679 A Survey of IMRT and VMAT in UK

Authors: A. Taqaddas

Abstract:

Purpose: This E-survey was carried out to facilitate the implementation and Education of VMAT (Volumetric Modulated Arc Therapy) in Radiotherapy-RT departments and reasons for not using IMRT (Intensity Modulated Radiotherapy). VMAT Skills in demand were also identified. Method: E-Survey was distributed to NHS hospitals across UK by email. Thirty NHS and related centres in England, 21 in Scotland, 3 in Ireland and 1 in Wales were contacted. This Survey was intended for those working in RT and Medical Physics and who were responsible for Treatment Planning and training. Results: This E-survey have indicated pathways adopted by staff to acquire VMAT skills, strategies to efficiently implement VMAT in RT departments and for obtaining VMAT Education. Conclusion: Despite poor survey response this survey has managed to highlight requirements for education and implementation of VMAT that are also applicable to IMRT. Other RT centres in world can also find these results useful.

Keywords: IMRT, Radiotherapy, Treatment Planning, VMAT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
678 Analytic Hierarchy Process Method for Supplier Selection Considering Green Logistics: Case Study of Aluminum Production Sector

Authors: H. Erbiyik, A. Bal, M. Sirakaya, Ö. Yesildal, E. Yolcu

Abstract:

The emergence of many environmental issues began with the Industrial Revolution. The depletion of natural resources and emerging environmental challenges over time requires enterprises and managers to take into consideration environmental factors while managing business. If we take notice of these causes; the design and implementation of environmentally friendly green purchasing, production and waste management systems become very important at green logistics systems. Companies can adopt green supply chain with the awareness of these facts. The concept of green supply chain constitutes from green purchasing, green production, green logistics, waste management and reverse logistics. In this study, we wanted to identify the concept of green supply chain and why green supply chain should be applied. In the practice part of the study an analytic hierarchy process (AHP) study is conducted on an aluminum production company to evaluate suppliers.

Keywords: Aluminum sector, analytic hierarchy process, decision making, green logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
677 Evolving Neural Networks using Moment Method for Handwritten Digit Recognition

Authors: H. El Fadili, K. Zenkouar, H. Qjidaa

Abstract:

This paper proposes a neural network weights and topology optimization using genetic evolution and the backpropagation training algorithm. The proposed crossover and mutation operators aims to adapt the networks architectures and weights during the evolution process. Through a specific inheritance procedure, the weights are transmitted from the parents to their offsprings, which allows re-exploitation of the already trained networks and hence the acceleration of the global convergence of the algorithm. In the preprocessing phase, a new feature extraction method is proposed based on Legendre moments with the Maximum entropy principle MEP as a selection criterion. This allows a global search space reduction in the design of the networks. The proposed method has been applied and tested on the well known MNIST database of handwritten digits.

Keywords: Genetic algorithm, Legendre Moments, MEP, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
676 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images

Authors: I. Oloyede

Abstract:

The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.

Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874