Search results for: sewer network planning
3014 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive
Authors: M. Zerikat, M. Bendjebbar, N. Benouzza
Abstract:
In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.
Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24613013 Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier
Authors: I. Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic
Abstract:
In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.
Keywords: Epilepsy, EEG, Wavelet transform, Energydistribution, Neural Network, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19753012 Nongovernmental Organisations’ Sustainable Strategic Planning and Its Impact on Donors’ Loyalty
Authors: Farah Mahmoud Attallah, Sara El-Deeb
Abstract:
The non-profit sector has been heavily rising with the rise of sustainable development in developed and developing countries. Most economies are putting high pressure on this sector, believing that nongovernmental organizations (NGOs) are one of the main rescues during crises worldwide. However, with the rising number of those NGOs comes their incapability of sustaining their performance and fundraising. Additionally, donors who are considered the key partners for those organizations have become knowledgeable about this sector which made them more demanding, putting high pressure on those organizations to believe that there must be a valuable return for the economy in order to donate. This research aims to study the impact of a sustainable strategic planning model on raising loyal donors; the proposed model of this research presents several independent variables determining their impact on donors' intention to become loyal.
Keywords: Non-profit sector, non-governmental organizations, strategic planning, sustainable business model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713011 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network
Authors: Shoujia Fang, Guoqing Ding, Xin Chen
Abstract:
The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9413010 Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy
Authors: Hui-Min Ting, Tsair-Fwu Lee, Ming-Yuan Cho, Pei-Ju Chao, Chun-Ming Chang, Long-Chang Chen, Fu-Min Fang
Abstract:
To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.
Keywords: NPC, ANN, logistic regression, xerostomia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16363009 Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment
Authors: M. Salman, B. Budiardjo, K. Ramli
Abstract:
Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.Keywords: intrusion detection, intrusion prevention, wireless networks, proactive protection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39383008 Hand Gesture Recognition: Sign to Voice System (S2V)
Authors: Oi Mean Foong, Tan Jung Low, Satrio Wibowo
Abstract:
Hand gesture is one of the typical methods used in sign language for non-verbal communication. It is most commonly used by people who have hearing or speech problems to communicate among themselves or with normal people. Various sign language systems have been developed by manufacturers around the globe but they are neither flexible nor cost-effective for the end users. This paper presents a system prototype that is able to automatically recognize sign language to help normal people to communicate more effectively with the hearing or speech impaired people. The Sign to Voice system prototype, S2V, was developed using Feed Forward Neural Network for two-sequence signs detection. Different sets of universal hand gestures were captured from video camera and utilized to train the neural network for classification purpose. The experimental results have shown that neural network has achieved satisfactory result for sign-to-voice translation.Keywords: Hand gesture detection, neural network, signlanguage, sequence detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18563007 A Study of Behaviors in Using Social Networks of Corporate Personnel of Suan Sunandha Rajabhat University
Authors: Wipada Chiawchan
Abstract:
This study found that most corporate personnel are using social media to communicate with colleagues to make the process of working more efficient. Complete satisfaction occurred on the use of security within the University’s computer network. The social network usage for communication, collaboration, entertainment and demonstrating concerns accounted for fifty percent of variance to predict interpersonal relationships of corporate personnel. This evaluation on the effectiveness of social networking involved 213 corporate personnel’s. The data was collected by questionnaires. This data was analyzed by using percentage, mean, and standard deviation. The results from the analysis and the effectiveness of using online social networks were derived from the attitude of private users and safety data within the security system. The results showed that the effectiveness on the use of an online social network for corporate personnel of Suan Sunandha Rajabhat University was specifically at a good level, and the overall effects of each aspect was (Ẋ=3.11).Keywords: Behaviors, Social Media, Social Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13943006 Fuzzy Logic Based Coordinated Voltage Control for Distribution Network with Distributed Generations
Authors: T. Juhana Hashim, A. Mohamed
Abstract:
This paper discusses the implementation of a fuzzy logic based coordinated voltage control for a distribution system connected with distributed generations (DGs). The connection of DGs has created a challenge for the distribution network operators to keep the voltage in the system within its acceptable limits. Intelligent centralized or coordinated voltage control schemes have proven to be more reliable due to its ability to provide more control and coordination with the communication with other network devices. In this work, voltage control using fuzzy logic by coordinating three methods of control, power factor control, on load tap changer and generation curtailment is implemented on a distribution network test system. The results show that the fuzzy logic based coordination is able to keep the voltage within its allowable limits.
Keywords: Coordinated control, Distributed generation, Fuzzy logic, Voltage control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30283005 Multimode Dynamics of the Beijing Road Traffic System
Authors: Zundong Zhang, Limin Jia, Xiaoliang Sun
Abstract:
The Beijing road traffic system, as a typical huge urban traffic system, provides a platform for analyzing the complex characteristics and the evolving mechanisms of urban traffic systems. Based on dynamic network theory, we construct the dynamic model of the Beijing road traffic system in which the dynamical properties are described completely. Furthermore, we come into the conclusion that urban traffic systems can be viewed as static networks, stochastic networks and complex networks at different system phases by analyzing the structural randomness. As well as, we demonstrate the evolving process of the Beijing road traffic network based on real traffic data, validate the stochastic characteristics and the scale-free property of the network at different phasesKeywords: Dynamic Network Models, Structural Randomness, Scale-free Property, Multi-mode character
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15313004 Lean Manufacturing: Systematic Layout Planning Application to an Assembly Line Layout of a Welding Industry
Authors: Fernando Augusto Ullmann Tobe, Moacyr Amaral Domingues, Figueiredo, Stephany Rie Yamamoto Gushiken
Abstract:
The purpose of this paper is to present the process of elaborating the layout of an assembly line of a welding industry using the principles of lean manufacturing as the main driver. The objective of this paper is relevant since the current layout of the assembly line causes non-productive times for operators, being related to the lean waste of unnecessary movements. The methodology used for the project development was Project-based Learning (PBL), which is an active way of learning focused on real problems. The process of selecting the methodology for layout planning was developed considering three criteria to evaluate the most relevant one for this paper's goal. As a result of this evaluation, Systematic Layout Planning was selected, and three steps were added to it – Value Stream Mapping for the current situation and after layout changed and the definition of lean tools and layout type. This inclusion was to consider lean manufacturing in the layout redesign of the industry. The layout change resulted in an increase in the value-adding time of operations carried out in the sector, reduction in movement times between previous and final assemblies, and in cost savings regarding the man-hour value of the employees, which can be invested in productive hours instead of movement times.
Keywords: Assembly line, layout, lean manufacturing, systematic layout planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8263003 B-VIS Service-oriented Middleware for RFID Sensor Network
Authors: Wiroon Sriborrirux, Sorakrai Kraipui, Nakorn Indra-Payoong
Abstract:
One of the most importance of intelligence in-car and roadside systems is the cooperative vehicle-infrastructure system. In Thailand, ITS technologies are rapidly growing and real-time vehicle information is considerably needed for ITS applications; for example, vehicle fleet tracking and control and road traffic monitoring systems. This paper defines the communication protocols and software design for middleware components of B-VIS (Burapha Vehicle-Infrastructure System). The proposed B-VIS middleware architecture serves the needs of a distributed RFID sensor network and simplifies some intricate details of several communication standards.Keywords: Middleware, RFID sensor network, Cooperativevehicle-infrastructure system, Enterprise Java Bean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15363002 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand
Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh
Abstract:
Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26803001 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition
Authors: Ali Nadi, Ali Edrissi
Abstract:
Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.
Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19373000 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: Distillation, machine learning, neural networks, quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7322999 Screening of Strategic Management Criterions in Hospitals Using Delphi-Fuzzy Method
Authors: Helia Moayedi, Mahdi Moaidi
Abstract:
Nowadays, the managing and planning of hospitals is facing many problems. Failure to recognize the main criteria for strategic management to ensure long-term hospital performance can lead to many health problems. To achieve this goal, a qualitative-quantitate method titled Delphi-Fuzzy has been applied. This strategy makes it possible for experts to screen among the most important criteria in strategic management. To conduct this operation, a statistical society consisting of 20 experts in Ahwaz hospitals has been questioned. The final model confirms the key criterions after three stages of Delphi. This model provides the possibility to focus on the basic criteria and can determine the organization’s main orientation.
Keywords: Delphi-Fuzzy Method, hospital management, long-term planning, qualitative-quantitate method, screening of strategic criteria, strategic planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7152998 An Hybrid Approach for Loss Reduction in Distribution Systems using Harmony Search Algorithm
Authors: R. Srinivasa Rao
Abstract:
Individually Network reconfiguration or Capacitor control perform well in minimizing power loss and improving voltage profile of the distribution system. But for heavy reactive power loads network reconfiguration and for heavy active power loads capacitor placement can not effectively reduce power loss and enhance voltage profiles in the system. In this paper, an hybrid approach that combine network reconfiguration and capacitor placement using Harmony Search Algorithm (HSA) is proposed to minimize power loss reduction and improve voltage profile. The proposed approach is tested on standard IEEE 33 and 16 bus systems. Computational results show that the proposed hybrid approach can minimize losses more efficiently than Network reconfiguration or Capacitor control. The results of proposed method are also compared with results obtained by Simulated Annealing (SA). The proposed method has outperformed in terms of the quality of solution compared to SA.Keywords: Capacitor Control, Network Reconfiguration, HarmonySearch Algorithm, Loss Reduction, Voltage Profile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21682997 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.
Keywords: Autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10142996 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks
Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei
Abstract:
An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25302995 An Empirical Model of Correlated Traffics in LTE-Advanced System through an Innovative Simulation Tool
Authors: Ghassan A. Abed, Mahamod Ismail, Samir I. Badrawi, Bayan M. Sabbar
Abstract:
Long Term Evolution Advanced (LTE-Advanced) LTE-Advanced is not new as a radio access technology, but it is an evolution of LTE to enhance the performance. This generation is the continuation of 3GPP-LTE (3GPP: 3rd Generation Partnership Project) and it is targeted for advanced development of the requirements of LTE in terms of throughput and coverage. The performance evaluation process of any network should be based on many models and simulations to investigate the network layers and functions and monitor the employment of the new technologies especially when this network includes large-bandwidth and low-latency links such as LTE and LTE-Advanced networks. Therefore, it’s necessary to enhance the proposed models of high-speed and high-congested link networks to make these links and traffics fulfill the needs of the huge data which transferred over the congested links. This article offered an innovative model of the most correlated links of LTE-Advanced system using the Network Simulator 2 (NS-2) with investigation of the link parameters.
Keywords: 3GPP, LTE, LTE-Advanced, NS-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24272994 Spacecraft Neural Network Control System Design using FPGA
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.
Keywords: Spacecraft, neural network, FPGA, VHDL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30102993 Application of Computational Intelligence for Sensor Fault Detection and Isolation
Authors: A. Jabbari, R. Jedermann, W. Lang
Abstract:
The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.
Keywords: Fault detection and Isolation, Neural network, Temperature measurement, measurement approximation and classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20712992 GEP Considering Purchase Prices, Profits of IPPs and Reliability Criteria Using Hybrid GA and PSO
Authors: H. Shayeghi, H. Hosseini, A. Shabani, M. Mahdavi
Abstract:
In this paper, optimal generation expansion planning (GEP) is investigated considering purchase prices, profits of independent power producers (IPPs) and reliability criteria using a new method based on hybrid coded Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). In this approach, optimal purchase price of each IPP is obtained by HCGA and reliability criteria are calculated by PSO technique. It should be noted that reliability criteria and the rate of carbon dioxide (CO2) emission have been considered as constraints of the GEP problem. Finally, the proposed method has been tested on the case study system. The results evaluation show that the proposed method can simply obtain optimal purchase prices of IPPs and is a fast method for calculation of reliability criteria in expansion planning. Also, considering the optimal purchase prices and profits of IPPs in generation expansion planning are caused that the expansion costs are decreased and the problem is solved more exactly.
Keywords: GEP Problem, IPPs, Reliability Criteria, GA, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14322991 Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks
Authors: Maassoumeh Javadi Baygi, Abdul Rahman B Ramli, Borhanuddin Mohd Ali, Syamsiah Mashohor
Abstract:
The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.Keywords: Quality of Service, Routing, Ant Colony Optimization, Ant-based algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13272990 Wireless Control for an Induction Motor
Authors: Benmabrouk. Zaineb, Ben Hamed. Mouna, Lassaad. Sbita
Abstract:
This paper discusses the development of wireless structure control of an induction motor scalar drives. This was realised up on the wireless WiFi networks. This strategy of control is ensured by the use of Wireless ad hoc networks and a virtual network interface based on VNC which is used to make possible to take the remote control of a PC connected on a wireless Ethernet network. Verification of the proposed strategy of control is provided by experimental realistic tests on scalar controlled induction motor drives. The experimental results of the implementations with their analysis are detailed.Keywords: Digital drives, Induction motor, Remote control, Virtual Network Computing VNC, Wireless Local Area NetworkWiFi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27232989 An Overview of Energy Efficient Routing Protocols for Acoustic Sensor Network
Authors: V. P. Dhivya, R. Arthi
Abstract:
Underwater acoustic network is one of the rapidly growing areas of research and finds different applications for monitoring and collecting various data for environmental studies. The communication among dynamic nodes and high error probability in an acoustic medium forced to maximize energy consumption in Underwater Sensor Networks (USN) than in traditional sensor networks. Developing energy-efficient routing protocol is the fundamental and a curb challenge because all the sensor nodes are powered by batteries, and they cannot be easily replaced in UWSNs. This paper surveys the various recent routing techniques that mainly focus on energy efficiency.
Keywords: Acoustic channels, Energy efficiency, Routing in sensor networks, Underwater Sensor Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29892988 Planning Rigid Body Motions and Optimal Control Problem on Lie Group SO(2, 1)
Authors: Nemat Abazari, Ilgin Sager
Abstract:
In this paper smooth trajectories are computed in the Lie group SO(2, 1) as a motion planning problem by assigning a Frenet frame to the rigid body system to optimize the cost function of the elastic energy which is spent to track a timelike curve in Minkowski space. A method is proposed to solve a motion planning problem that minimizes the integral of the Lorentz inner product of Darboux vector of a timelike curve. This method uses the coordinate free Maximum Principle of Optimal control and results in the theory of integrable Hamiltonian systems. The presence of several conversed quantities inherent in these Hamiltonian systems aids in the explicit computation of the rigid body motions.
Keywords: Optimal control, Hamiltonian vector field, Darboux vector, maximum principle, lie group, rigid body motion, Lorentz metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15702987 ISTER (Immune System - Tumor Efficiency Rate): An Important Key for Planning in Radiotherapic Facilities
Authors: O. Sotolongo-Grau, D. Rodriguez-Perez, J. A. Santos-Miranda, M. M. Desco, O. Sotolongo-Costa, J. C. Antoranz
Abstract:
The use of the oncologic index ISTER allows for a more effective planning of the radiotherapic facilities in the hospitals. Any change in the radiotherapy treatment, due to unexpected stops, may be adapted by recalculating the doses to the new treatment duration while keeping the optimal prognosis. The results obtained in a simulation model on millions of patients allow the definition of optimal success probability algorithms.
Keywords: Mathematical model, radiation oncology, dynamical systems applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15492986 A Case Study of Applying Virtual Prototyping in Construction
Authors: Stephen C. W. Kong
Abstract:
The use of 3D computer-aided design (CAD) models to support construction project planning has been increasing in the previous year. 3D CAD models reveal more planning ideas by visually showing the construction site environment in different stages of the construction process. Using 3D CAD models together with scheduling software to prepare construction plan can identify errors in process sequence and spatial arrangement, which is vital to the success of a construction project. A number of 4D (3D plus time) CAD tools has been developed and utilized in different construction projects due to the awareness of their importance. Virtual prototyping extends the idea of 4D CAD by integrating more features for simulating real construction process. Virtual prototyping originates from the manufacturing industry where production of products such as cars and airplanes are virtually simulated in computer before they are built in the factory. Virtual prototyping integrates 3D CAD, simulation engine, analysis tools (like structural analysis and collision detection), and knowledgebase to streamline the whole product design and production process. In this paper, we present the application of a virtual prototyping software which has been used in a few construction projects in Hong Kong to support construction project planning. Specifically, the paper presents an implementation of virtual prototyping in a residential building project in Hong Kong. The applicability, difficulties and benefits of construction virtual prototyping are examined based on this project.Keywords: construction project planning, prefabrication, simulation, virtual prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28262985 Landscape Visual Classification Using Land use and Contour Data for Tourism and Planning Decision Making in Cameron Highlands District
Authors: Hosni, N., Shinozaki, M.
Abstract:
Cameron Highlands is known for upland tourism area with vast natural wealth, mountainous landscape endowed with rich diverse species as well as people traditions and cultures. With these various resources, CH possesses an interesting visual and panorama that can be offered to the tourist. However this benefit may not be utilized without obtaining the understanding of existing landscape structure and visual. Given a limited data, this paper attempts to classify landscape visual of Cameron Highlands using land use and contour data. Visual points of view were determined from the given tourist attraction points in the CH Local Plan 2003-2015. The result shows landscape visual and structure categories offered in the study area. The result can be used for further analysis to determine the best alternative tourist trails for tourism planning and decision making using readily available data.Keywords: Visibility, landscape visual, urban planning, GIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373