Search results for: control systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7305

Search results for: control systems

195 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen

Abstract:

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.

Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO2 cycle, transcritical CO2 cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
194 A Compact Via-less Ultra-Wideband Microstrip Filter by Utilizing Open-Circuit Quarter Wavelength Stubs

Authors: Muhammad Yasir Wadood, Fatemeh Babaeian

Abstract:

By developing ultra-wideband (UWB) systems, there is a high demand for UWB filters with low insertion loss, wide bandwidth, and having a planar structure which is compatible with other components of the UWB system. A microstrip interdigital filter is a great option for designing UWB filters. However, the presence of via holes in this structure creates difficulties in the fabrication procedure of the filter. Especially in the higher frequency band, any misalignment of the drilled via hole with the Microstrip stubs causes large errors in the measurement results compared to the desired results. Moreover, in this case (high-frequency designs), the line width of the stubs are very narrow, so highly precise small via holes are required to be implemented, which increases the cost of fabrication significantly. Also, in this case, there is a risk of having fabrication errors. To combat this issue, in this paper, a via-less UWB microstrip filter is proposed which is designed based on a modification of a conventional inter-digital bandpass filter. The novel approaches in this filter design are 1) replacement of each via hole with a quarter-wavelength open circuit stub to avoid the complexity of manufacturing, 2) using a bend structure to reduce the unwanted coupling effects and 3) minimising the size. Using the proposed structure, a UWB filter operating in the frequency band of 3.9-6.6 GHz (1-dB bandwidth) is designed and fabricated. The promising results of the simulation and measurement are presented in this paper. The selected substrate for these designs was Rogers RO4003 with a thickness of 20 mils. This is a common substrate in most of the industrial projects. The compact size of the proposed filter is highly beneficial for applications which require a very miniature size of hardware.

Keywords: Band-pass filters, inter-digital filter, microstrip, via-less.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
193 The Evaluation of Antioxidant and Antimicrobial Activities of Essential Oil and Aqueous, Methanol, Ethanol, Ethyl Acetate and Acetone Extract of Hypericum scabrum

Authors: A. Heshmati, M. Y Alikhani, M. T. Godarzi, M. R. Sadeghimanesh

Abstract:

Herbal essential oil and extracts are a good source of natural antioxidants and antimicrobial compounds. Hypericum is one of the potential sources of these compounds. In this study, the antioxidant and antimicrobial activity of essential oil and aqueous, methanol, ethanol, ethyl acetate and acetone extract of Hypericum scabrum was assessed. Flowers of Hypericum scabrum were collected from the surrounding mountains of Hamadan province and after drying in the shade, the essential oil of the plant was extracted by Clevenger and water, methanol, ethanol, ethyl acetate and acetone extract was obtained by maceration method. Essential oil compounds were identified using the GC-Mass. The Folin-Ciocalteau and aluminum chloride (AlCl3) colorimetric method was used to measure the amount of phenolic acid and flavonoids, respectively. Antioxidant activity was evaluated using DPPH and FRAP. The minimum inhibitory concentration (MIC) and the minimum bacterial/fungicide concentration (MBC/MFC) of essential oil and extracts were evaluated against Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Salmonella typhimurium, Aspergillus flavus and Candida albicans. The essential oil yield of was 0.35%, the lowest and highest extract yield was related to ethyl acetate and water extract. The most component of essential oil was α-Pinene (46.35%). The methanol extracts had the highest phenolic acid (95.65 ± 4.72 µg galic acid equivalent/g dry plant) and flavonoids (25.39 ± 2.73 µg quercetin equivalent/g dry plant). The percentage of DPPH radical inhibition showed positive correlation with concentrations of essential oil or extract. The methanol and ethanol extract had the highest DDPH radical inhibitory. Essential oil and extracts of Hypericum had antimicrobial activity against the microorganisms studied in this research. The MIC and MBC values for essential oils were in the range of 25-25.6 and 25-50 μg/mL, respectively. For the extracts, these values were 1.5625-100 and 3.125-100 μg/mL, respectively. Methanol extracts had the highest antimicrobial activity. Essential oil and extract of Hypericum scabrum, especially methanol extract, have proper antimicrobial and antioxidant activity, and it can be used to control the oxidation and inhibit the growth of pathogenic and spoilage microorganisms. In addition, it can be used as a substitute for synthetic antioxidant and antimicrobial compounds.

Keywords: Antimicrobial, antioxidant, extract, hypericum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
192 Time-Cost-Quality Trade-off Software by using Simplified Genetic Algorithm for Typical Repetitive Construction Projects

Authors: Refaat H. Abd El Razek, Ahmed M. Diab, Sherif M. Hafez, Remon F. Aziz

Abstract:

Time-Cost Optimization "TCO" is one of the greatest challenges in construction project planning and control, since the optimization of either time or cost, would usually be at the expense of the other. Since there is a hidden trade-off relationship between project and cost, it might be difficult to predict whether the total cost would increase or decrease as a result of the schedule compression. Recently third dimension in trade-off analysis is taken into consideration that is quality of the projects. Few of the existing algorithms are applied in a case of construction project with threedimensional trade-off analysis, Time-Cost-Quality relationships. The objective of this paper is to presents the development of a practical software system; that named Automatic Multi-objective Typical Construction Resource Optimization System "AMTCROS". This system incorporates the basic concepts of Line Of Balance "LOB" and Critical Path Method "CPM" in a multi-objective Genetic Algorithms "GAs" model. The main objective of this system is to provide a practical support for typical construction planners who need to optimize resource utilization in order to minimize project cost and duration while maximizing its quality simultaneously. The application of these research developments in planning the typical construction projects holds a strong promise to: 1) Increase the efficiency of resource use in typical construction projects; 2) Reduce construction duration period; 3) Minimize construction cost (direct cost plus indirect cost); and 4) Improve the quality of newly construction projects. A general description of the proposed software for the Time-Cost-Quality Trade-Off "TCQTO" is presented. The main inputs and outputs of the proposed software are outlined. The main subroutines and the inference engine of this software are detailed. The complexity analysis of the software is discussed. In addition, the verification, and complexity of the proposed software are proved and tested using a real case study.

Keywords: Project management, typical (repetitive) large scale projects, line of balance, multi-objective optimization, genetic algorithms, time-cost-quality trade-offs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063
191 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: Big data, bus headway prediction, machine learning, public transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
190 Tactile Sensory Digit Feedback for Cochlear Implant Electrode Insertion

Authors: Yusuf Bulale, Mark Prince, Geoff Tansley, Peter Brett

Abstract:

Cochlear Implantation (CI) which became a routine procedure for the last decades is an electronic device that provides a sense of sound for patients who are severely and profoundly deaf. The optimal success of this implantation depends on the electrode technology and deep insertion techniques. However, this manual insertion procedure may cause mechanical trauma which can lead to severe destruction of the delicate intracochlear structure. Accordingly, future improvement of the cochlear electrode implant insertion needs reduction of the excessive force application during the cochlear implantation which causes tissue damage and trauma. This study is examined tool-tissue interaction of large prototype scale digit embedded with distributive tactile sensor based upon cochlear electrode and large prototype scale cochlea phantom for simulating the human cochlear which could lead to small scale digit requirements. The digit, distributive tactile sensors embedded with silicon-substrate was inserted into the cochlea phantom to measure any digit/phantom interaction and position of the digit in order to minimize tissue and trauma damage during the electrode cochlear insertion. The digit have provided tactile information from the digitphantom insertion interaction such as contact status, tip penetration, obstacles, relative shape and location, contact orientation and multiple contacts. The tests demonstrated that even devices of such a relative simple design with low cost have potential to improve cochlear implant surgery and other lumen mapping applications by providing tactile sensory feedback information and thus controlling the insertion through sensing and control of the tip of the implant during the insertion. In that approach, the surgeon could minimize the tissue damage and potential damage to the delicate structures within the cochlear caused by current manual electrode insertion of the cochlear implantation. This approach also can be applied to other minimally invasive surgery applications as well as diagnosis and path navigation procedures.

Keywords: Cochlear electrode insertion, distributive tactile sensory feedback information, flexible digit, minimally invasive surgery, tool/tissue interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178
189 Critical Success Factors Influencing Construction Project Performance for Different Objectives: Procurement Phase

Authors: Samart Homthong, Wutthipong Moungnoi

Abstract:

Critical success factors (CSFs) and the criteria to measure project success have received much attention over the decades and are among the most widely researched topics in the context of project management. However, although there have been extensive studies on the subject by different researchers, to date, there has been little agreement on the CSFs. The aim of this study is to identify the CSFs that influence the performance of construction projects, and determine their relative importance for different objectives across five stages in the project life cycle. A considerable literature review was conducted that resulted in the identification of 179 individual factors. These factors were then grouped into nine major categories. A questionnaire survey was used to collect data from three groups of respondents: client representatives, consultants, and contractors. Out of 164 questionnaires distributed, 93 were returned, yielding a response rate of 56.7%. Using the mean score, relative importance index, and weighted average method, the top 10 critical factors for each category were identified. The agreement of survey respondents on those categorised factors were analysed using Spearman’s rank correlation. A one-way analysis of variance was then performed to determine whether the mean scores among the various groups of respondents were statistically significant. The findings indicate the most CSFs in each category in procurement phase are: proper procurement programming of materials (time), stability in the price of materials (cost), and determining quality in the construction (quality). They are then followed by safety equipment acquisition and maintenance (health and safety), budgeting allowed in a contractual arrangement for implementing environmental management activities (environment), completeness of drawing documents (productivity), accurate measurement and pricing of bill of quantities (risk management), adequate communication among the project team (human resource), and adequate cost control measures (client satisfaction). An understanding of CSFs would help all interested parties in the construction industry to improve project performance. Furthermore, the results of this study would help construction professionals and practitioners take proactive measures for effective project management.

Keywords: Critical success factors, procurement phase, project life cycle, project performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
188 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters

Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev

Abstract:

Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.

Keywords: Lexicon of disasters, modelling, Petri nets, text annotation, social disasters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
187 Combined Source and Channel Coding for Image Transmission Using Enhanced Turbo Codes in AWGN and Rayleigh Channel

Authors: N. S. Pradeep, M. Balasingh Moses, V. Aarthi

Abstract:

Any signal transmitted over a channel is corrupted by noise and interference. A host of channel coding techniques has been proposed to alleviate the effect of such noise and interference. Among these Turbo codes are recommended, because of increased capacity at higher transmission rates and superior performance over convolutional codes. The multimedia elements which are associated with ample amount of data are best protected by Turbo codes. Turbo decoder employs Maximum A-posteriori Probability (MAP) and Soft Output Viterbi Decoding (SOVA) algorithms. Conventional Turbo coded systems employ Equal Error Protection (EEP) in which the protection of all the data in an information message is uniform. Some applications involve Unequal Error Protection (UEP) in which the level of protection is higher for important information bits than that of other bits. In this work, enhancement to the traditional Log MAP decoding algorithm is being done by using optimized scaling factors for both the decoders. The error correcting performance in presence of UEP in Additive White Gaussian Noise channel (AWGN) and Rayleigh fading are analyzed for the transmission of image with Discrete Cosine Transform (DCT) as source coding technique. This paper compares the performance of log MAP, Modified log MAP (MlogMAP) and Enhanced log MAP (ElogMAP) algorithms used for image transmission. The MlogMAP algorithm is found to be best for lower Eb/N0 values but for higher Eb/N0 ElogMAP performs better with optimized scaling factors. The performance comparison of AWGN with fading channel indicates the robustness of the proposed algorithm. According to the performance of three different message classes, class3 would be more protected than other two classes. From the performance analysis, it is observed that ElogMAP algorithm with UEP is best for transmission of an image compared to Log MAP and MlogMAP decoding algorithms.

Keywords: AWGN, BER, DCT, Fading, MAP, UEP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
186 Cybersecurity for Digital Twins in the Built Environment: Research Landscape, Industry Attitudes and Future Direction

Authors: Kaznah Alshammari, Thomas Beach, Yacine Rezgui

Abstract:

Technological advances in the construction sector are helping to make smart cities a reality by means of Cyber-Physical Systems (CPS). CPS integrate information and the physical world through the use of Information Communication Technologies (ICT). An increasingly common goal in the built environment is to integrate Building Information Models (BIM) with Internet of Things (IoT) and sensor technologies using CPS. Future advances could see the adoption of digital twins, creating new opportunities for CPS using monitoring, simulation and optimisation technologies. However, researchers often fail to fully consider the security implications. To date, it is not widely possible to assimilate BIM data and cybersecurity concepts and, therefore, security has thus far been overlooked. This paper reviews the empirical literature concerning IoT applications in the built environment and discusses real-world applications of the IoT intended to enhance construction practices, people’s lives and bolster cybersecurity. Specifically, this research addresses two research questions: (a) How suitable are the current IoT and CPS security stacks to address the cybersecurity threats facing digital twins in the context of smart buildings and districts? and (b) What are the current obstacles to tackling cybersecurity threats to the built environment CPS? To answer these questions, this paper reviews the current state-of-the-art research concerning digital twins in the built environment, the IoT, BIM, urban cities and cybersecurity. The results of the findings of this study confirmed the importance of using digital twins in both IoT and BIM. Also, eight reference zones across Europe have gained special recognition for their contributions to the advancement of IoT science. Therefore, this paper evaluates the use of digital twins in CPS to arrive at recommendations for expanding BIM specifications to facilitate IoT compliance, bolster cybersecurity and integrate digital twin and city standards in the smart cities of the future.

Keywords: BIM, cybersecurity, digital twins, IoT, urban cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
185 Bus Transit Demand Modeling and Fare Structure Analysis of Kabul City

Authors: Ramin Mirzada, Takuya Maruyama

Abstract:

Kabul is the heart of political, commercial, cultural, educational and social life in Afghanistan and the fifth fastest growing city in the world. Minimum income inclined most of Kabul residents to use public transport, especially buses, although there is no proper bus system, beside that there is no proper fare exist in Kabul city Due to wars. From 1992 to 2001 during civil wars, Kabul suffered damage and destruction of its transportation facilities including pavements, sidewalks, traffic circles, drainage systems, traffic signs and signals, trolleybuses and almost all of the public transport system (e.g. Millie bus). This research is mainly focused on Kabul city’s transportation system. In this research, the data used have been gathered by Japan International Cooperation Agency (JICA) in 2008 and this data will be used to find demand and fare structure, additionally a survey was done in 2016 to find satisfaction level of Kabul residents for fare structure. Aim of this research is to observe the demand for Large Buses, compare to the actual supply from the government, analyze the current fare structure and compare it with the proposed fare (distance based fare) structure which has already been analyzed. Outcome of this research shows that the demand of Kabul city residents for the public transport (Large Buses) exceeds from the current supply, so that current public transportation (Large Buses) is not sufficient to serve public transport in Kabul city, worth to be mentioned, that in order to overcome this problem, there is no need to build new roads or exclusive way for buses. This research proposes government to change the fare from fixed fare to distance based fare, invest on public transportation and increase the number of large buses so that the current demand for public transport is met.

Keywords: Transportation, planning, public transport, large buses, fixed fare, distance based fare, Kabul, Afghanistan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
184 Miniature Fast Steering Mirrors for Space Optical Communication on NanoSats and CubeSats

Authors: Sylvain Chardon, Timotéo Payre, Hugo Grardel, Yann Quentel, Mathieu Thomachot, Gérald Aigouy, Frank Claeyssen

Abstract:

With the increasing digitalization of society, access to data has become vital and strategic for individuals and nations. In this context, the number of satellite constellation projects is growing drastically worldwide and is a next-generation challenge of the New Space industry. So far, existing satellite constellations have been using radio frequencies (RF) for satellite-to-ground communications, inter-satellite communications, and feeder link communication. However, RF has several limitations, such as limited bandwidth and low protection level. To address these limitations, space optical communication will be the new trend, addressing both very high-speed and secured encrypted communication. Fast Steering Mirrors (FSM) are key components used in optical communication as well as space imagery and for a large field of functions such as Point Ahead Mechanisms (PAM), Raster Scanning, Beam Steering Mirrors (BSM), Fine Pointing Mechanisms (FPM) and Line of Sight stabilization (LOS). The main challenges of space FSM development for optical communication are to propose both a technology and a supply chain relevant for high quantities New Space approach, which requires secured connectivity for high-speed internet, Earth planet observation and monitoring, and mobility applications. CTEC proposes a mini-FSM technology offering a stroke of +/-6 mrad and a resonant frequency of 1700 Hz, with a mass of 50 g. This FSM mechanism is a good candidate for giant constellations and all applications on board NanoSats and CubeSats, featuring a very high level of miniaturization and optimized for New Space high quantities cost efficiency. The use of piezo actuators offers a high resonance frequency for optimal control, with almost zero power consumption in step and stay pointing, and with very high-reliability figures > 0,995 demonstrated over years of recurrent manufacturing for Optronics applications at CTEC.

Keywords: Fast steering mirror, feeder link, line of sight stabilization, optical communication, pointing ahead mechanism, raster scan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175
183 The Social Dynamics of Pandemics: A Clinical Sociological Analysis of Precautions and Risks

Authors: C. Ardil

Abstract:

The COVID-19 pandemic has revealed the complex and multifaceted relationship between societal structures and public health, emphasizing the need for a holistic approach to understanding pandemic responses. This study utilizes a clinical sociological perspective to analyze the social impacts of pandemics, with a particular focus on how social determinants such as income, education, race, and geographical location influence vulnerability and resilience. It explores the critical role of risk perception, communication strategies, and community dynamics in shaping public adherence to precautionary measures like mask-wearing, social distancing, and vaccination. By examining the ways in which social norms, structural inequalities, and trust in institutions affect public behavior, this study provides insights into the challenges of managing health crises in diverse communities. Comparative case studies and policy analysis are employed to highlight the variations in pandemic responses across different countries and regions, illustrating the importance of coordinated strategies and community-based interventions. The findings underscore that effective pandemic response requires addressing underlying social inequities, fostering community cohesion, and ensuring equitable access to healthcare and information. This study contributes to a deeper understanding of the broader societal implications of pandemics and offers recommendations for building more resilient, inclusive public health systems capable of mitigating the impact of future global health emergencies.

Keywords: Behavioral medicine, clinical sociology, community health, COVID-19, COVID-19 pandemic, epidemiology, infectious diseases, pandemics, precautions, psychology, public health, risks, social determinants, social dynamics, social psychiatry, social psychology, socioeconomic status, structural functionalism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22
182 Data Centers’ Temperature Profile Simulation Optimized by Finite Elements and Discretization Methods

Authors: José Alberto García Fernández, Zhimin Du, Xinqiao Jin

Abstract:

Nowadays, data center industry faces strong challenges for increasing the speed and data processing capacities while at the same time is trying to keep their devices a suitable working temperature without penalizing that capacity. Consequently, the cooling systems of this kind of facilities use a large amount of energy to dissipate the heat generated inside the servers, and developing new cooling techniques or perfecting those already existing would be a great advance in this type of industry. The installation of a temperature sensor matrix distributed in the structure of each server would provide the necessary information for collecting the required data for obtaining a temperature profile instantly inside them. However, the number of temperature probes required to obtain the temperature profiles with sufficient accuracy is very high and expensive. Therefore, other less intrusive techniques are employed where each point that characterizes the server temperature profile is obtained by solving differential equations through simulation methods, simplifying data collection techniques but increasing the time to obtain results. In order to reduce these calculation times, complicated and slow computational fluid dynamics simulations are replaced by simpler and faster finite element method simulations which solve the Burgers‘ equations by backward, forward and central discretization techniques after simplifying the energy and enthalpy conservation differential equations. The discretization methods employed for solving the first and second order derivatives of the obtained Burgers‘ equation after these simplifications are the key for obtaining results with greater or lesser accuracy regardless of the characteristic truncation error.

Keywords: Burgers’ equations, CFD simulation, data center, discretization methods, FEM simulation, temperature profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
181 Modeling a Multinomial Logit Model of Intercity Travel Mode Choice Behavior for All Trips in Libya

Authors: Manssour A. Abdulsalam Bin Miskeen, Ahmed Mohamed Alhodairi, Riza Atiq Abdullah Bin O. K. Rahmat

Abstract:

In the planning point of view, it is essential to have mode choice, due to the massive amount of incurred in transportation systems. The intercity travellers in Libya have distinct features, as against travellers from other countries, which includes cultural and socioeconomic factors. Consequently, the goal of this study is to recognize the behavior of intercity travel using disaggregate models, for projecting the demand of nation-level intercity travel in Libya. Multinomial Logit Model for all the intercity trips has been formulated to examine the national-level intercity transportation in Libya. The Multinomial logit model was calibrated using nationwide revealed preferences (RP) and stated preferences (SP) survey. The model was developed for deference purpose of intercity trips (work, social and recreational). The variables of the model have been predicted based on maximum likelihood method. The data needed for model development were obtained from all major intercity corridors in Libya. The final sample size consisted of 1300 interviews. About two-thirds of these data were used for model calibration, and the remaining parts were used for model validation. This study, which is the first of its kind in Libya, investigates the intercity traveler’s mode-choice behavior. The intercity travel mode-choice model was successfully calibrated and validated. The outcomes indicate that, the overall model is effective and yields higher precision of estimation. The proposed model is beneficial, due to the fact that, it is receptive to a lot of variables, and can be employed to determine the impact of modifications in the numerous characteristics on the need for various travel modes. Estimations of the model might also be of valuable to planners, who can estimate possibilities for various modes and determine the impact of unique policy modifications on the need for intercity travel.

Keywords: Multinomial logit model, improved intercity transport, intercity mode-choice behavior, disaggregate analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7866
180 Estimating the Costs of Conservation in Multiple Output Agricultural Setting

Authors: T. Chaiechi, N. Stoeckl

Abstract:

Scarcity of resources for biodiversity conservation gives rise to the need of strategic investment with priorities given to the cost of conservation. While the literature provides abundant methodological options for biodiversity conservation; estimating true cost of conservation remains abstract and simplistic, without recognising dynamic nature of the cost. Some recent works demonstrate the prominence of economic theory to inform biodiversity decisions, particularly on the costs and benefits of biodiversity however, the integration of the concept of true cost into biodiversity actions and planning are very slow to come by, and specially on a farm level. Conservation planning studies often use area as a proxy for costs neglecting different land values as well as protected areas. These literature consider only heterogeneous benefits while land costs are considered homogenous. Analysis with the assumption of cost homogeneity results in biased estimation; since not only it doesn’t address the true total cost of biodiversity actions and plans, but also it fails to screen out lands that are more (or less) expensive and/or difficult (or more suitable) for biodiversity conservation purposes, hindering validity and comparability of the results. Economies of scope” is one of the other most neglected aspects in conservation literature. The concept of economies of scope introduces the existence of cost complementarities within a multiple output production system and it suggests a lower cost during the concurrent production of multiple outputs by a given farm. If there are, indeed, economies of scope then simplistic representation of costs will tend to overestimate the true cost of conservation leading to suboptimal outcomes. The aim of this paper, therefore, is to provide first road review of the various theoretical ways in which economies of scope are likely to occur of how they might occur in conservation. Consequently, the paper addresses gaps that have to be filled in future analysis.

Keywords: Cost, biodiversity conservation, Multi-output production systems, Empirical techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
179 A Temporal QoS Ontology for ERTMS/ETCS

Authors: Marc Sango, Olimpia Hoinaru, Christophe Gransart, Laurence Duchien

Abstract:

Ontologies offer a means for representing and sharing information in many domains, particularly in complex domains. For example, it can be used for representing and sharing information of System Requirement Specification (SRS) of complex systems like the SRS of ERTMS/ETCS written in natural language. Since this system is a real-time and critical system, generic ontologies, such as OWL and generic ERTMS ontologies provide minimal support for modeling temporal information omnipresent in these SRS documents. To support the modeling of temporal information, one of the challenges is to enable representation of dynamic features evolving in time within a generic ontology with a minimal redesign of it. The separation of temporal information from other information can help to predict system runtime operation and to properly design and implement them. In addition, it is helpful to provide a reasoning and querying techniques to reason and query temporal information represented in the ontology in order to detect potential temporal inconsistencies. To address this challenge, we propose a lightweight 3-layer temporal Quality of Service (QoS) ontology for representing, reasoning and querying over temporal and non-temporal information in a complex domain ontology. Representing QoS entities in separated layers can clarify the distinction between the non QoS entities and the QoS entities in an ontology. The upper generic layer of the proposed ontology provides an intuitive knowledge of domain components, specially ERTMS/ETCS components. The separation of the intermediate QoS layer from the lower QoS layer allows us to focus on specific QoS Characteristics, such as temporal or integrity characteristics. In this paper, we focus on temporal information that can be used to predict system runtime operation. To evaluate our approach, an example of the proposed domain ontology for handover operation, as well as a reasoning rule over temporal relations in this domain-specific ontology, are presented.

Keywords: System Requirement Specification, ERTMS/ETCS, Temporal Ontologies, Domain Ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3134
178 Stress Analysis of Hexagonal Element for Precast Concrete Pavements

Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek

Abstract:

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Keywords: Imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
177 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
176 Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Authors: O. I. H. Dimitry, N. A. Mansour, A. L. G. Saad

Abstract:

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+<Cloisite 20A<Cloisite 15A, and was then decreased to some extent with a further increase to 10 wt%. The activation energy Eσ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.

Keywords: Polycaprolactone, organoclay, nanocomposite, montmorillonite, electrical conductivity, activation energy, exfoliation, intercalation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
175 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey

Authors: Mahdiyeh Zafaranchi

Abstract:

With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.

Keywords: Efficient building, electric and gas consumption, eQuest, passive parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
174 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: Hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
173 Multi-Objective Optimization of Gas Turbine Power Cycle

Authors: Mohsen Nikaein

Abstract:

Because of importance of energy, optimization of power generation systems is necessary. Gas turbine cycles are suitable manner for fast power generation, but their efficiency is partly low. In order to achieving higher efficiencies, some propositions are preferred such as recovery of heat from exhaust gases in a regenerator, utilization of intercooler in a multistage compressor, steam injection to combustion chamber and etc. However thermodynamic optimization of gas turbine cycle, even with above components, is necessary. In this article multi-objective genetic algorithms are employed for Pareto approach optimization of Regenerative-Intercooling-Gas Turbine (RIGT) cycle. In the multiobjective optimization a number of conflicting objective functions are to be optimized simultaneously. The important objective functions that have been considered for optimization are entropy generation of RIGT cycle (Ns) derives using Exergy Analysis and Gouy-Stodola theorem, thermal efficiency and the net output power of RIGT Cycle. These objectives are usually conflicting with each other. The design variables consist of thermodynamic parameters such as compressor pressure ratio (Rp), excess air in combustion (EA), turbine inlet temperature (TIT) and inlet air temperature (T0). At the first stage single objective optimization has been investigated and the method of Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used for multi-objective optimization. Optimization procedures are performed for two and three objective functions and the results are compared for RIGT Cycle. In order to investigate the optimal thermodynamic behavior of two objectives, different set, each including two objectives of output parameters, are considered individually. For each set Pareto front are depicted. The sets of selected decision variables based on this Pareto front, will cause the best possible combination of corresponding objective functions. There is no superiority for the points on the Pareto front figure, but they are superior to any other point. In the case of three objective optimization the results are given in tables.

Keywords: Exergy, Entropy Generation, Brayton Cycle, DesignParameters, Optimization, Genetic Algorithm, Multi-Objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
172 Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids

Authors: Antoine Karam, Lotfi Khiari, Bruno Breton, Alfred Jaouich

Abstract:

Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil.

Keywords: Metal, recycling, sewage sludge, trace element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
171 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively recent concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This is clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification, cellular connectivity, connectivity to the vehicle computer, and connectivity to analog and digital sensors by means of a specially targeted design of expansion board. Specifically, the latter offers a number of adaptability features to cope with the diverse sensor types employed in different vehicles. In standard mode, the IoT sensor node communicates to the data center through cellular network, transmitting all digital/digitized sensor data, IoT device identity and position. Moreover, the proposed IoT sensor node offers connectivity, through WiFi and an appropriate application, to smart phones or tablets allowing the registration of additional vehicle- and driver-specific information and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware.

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
170 Environmental Accounting Practice: Analyzing the Extent and Qualification of Environmental Disclosures of Turkish Companies Located in BIST-XKURY Index

Authors: Raif Parlakkaya, Mustafa Nihat Demirci, Mehmet Nuri Salur

Abstract:

Environmental pollution has detrimental effects on the quality of our life and its scope has reached such an extent that measures are being taken both at the national and international levels to reduce, prevent and mitigate its impact on social, economic and political spheres. Therefore, awareness of environmental problems has been increasing among stakeholders and accordingly among companies. It is seen that corporate reporting is expanding beyond environmental performance. Primary purpose of publishing an environmental report is to provide specific audiences with useful, meaningful information. This paper is intended to analyze the extent and qualification of environmental disclosures of Turkish publicly quoted firms and see how it varies from one sector to another. The data for the study were collected from annual activity reports of companies, listed on the corporate governance index (BIST-XKURY) of Istanbul Stock Exchange. Content analysis was the research methodology used to measure the extent of environmental disclosure. Accordingly, 2015 annual activity reports of companies that carry out business in some particular fields were acquired from Capital Market Board, websites of Public Disclosure Platform and companies’ own websites. These reports were categorized into five main aspects: Environmental policies, environmental management systems, environmental protection and conservation activities, environmental awareness and information on environmental lawsuits. Subsequently, each component was divided into several variables related to what each firm is supposed to disclose about environmental information. In this context, the nature and scope of the information disclosed on each item were assessed according to five different ways (N.I: No Information; G.E.: General Explanations; Q.E.: Qualitative Detailed Explanations; N.E.: Quantitative (numerical) Detailed Explanations; Q.&N.E.: Both Qualitative and Quantitative Explanations).

Keywords: Environmental accounting, disclosure, corporate governance, content analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1104
169 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure

Authors: M. A. Putera, N. Yasufuku, A. Alowaisy, R. Ishikura, J. G. Hussary, A. Rifa’i

Abstract:

Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young’s modulus (E0), Poisson ratio (υ0) and Shear modulus (G0) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.

Keywords: Cement content, confining pressure, high-speed railway, small strain ranges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420
168 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials

Authors: Ergin Kosa, Ali Göksenli

Abstract:

Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200- 500 μm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4.76 m/s. As ductile material steel St 37 with Vickers Hardness Number (VHN) of 245 and quenched St 37 with 510 VHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear rate was observed by ductile material at a particle impact angle of 300 and decreased further by an increase in attack angle. Maximum wear rate by brittle materials was by impact angle of 450 and decreased further up to 900. Ploughing was the dominant wear mechanism by ductile material. Microcracks on the surface were detected by ductile materials, which are nucleation centers for crater formation. Number of craters decreased and depth of craters increased by ductile materials by attack angle higher than 300. Deformation wear mechanism was observed by brittle materials. Number and depth of pits decreased by brittle materials by impact angles higher than 450. At the end it is concluded that wear rate could not be directly related to impact angle of particles due to the different reaction of ductile and brittle materials.

Keywords: Erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
167 A Probabilistic Reinforcement-Based Approach to Conceptualization

Authors: Hadi Firouzi, Majid Nili Ahmadabadi, Babak N. Araabi

Abstract:

Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron-s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents.

Keywords: Concept learning, probabilistic decision making, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
166 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305