Search results for: measured data.
7791 Robust Regression and its Application in Financial Data Analysis
Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani
Abstract:
This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.
Keywords: Financial data analysis, Influential data, Outliers, Robust regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19327790 Hierarchical Checkpoint Protocol in Data Grids
Authors: Rahma Souli-Jbali, Minyar Sassi Hidri, Rahma Ben Ayed
Abstract:
Grid of computing nodes has emerged as a representative means of connecting distributed computers or resources scattered all over the world for the purpose of computing and distributed storage. Since fault tolerance becomes complex due to the availability of resources in decentralized grid environment, it can be used in connection with replication in data grids. The objective of our work is to present fault tolerance in data grids with data replication-driven model based on clustering. The performance of the protocol is evaluated with Omnet++ simulator. The computational results show the efficiency of our protocol in terms of recovery time and the number of process in rollbacks.Keywords: Data grids, fault tolerance, chandy-lamport, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9517789 Fuzzy Based Problem-Solution Data Structureas a Data Oriented Model for ABS Controlling
Authors: Ahmad Habibizad Navin, Mehdi Naghian Fesharaki, Mohamad Teshnelab, Ehsan Shahamatnia
Abstract:
The anti-lock braking systems installed on vehicles for safe and effective braking, are high-order nonlinear and timevariant. Using fuzzy logic controllers increase efficiency of such systems, but impose a high computational complexity as well. The main concept introduced by this paper is reducing computational complexity of fuzzy controllers by deploying problem-solution data structure. Unlike conventional methods that are based on calculations, this approach is based on data oriented modeling.Keywords: ABS, Fuzzy controller, PSDS, Time-Memory tradeoff, Data oriented modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17367788 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.
Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147787 Students’ Level of Participation, Critical Thinking, Types of Action and Influencing Factors in Online Forum Environment
Authors: N. I. Bazid, I. N. Umar
Abstract:
Due to the advancement of Internet technology, online learning is widely used in higher education institutions. Online learning offers several means of communication, including online forum. Through online forum, students and instructors are able to discuss and share their knowledge and expertise without having a need to attend the face-to-face, ordinary classroom session. The purposes of this study are to analyze the students’ levels of participation and critical thinking, types of action and factors influencing their participation in online forum. A total of 41 postgraduate students undertaking a course in educational technology from a public university in Malaysia were involved in this study. In this course, the students participated in a weekly online forum as part of the course requirement. Based on the log data file extracted from the online forum, the students’ type of actions (view, add, update, delete posts) and their levels of participation (passive, moderate or active) were identified. In addition, the messages posted in the forum were analyzed to gauge their level of critical thinking. Meanwhile, the factors that might influence their online forum participation were measured using a 24-items questionnaire. Based on the log data, a total of 105 posts were sent by the participants. In addition, the findings show that (i) majority of the students are moderate participants, with an average of two to three posts per person, (ii) viewing posts are the most frequent type of action (85.1%), and followed by adding post (9.7%). Furthermore, based on the posts they made, the most frequent type of critical thinking observed was justification (50 input or 19.0%), followed by linking ideas and interpretation (47 input or 18%), and novelty (38 input or 14.4%). The findings indicate that online forum allows for social interaction and can be used to measure the students’ critical thinking skills. In order to achieve this, monitoring students’ activities in the online forum is recommended.
Keywords: Critical thinking, learning management system, level of online participation, online forum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22757786 Use of Bayesian Network in Information Extraction from Unstructured Data Sources
Authors: Quratulain N. Rajput, Sajjad Haider
Abstract:
This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.Keywords: Information Extraction, Bayesian Network, ontology, Machine Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22327785 Data Acquisition from Cell Phone using Logical Approach
Authors: Keonwoo Kim, Dowon Hong, Kyoil Chung, Jae-Cheol Ryou
Abstract:
Cell phone forensics to acquire and analyze data in the cellular phone is nowadays being used in a national investigation organization and a private company. In order to collect cellular phone flash memory data, we have two methods. Firstly, it is a logical method which acquires files and directories from the file system of the cell phone flash memory. Secondly, we can get all data from bit-by-bit copy of entire physical memory using a low level access method. In this paper, we describe a forensic tool to acquire cell phone flash memory data using a logical level approach. By our tool, we can get EFS file system and peek memory data with an arbitrary region from Korea CDMA cell phone.Keywords: Forensics, logical method, acquisition, cell phone, flash memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41227784 Data Migration Methodology from Relational to NoSQL Databases
Authors: Mohamed Hanine, Abdesadik Bendarag, Omar Boutkhoum
Abstract:
Currently, the field of data migration is very topical. As the number of applications developed rapidly, the ever-increasing volume of data collected has driven the architectural migration from Relational Database Management System (RDBMS) to NoSQL (Not Only SQL) database. This very recent technology is important enough in the field of database management. The main aim of this paper is to present a methodology for data migration from RDBMS to NoSQL database. To illustrate this methodology, we implement a software prototype using MySQL as a RDBMS and MongoDB as a NoSQL database. Although this is a hard engineering work, our results show that the proposed methodology can successfully accomplish the goal of this study.Keywords: Data Migration, MySQL, RDBMS, NoSQL, MongoDB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43667783 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19097782 Data Hiding by Vector Quantization in Color Image
Authors: Yung-Gi Wu
Abstract:
With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.Keywords: Data hiding, vector quantization, watermark.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17757781 Approximate Range-Sum Queries over Data Cubes Using Cosine Transform
Authors: Wen-Chi Hou, Cheng Luo, Zhewei Jiang, Feng Yan
Abstract:
In this research, we propose to use the discrete cosine transform to approximate the cumulative distributions of data cube cells- values. The cosine transform is known to have a good energy compaction property and thus can approximate data distribution functions easily with small number of coefficients. The derived estimator is accurate and easy to update. We perform experiments to compare its performance with a well-known technique - the (Haar) wavelet. The experimental results show that the cosine transform performs much better than the wavelet in estimation accuracy, speed, space efficiency, and update easiness. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19627780 Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies
Authors: Madhav V. Chitturi, Anshu Manik, Kasthurirangan Gopalakrishnan
Abstract:
The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.Keywords: HMA, dynamic modulus, GA, evolutionarycomputation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15717779 Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network
Authors: Anamika Jain, A. S. Thoke, R. N. Patel
Abstract:
This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.
Keywords: Double circuit transmission line, Fault detection and classification, High impedance fault and Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31867778 The Feasibility of Augmenting an Augmented Reality Image Card on a Quick Response Code
Authors: Alfred Chen, Shr Yu Lu, Cong Seng Hong, Yur-June Wang
Abstract:
This research attempts to study the feasibility of augmenting an augmented reality (AR) image card on a Quick Response (QR) code. The authors have developed a new visual tag, which contains a QR code and an augmented AR image card. The new visual tag has features of reading both of the revealed data of the QR code and the instant data from the AR image card. Furthermore, a handheld communicating device is used to read and decode the new visual tag, and then the concealed data of the new visual tag can be revealed and read through its visual display. In general, the QR code is designed to store the corresponding data or, as a key, to access the corresponding data from the server through internet. Those reveled data from the QR code are represented in text. Normally, the AR image card is designed to store the corresponding data in 3-Dimensional or animation/video forms. By using QR code's property of high fault tolerant rate, the new visual tag can access those two different types of data by using a handheld communicating device. The new visual tag has an advantage of carrying much more data than independent QR code or AR image card. The major findings of this research are: 1) the most efficient area for the designed augmented AR card augmenting on the QR code is 9% coverage area out of the total new visual tag-s area, and 2) the best location for the augmented AR image card augmenting on the QR code is located in the bottom-right corner of the new visual tag.Keywords: Augmented reality, QR code, Visual tag, Handheldcommunicating device
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15557777 A Competitive Replica Placement Methodology for Ad Hoc Networks
Authors: Samee Ullah Khan, C. Ardil
Abstract:
In this paper, a mathematical model for data object replication in ad hoc networks is formulated. The derived model is general, flexible and adaptable to cater for various applications in ad hoc networks. We propose a game theoretical technique in which players (mobile hosts) continuously compete in a non-cooperative environment to improve data accessibility by replicating data objects. The technique incorporates the access frequency from mobile hosts to each data object, the status of the network connectivity, and communication costs. The proposed technique is extensively evaluated against four well-known ad hoc network replica allocation methods. The experimental results reveal that the proposed approach outperforms the four techniques in both the execution time and solution qualityKeywords: Data replication, auctions, static allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14017776 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids
Authors: Pavel Y. Tabakov, Kevin Duffy
Abstract:
The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.Keywords: Classification, clustering, data minig, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17727775 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy
Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo
Abstract:
Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30217774 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model
Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini
Abstract:
The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.
Keywords: climate change, projections, solar radiation, validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8597773 Zero Truncated Strict Arcsine Model
Authors: Y. N. Phang, E. F. Loh
Abstract:
The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.
Keywords: Hurdle models, maximum likelihood estimation method, positive count data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18577772 Study on Metabolic and Mineral Balance, Oxidative Stress and Cardiovascular Risk Factors in Type 2 Diabetic Patients on Different Therapy
Authors: E. Nemes-Nagy, E. Fogarasi, M. Croitoru, A. Nyárádi, K. Komlódi, S. Pál, A. Kovács, O. Kopácsy, R. Tripon, Z. Fazakas, C. Uzun, Z. Simon-Szabó, V. Balogh-Sămărghițan, E. Ernő Nagy, M. Szabó, M. Tilinca
Abstract:
Intense oxidative stress, increased glycated hemoglobin and mineral imbalance represent risk factors for complications in diabetic patients. Cardiovascular complications are most common in these patients, including nephropathy. This study was conducted in 2015 at the Procardia Laboratory in Tîrgu Mureș, Romania on 40 type 2 diabetic adults. Routine biochemical tests were performed on the Konleab 20XTi analyzer (serum glucose, total cholesterol, LDL and HDL cholesterol, triglyceride, creatinine, urea). We also measured serum uric acid, magnesium and calcium concentration by photometric procedures, potassium, sodium and chloride by ion selective electrode, and chromium by atomic absorption spectrometry in a group of patients. Glycated hemoglobin (HbA1c) dosage was made by reflectometry. Urine analysis was performed using the HandUReader equipment. The level of oxidative stress was measured by serum malondialdehyde dosage using the thiobarbituric acid reactive substances method. MDRD (Modification of Diet in Renal Disease) formula was applied for calculation of creatinine-derived glomerular filtration rate. GraphPad InStat software was used for statistical analysis of the data. The diabetic subject included in the study presented high MDA concentrations, showing intense oxidative stress. Calcium was deficient in 5% of the patients, chromium deficiency was present in 28%. The atherogenic cholesterol fraction was elevated in 13% of the patients. Positive correlation was found between creatinine and MDRD-creatinine values (p<0.0001), 68% of the patients presented increased creatinine values. The majority of the diabetic patients had good control of their diabetes, having optimal HbA1c values, 35% of them presented fasting serum glucose over 120 mg/dl and 18% had glucosuria. Intense oxidative stress and mineral deficiencies can increase the risk of cardiovascular complications in diabetic patients in spite of their good metabolic balance. More than two third of the patients present biochemical signs of nephropathy, cystatin C dosage and microalbuminuria could reveal better the kidney disorder, but glomerular filtration rate calculation formulas are also useful for evaluation of renal function.
Keywords: Cardiovascular risk, malondialdehyde, metabolic balance, minerals, type 2 diabetes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16957771 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.
Keywords: Communication, LED, Li-Fi, Wi-Fi.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21687770 Business Rules for Data Warehouse
Authors: Rajeev Kaula
Abstract:
Business rules and data warehouse are concepts and technologies that impact a wide variety of organizational tasks. In general, each area has evolved independently, impacting application development and decision-making. Generating knowledge from data warehouse is a complex process. This paper outlines an approach to ease import of information and knowledge from a data warehouse star schema through an inference class of business rules. The paper utilizes the Oracle database for illustrating the working of the concepts. The star schema structure and the business rules are stored within a relational database. The approach is explained through a prototype in Oracle-s PL/SQL Server Pages.Keywords: Business Rules, Data warehouse, PL/SQL ServerPages, Relational model, Web Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29847769 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System
Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu
Abstract:
Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.Keywords: Communication, satellite, data relay system, coverage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14167768 An Efficient Approach to Mining Frequent Itemsets on Data Streams
Authors: Sara Ansari, Mohammad Hadi Sadreddini
Abstract:
The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.Keywords: Data stream, frequent itemset, stream mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14197767 AnQL: A Query Language for Annotation Documents
Authors: Neerja Bhatnagar, Ben A. Juliano, Renee S. Renner
Abstract:
This paper presents data annotation models at five levels of granularity (database, relation, column, tuple, and cell) of relational data to address the problem of unsuitability of most relational databases to express annotations. These models do not require any structural and schematic changes to the underlying database. These models are also flexible, extensible, customizable, database-neutral, and platform-independent. This paper also presents an SQL-like query language, named Annotation Query Language (AnQL), to query annotation documents. AnQL is simple to understand and exploits the already-existent wide knowledge and skill set of SQL.
Keywords: Annotation query language, data annotations, data annotation models, semantic data annotations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18457766 Spatial Variability of Some Soil Properties in Mountain Rangelands of Northern Iran
Authors: Zeinab Jafarian Jeloudar, Hossien Kavianpoor, Abazar Esmali Ouri, Ataollah Kavian
Abstract:
In this paper spatial variability of some chemical and physical soil properties were investigated in mountain rangelands of Nesho, Mazandaran province, Iran. 110 soil samples from 0-30 cm depth were taken with systematic method on grid 30×30 m2 in regions with different vegetation cover and transported to laboratory. Then soil chemical and physical parameters including Acidity (pH), Electrical conductivity, Caco3, Bulk density, Particle density, total phosphorus, total Nitrogen, available potassium, Organic matter, Saturation moisture, Soil texture (percentage of sand, silt and clay), Sodium, Calcium, magnesium were measured in laboratory. Data normalization was performed then was done statistical analysis for description of soil properties and geostatistical analysis for indication spatial correlation between these properties and were perpetrated maps of spatial distribution of soil properties using Kriging method. Results indicated that in the study area Saturation moisture and percentage of Sand had highest and lowest spatial correlation respectively.Keywords: Chemical and physical soil properties, Iran, Spatial variability, Nesho Rangeland
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20217765 Phyllantus niruri Protects against Fe2+ and SNP Induced Oxidative Damage in Mitochondrial Enriched Fractions of Rats Brain
Authors: Olusola Olalekan Elekofehinti, Isaac Gbadura Adanlawo, Joao Batista Teixeira Rocha
Abstract:
The potential neuroprotective effect of Phyllantus nuriri against Fe2+ and sodium nitroprusside (SNP) induced oxidative stress in mitochondria of rats brain was evaluated. Cellular viability was assessed by MTT reduction, reactive oxygen species (ROS) generation was measured using the probe 2,7-dichlorofluoresce indiacetate (DCFH-DA). Glutathione content was measured using dithionitrobenzoic acid (DTNB). Fe2+ (10μM) and SNP (5μM) significantly decreased mitochondrial activity, assessed by MTT reduction assay, in a dose-dependent manner, this occurred in parallel with increased glutathione oxidation, ROS production and lipid peroxidation end-products (thiobarbituric acid reactive substances, TBARS). The co-incubation with methanolic extract of Phyllantus nuriri (10-200 μg/ml) reduced the disruption of mitochondrial activity, gluthathione oxidation, ROS production as well as the increase in TBARS levels caused by both Fe2+ and SNP in a dose dependent manner. HPLC analysis of the extract revealed the presence of gallic acid (20.540.01), caffeic acid (7.930.02), rutin (25.310.05), quercetin (31.280.03) and kaemferol (14.360.01). This result suggests that these phytochemicals account for the protective actions of P. niruri against Fe2+ and SNP -induced oxidative stress. Our results show that P. nuriri consist important bioactive molecules in the search for an improved therapy against the deleterious effects of Fe2+, an intrinsic producer of reactive oxygen species (ROS), that leads to neuronal oxidative stress and neurodegeneration.Keywords: Phyllantus niruri, mitochondria, antioxidant, oxidative stress, synaptosome.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17457764 Forecasting of Flash Floods over Wadi Watier –Sinai Peninsula Using the Weather Research and Forecasting (WRF) Model
Authors: Moustafa S. El-Sammany
Abstract:
Flash floods are considered natural disasters that can cause casualties and demolishing of infra structures. The problem is that flash floods, particularly in arid and semi arid zones, take place in very short time. So, it is important to forecast flash floods earlier to its events with a lead time up to 48 hours to give early warning alert to avoid or minimize disasters. The flash flood took place over Wadi Watier - Sinai Peninsula, in October 24th, 2008, has been simulated, investigated and analyzed using the state of the art regional weather model. The Weather Research and Forecast (WRF) model, which is a reliable short term forecasting tool for precipitation events, has been utilized over the study area. The model results have been calibrated with the real data, for the same date and time, of the rainfall measurements recorded at Sorah gauging station. The WRF model forecasted total rainfall of 11.6 mm while the real measured one was 10.8 mm. The calibration shows significant consistency between WRF model and real measurements results.Keywords: Early warning system, Flash floods forecasting, WadiWatier, WRF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19707763 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5677762 Computational Simulation of Turbulence Heat Transfer in Multiple Rectangular Ducts
Authors: Azli Abd. Razak, Yusli Yaakob, Mohd Nazir Ramli
Abstract:
This study comprehensively simulate the use of k-ε model for predicting flow and heat transfer with measured flow field data in a stationary duct with elucidates on the detailed physics encountered in the fully developed flow region, and the sharp 180° bend region. Among the major flow features predicted with accuracy are flow transition at the entrance of the duct, the distribution of mean and turbulent quantities in the developing, fully developed, and sharp 180° bend, the development of secondary flows in the duct cross-section and the sharp 180° bend, and heat transfer augmentation. Turbulence intensities in the sharp 180° bend are found to reach high values and local heat transfer comparisons show that the heat transfer augmentation shifts towards the wall and along the duct. Therefore, understanding of the unsteady heat transfer in sharp 180° bends is important. The design and simulation are related to concept of fluid mechanics, heat transfer and thermodynamics. Simulation study has been conducted on the response of turbulent flow in a rectangular duct in order to evaluate the heat transfer rate along the small scale multiple rectangular ductKeywords: Heat transfer, turbulence, rectangular duct, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451