Search results for: computer supported collaborative learning
3056 Experimental Study of Hyperparameter Tuning a Deep Learning Convolutional Recurrent Network for Text Classification
Authors: Bharatendra Rai
Abstract:
Sequences of words in text data have long-term dependencies and are known to suffer from vanishing gradient problem when developing deep learning models. Although recurrent networks such as long short-term memory networks help overcome this problem, achieving high text classification performance is a challenging problem. Convolutional recurrent networks that combine advantages of long short-term memory networks and convolutional neural networks, can be useful for text classification performance improvements. However, arriving at suitable hyperparameter values for convolutional recurrent networks is still a challenging task where fitting of a model requires significant computing resources. This paper illustrates the advantages of using convolutional recurrent networks for text classification with the help of statistically planned computer experiments for hyperparameter tuning.
Keywords: Convolutional recurrent networks, hyperparameter tuning, long short-term memory networks, Tukey honest significant differences
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263055 The Impact of E-Learning on Medication Administration of Nursing Students: What Recent Studies Say?
Authors: Z. Karakus, Z. Ozer
Abstract:
Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.
Keywords: E-Learning, Medication Administration, Nursing, Nursing Students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27633054 Determination of Extreme Shear Stresses in Teaching Mechanics Using Freely Available Computer Tools
Authors: Rado Flajs
Abstract:
In the present paper the extreme shear stresses with the corresponding planes are established using the freely available computer tools like the Gnuplot, Sage, R, Python and Octave. In order to support these freely available computer tools, their strong symbolical and graphical abilities are illustrated. The nature of the stationary points obtained by the Method of Lagrangian Multipliers can be determined using freely available computer symbolical tools like Sage. The characters of the stationary points can be explained in the easiest way using freely available computer graphical tools like Gnuplot, Sage, R, Python and Octave. The presented figures improve the understanding of the problem and the obtained solutions for the majority of students of civil or mechanical engineering.
Keywords: engineering, continuum mechanics, extreme shear stresses, Gnuplot, Sage, R, Python, Octave
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13913053 Body Composition Response to Lower Body Positive Pressure Training in Obese Children
Authors: Basant H. El-Refay, Nabeel T. Faiad
Abstract:
Background: The high prevalence of obesity in Egypt has a great impact on the health care system, economic and social situation. Evidence suggests that even a moderate amount of weight loss can be useful. Aim of the study: To analyze the effects of lower body positive pressure supported treadmill training, conducted with hypocaloric diet, on body composition of obese children. Methods: Thirty children aged between 8 and 14 years, were randomly assigned into two groups: intervention group (15 children) and control group (15 children). All of them were evaluated using body composition analysis through bioelectric impedance. The following parameters were measured before and after the intervention: body mass, body fat mass, muscle mass, body mass index (BMI), percentage of body fat and basal metabolic rate (BMR). The study group exercised with antigravity treadmill three times a week during 2 months, and participated in a hypocaloric diet program. The control group participated in a hypocaloric diet program only. Results: Both groups showed significant reduction in body mass, body fat mass and BMI. Only study group showed significant reduction in percentage of body fat (p = 0.0.043). Changes in muscle mass and BMR didn't reach statistical significance in both groups. No significant differences were observed between groups except for muscle mass (p = 0.049) and BMR (p = 0.042) favoring study group. Conclusion: Both programs proved effective in the reduction of obesity indicators, but lower body positive pressure supported treadmill training was more effective in improving muscle mass and BMR.
Keywords: Children, Hypocaloric diet, Lower body positive pressure supported treadmill, obesity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43263052 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad
Abstract:
The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22683051 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28913050 The Creative Unfolding of “Reduced Descriptive Structures” in Musical Cognition: Technical and Theoretical Insights Based on the OpenMusic and PWGL Long-Term Feedback
Authors: Jacopo Baboni Schilingi
Abstract:
We here describe the theoretical and philosophical understanding of a long term use and development of algorithmic computer-based tools applied to music composition. The findings of our research lead us to interrogate some specific processes and systems of communication engaged in the discovery of specific cultural artworks: artistic creation in the sono-musical domain. Our hypothesis is that the patterns of auditory learning cannot be only understood in terms of social transmission but would gain to be questioned in the way they rely on various ranges of acoustic stimuli modes of consciousness and how the different types of memories engaged in the percept-action expressive systems of our cultural communities also relies on these shadowy conscious entities we named “Reduced Descriptive Structures”.
Keywords: Algorithmic sonic computation, corrected and self-correcting learning patterns in acoustic perception, morphological derivations in sensorial patterns, social unconscious modes of communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6113049 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.
Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6463048 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15643047 Investigating the Nail Walls Performance in Jointed Rock Medium
Authors: Ibrahim Naeimifar, Omid Naeemifar
Abstract:
Evaluation of the excavation-induced ground movements is an important design aspect of support systems in urban areas. Geological and geotechnical conditions of an excavation area have significant effects on excavation-induced ground movements and the related damage. This paper is aimed at studying the performance of excavation walls supported by nails in jointed rock medium. The performance of nailed walls is investigated based on evaluating the excavation-induced ground movements. For this purpose, a set of calibrated 2D finite element models are developed by taking into account the nail-rock-structure interactions, the anisotropic properties of jointed rock, and the staged construction process. The results of this paper highlight effects of different parameters such as joint inclinations, anisotropy of rocks and nail inclinations on deformation parameters of excavation wall supported by nails.Keywords: Finite element, jointed rock, nailing, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17113046 Determination of Skills Gap between School-Based Learning and Laboratory-Based Learning in Omar Al-Mukhtar University
Authors: Aisha Othman, Crinela Pislaru, Ahmed Impes
Abstract:
This paper provides an identification of the existing practical skills gap between school-based learning (SBL) and laboratory based learning (LBL) in the Computing Department within the Faculty of Science at Omar Al-Mukhtar University in Libya. A survey has been conducted and the first author has elicited the responses of two groups of stakeholders, namely the academic teachers and students.
The primary goal is to review the main strands of evidence available and argue that there is a gap between laboratory and school-based learning in terms of opportunities for experiment and application of skills. In addition, the nature of experimental work within the laboratory at Omar Al-Mukhtar University needs to be reconsidered. Another goal of our study was to identify the reasons for students’ poor performance in the laboratory and to determine how this poor performance can be eliminated by the modification of teaching methods. Bloom’s taxonomy of learning outcomes has been applied in order to classify questions and problems into categories, and the survey was formulated with reference to third year Computing Department students. Furthermore, to discover students’ opinions with respect to all the issues, an exercise was conducted. The survey provided questions related to what the students had learnt and how well they had learnt. We were also interested in feedback on how to improve the course and the final question provided an opportunity for such feedback.
Keywords: Bloom’s taxonomy, e-learning, Omar Al-Mukhtar University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24323045 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373044 Combining ILP with Semi-supervised Learning for Web Page Categorization
Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul
Abstract:
This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.
Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16463043 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20093042 Learning Factory for Changeability
Authors: Dennis Gossmann, Habil Peter Nyhuis
Abstract:
Amongst the consistently fluctuating conditions prevailing today, changeability represents a strategic key factor for a manufacturing company to achieve success on the international markets. In order to cope with turbulences and the increasing level of incalculability, not only the flexible design of production systems but in particular the employee as enabler of change provide the focus here. It is important to enable employees from manufacturing companies to participate actively in change events and in change decisions. To this end, the learning factory has been created, which is intended to serve the development of change-promoting competences and the sensitization of employees for the necessity of changes.Keywords: Changeability, human resources, learning factory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17273041 Knowledge Transfer in Industrial Clusters
Authors: Ana Paula Lisboa Sohn, Filipa Dionísio Vieria, Nelson Casarotto, Idaulo José Cunha
Abstract:
This paper aims at identifying and analyzing the knowledge transmission channels in textile and clothing clusters located in Brazil and in Europe. Primary data was obtained through interviews with key individuals. The collection of primary data was carried out based on a questionnaire with ten categories of indicators of knowledge transmission. Secondary data was also collected through a literature review and through international organizations sites. Similarities related to the use of the main transmission channels of knowledge are observed in all cases. The main similarities are: influence of suppliers of machinery, equipment and raw materials; imitation of products and best practices; training promoted by technical institutions and businesses; and cluster companies being open to acquire new knowledge. The main differences lie in the relationship between companies, where in Europe the intensity of this relationship is bigger when compared to Brazil. The differences also occur in importance and frequency of the relationship with the government, with the cultural environment, and with the activities of research and development. It is also found factors that reduce the importance of geographical proximity in transmission of knowledge, and in generating trust and the establishment of collaborative behavior.
Keywords: Industrial clusters, interorganizational learning, knowledge transmission channels, textile and clothing industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20903040 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism
Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff
Abstract:
An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.
Keywords: Learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7793039 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823038 Generalized Exploratory Model of Human Category Learning
Authors: Toshihiko Matsuka
Abstract:
One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13903037 Relational Representation in XCSF
Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh
Abstract:
Generalization is one of the most challenging issues of Learning Classifier Systems. This feature depends on the representation method which the system used. Considering the proposed representation schemes for Learning Classifier System, it can be concluded that many of them are designed to describe the shape of the region which the environmental states belong and the other relations of the environmental state with that region was ignored. In this paper, we propose a new representation scheme which is designed to show various relationships between the environmental state and the region that is specified with a particular classifier.Keywords: Classifier Systems, Reinforcement Learning, Relational Representation, XCSF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13273036 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka
Authors: Manuela Nayantara Jeyaraj
Abstract:
Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.
Keywords: Digital divide, digital learning, digitization, Sri Lanka, teaching methodologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12043035 Start Talking in an e-Learning Environment: Building and Sustaining Communities of Practice
Authors: Melissa C. LaDuke
Abstract:
The purpose of this targeted analysis was to identify the use of online communities of practice (CoP) within e-learning environments as a method to build social interaction and student-centered educational experiences. A literature review was conducted to survey and collect scholarly thoughts concerning CoPs from a variety of sources. Data collected included best practices, ties to educational theories, and examples of online CoPs. Social interaction has been identified as a critical piece of the learning infrastructure, specifically for adult learners. CoPs are an effective way to help students connect to each other and the material of interest. The use of CoPs falls in line with many educational theories, including situated learning theory, social constructivism, connectivism, adult learning theory, and motivation. New literacies such as social media and gamification can help increase social interaction in online environments and provide methods to host CoPs. Steps to build and sustain a CoP were discussed in addition to CoP considerations and best practices.
Keywords: Community of practice, knowledge sharing, social interaction, online course design, new literacies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303034 Selective Separation of Lead and Mercury Ions from Synthetic Produced Water via a Hollow Fiber Supported Liquid Membrane
Authors: S. Suren, U. Pancharoen
Abstract:
A double module hollow fiber supported liquid membrane (HFSLM) was applied to selectively separate lead and mercury ions from dilute synthetic produced water. The experiments were investigated on several variables: types of extractants (D2EHPA, Cyanex 471, Aliquat 336, and TOA), concentration of the selected extractant and operating time. The results clearly showed that the double module HFSLM could selectively separate Pb(II) and Hg(II) in feed solution at a very low concentration to less than the regulatory discharge limit of 0.2 and 0.005 mg/L issued by the Ministry of Industry and the Ministry of Natural Resource Environment, Thailand. The highest extractions of lead and mercury ions from synthetic produced water were 96% and 100% using 0.03 M D2EHPA and 0.06 M Aliquat 336 as the extractant for the first and second modules.Keywords: Hollow fiber, Lead ions, Liquid membrane, Mercury ions, Selective separation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23363033 Awareness Level of Green Computing among Computer Users in Kebbi State, Nigeria
Authors: A. Mubarak, A. I. Augie
Abstract:
This study investigated the awareness level of green computing possessed by computer users in Kebbi state. Survey method was employed to carry out the study. The study involved computer users from ICT business/training centers around Argungu and Birnin Kebbi areas of Kebbi state. Purposive sampling method was used to draw 156 respondents that volunteer to answer the questionnaire administered for gathering the data of the study. Out of the 156 questionnaires distributed, 121 were used for data analysis. In all, 79 respondents were from Argungu, while 42 were from Birnin Kebbi. The two research questions of the study were answered with descriptive statistic (percentage), and inferential statistics (ANOVA). The findings showed that the most of the computer users do not possess adequate awareness on conscious use of computing system. Also, the study showed that there is no significant difference regarding the consciousness of green computing possesses among computer users in Argungu and Birnin Kebbi. Based on these findings, the study suggested among others an aggressive campaign on green computing practice among computer users in Kebbi state.
Keywords: Green computing, awareness, information technology, Energy Star.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6653032 The Attitude of High School Teachers in Saudi Arabia towards Computers: Qualitative Study
Authors: Manal O. Alothman, Judy. Robertson
Abstract:
Teachers can play a huge role in encouraging students to use computers and can affect students’ attitudes towards computers. So understanding teachers’ beliefs and their use of computers is an important way to create effective motivational systems for teachers to use computers in the classroom in an effective way. A qualitative study (6 focus group) was carried out among Saudi High school teachers, both male and female, to examine their attitudes towards computers and to find out their computer skills and usage. The study showed a gender differences in that females were less likely to attend computer workshops, females also had less computer skills, and they have more negative attitudes towards computers than males. Also the study found that low computer skills in the classroom made students unlikely to have the lessons presented using computers. Furthermore, the study found some factors that effected teachers’ attitudes towards computers. These factors were computer experience and confidence as much having skills and good experience in computer use, the role and importance of computers had become in their life and in teaching as well.
Keywords: Attitude, Education, Student, Teacher, Technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23883031 AINA: Disney Animation Information as Educational Resources
Authors: Piedad Garrido, Fernando Repulles, Andy Bloor, Julio A. Sanguesa, Jesus Gallardo, Vicente Torres, Jesus Tramullas
Abstract:
With the emergence and development of Information and Communications Technologies (ICTs), Higher Education is experiencing rapid changes, not only in its teaching strategies but also in student’s learning skills. However, we have noticed that students often have difficulty when seeking innovative, useful, and interesting learning resources for their work. This is due to the lack of supervision in the selection of good query tools. This paper presents AINA, an Information Retrieval (IR) computer system aimed at providing motivating and stimulating content to both students and teachers working on different areas and at different educational levels. In particular, our proposal consists of an open virtual resource environment oriented to the vast universe of Disney comics and cartoons. Our test suite includes Disney’s long and shorts films, and we have performed some activities based on the Just In Time Teaching (JiTT) methodology. More specifically, it has been tested by groups of university and secondary school students.Keywords: Information retrieval, animation, educational resources, JiTT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12113030 The Students' Learning Effects on Dance Domain of Arts Education
Authors: Sheng-Min Cheng
Abstract:
The purpose of this study was to explore the learning effects on dance domain in Arts Curriculum at junior and senior high levels. A total of 1,366 students from 9th to 11th grade of different areas from Taiwan were administered a self-designed dance achievement test. Data were analyzed through descriptive analysis, independent sample t test, one-way ANOVA and Post hoc comparison analysis using Scheffé Test. The results showed (1) female studentsKeywords: arts education, dance learning effects, secondary level students, dance talented students
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21133029 A Primer to the Learning Readiness Assessment to Raise the Sharing of e-Health Knowledge amongst Libyan Nurses
Authors: Mohamed Elhadi M. Sharif, Mona Masood
Abstract:
The usage of e-health facilities is seen to be the first priority by the Libyan government. As such this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using ehealth services in nursing education.
Keywords: Libyan nurses, e-Learning readiness, e-Health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21753028 The Attitude of Second Year Pharmacy Students towards Lectures, Exams and E-Learning
Authors: Ahmed T. Alahmar
Abstract:
There is an increasing trend toward student-centred interactive e-learning methods and students’ feedback is a valuable tool for improving learning methods. The aim of this study was to explore the attitude of second year pharmacy students at the University of Babylon, Iraq, towards lectures, exams and e-learning. Materials and methods: Ninety pharmacy students were surveyed by paper questionnaire about their preference for lecture format, use of e-files, theoretical lectures versus practical experiments, lecture and lab time. Students were also asked about their predilection for Moodle-based online exams, different types of exam questions, exam time and other extra academic activities. Results: Students prefer to read lectures on paper (73.3%), use of PowerPoint file (76.7%), short lectures of less than 10 pages (94.5%), practical experiments (66.7%), lectures and lab time of less than two hours (89.9% and 96.6 respectively) and intra-lecture discussions (68.9%). Students also like to have paper-based exam (73.3%), short essay (40%) or MCQ (34.4%) questions and also prefer to do extra activities like reports (22.2%), seminars (18.6%) and posters (10.8%). Conclusion: Second year pharmacy students have different attitudes toward traditional and electronic leaning and assessment methods. Using multimedia, e-learning and Moodle are increasingly preferred methods among some students.
Keywords: Pharmacy, students, lecture, exam, e-learning, Moodle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14423027 Machine Learning in Production Systems Design Using Genetic Algorithms
Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli
Abstract:
To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630