Search results for: Decision Support.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2957

Search results for: Decision Support.

2327 An Exact Solution to Support Vector Mixture

Authors: Monjed Ezzeddinne, Nicolas Lefebvre, Régis Lengellé

Abstract:

This paper presents a new version of the SVM mixture algorithm initially proposed by Kwok for classification and regression problems. For both cases, a slight modification of the mixture model leads to a standard SVM training problem, to the existence of an exact solution and allows the direct use of well known decomposition and working set selection algorithms. Only the regression case is considered in this paper but classification has been addressed in a very similar way. This method has been successfully applied to engine pollutants emission modeling.

Keywords: Identification, Learning systems, Mixture ofExperts, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
2326 Dissolved Oxygen Prediction Using Support Vector Machine

Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed

Abstract:

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
2325 Automatic Authentication of Handwritten Documents via Low Density Pixel Measurements

Authors: Abhijit Mitra, Pranab Kumar Banerjee, C. Ardil

Abstract:

We introduce an effective approach for automatic offline au- thentication of handwritten samples where the forgeries are skillfully done, i.e., the true and forgery sample appearances are almost alike. Subtle details of temporal information used in online verification are not available offline and are also hard to recover robustly. Thus the spatial dynamic information like the pen-tip pressure characteristics are considered, emphasizing on the extraction of low density pixels. The points result from the ballistic rhythm of a genuine signature which a forgery, however skillful that may be, always lacks. Ten effective features, including these low density points and den- sity ratio, are proposed to make the distinction between a true and a forgery sample. An adaptive decision criteria is also derived for better verification judgements.

Keywords: Handwritten document verification, Skilled forgeries, Low density pixels, Adaptive decision boundary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
2324 Journey to Cybercrime and Crime Opportunity: Quantitative Analysis of Cyber Offender Spatial Decision Making

Authors: Sinchul Back, Sun Ho Kim, Jennifer LaPrade, Ilju Seong

Abstract:

Due to the advantage of using the Internet, cybercriminals can reach target(s) without border controls. Prior research on criminology and crime science has largely been void of empirical studies on journey-to-cybercrime and crime opportunity. Thus, the purpose of this study is to understand more about cyber offender spatial decision making associated with crime opportunity factors (i.e., co-offending, offender-stranger). Data utilized in this study were derived from 306 U.S. Federal court cases of cybercrime. The findings of this study indicated that there was a positive relationship between co-offending and journey-to-cybercrime, whereas there was no link between offender-stranger and journey-to-cybercrime. Also, the results showed that there was no relationship between cybercriminal sex, age, and journey-to-cybercrime. The policy implications and limitations of this study are discussed.

Keywords: Co-offending, crime opportunity, journey-to-cybercrime, offender-stranger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
2323 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.

Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
2322 Factors Determining the Women Empowerment through Microfinance: An Empirical Study in Sri Lanka

Authors: Y. Rathiranee, D. M. Semasinghe

Abstract:

This study attempts to identify the factors influencing on women empowerment of rural area in Sri Lanka through micro finance services. Data were collected from one hundred (100) rural women involving self-employment activities through a questionnaire using direct personal interviews. Judgment and Convenience Random sampling technique was used to select the sample size from three Divisional Secretariat divisions of Kandawalai, Poonakari and Karachchi in Kilinochchi District. The factor analysis was performed on fourteen (14) variables for screening and reducing the variables to identify the influencing factors on empowerment. Multiple regression analysis was used to identify the relationship between the three empowerment factors and the impact of micro finance on overall empowerment of rural women. The result of this study summarized the variables into three factors namely decision making, freedom to mobility and family support and which are positively associated with empowerment. In addition to this the value of adjusted R2 is 0.248 indicates that all the variables extracted can be explained 24.8% of the variation in the women empowerment through microfinance. Independent variables of these three factors have positive correlation with women empowerment as well as significant values at 5 percent level.

Keywords: Influencing factors, Micro finance, rural women and women empowerment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3958
2321 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines

Authors: Mona Soliman Habib

Abstract:

This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.

Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
2320 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels along the Jeddah Coast, Saudi Arabia

Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati

Abstract:

Sea level rise threatens to increase the impact of future  storms and hurricanes on coastal communities. Accurate sea level  change prediction and supplement is an important task in determining  constructions and human activities in coastal and oceanic areas. In  this study, support vector machines (SVM) is proposed to predict  daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal  parameter values of kernel function are determined using a genetic  algorithm. The SVM results are compared with the field data and  with back propagation (BP). Among the models, the SVM is superior  to BPNN and has better generalization performance.

 

Keywords: Tides, Prediction, Support Vector Machines, Genetic Algorithm, Back-Propagation Neural Network, Risk, Hazards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
2319 A Collaborative Platform for Multilingual Ontology Development

Authors: Ahmed Tawfik, Fausto Giunchiglia, Vincenzo Maltese

Abstract:

Ontologies provide a common understanding of a specific domain of interest that can be communicated between people and used as background knowledge for automated reasoning in a wide range of applications. In this paper, we address the design of multilingual ontologies following well-defined knowledge engineering methodologies with the support of novel collaborative development approaches. In particular, we present a collaborative platform which allows ontologies to be developed incrementally in multiple languages. This is made possible via an appropriate mapping between language independent concepts and one lexicalization per language (or a lexical gap in case such lexicalization does not exist). The collaborative platform has been designed to support the development of the Universal Knowledge Core, a multilingual ontology currently in English, Italian, Chinese, Mongolian, Hindi and Bangladeshi. Its design follows a workflow-based development methodology that models resources as a set of collaborative objects and assigns customizable workflows to build and maintain each collaborative object in a community driven manner, with extensive support of modern web 2.0 social and collaborative features.

Keywords: Knowledge Diversity, Knowledge Representation, Ontology Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204
2318 RoboWeedSupport-Sub Millimeter Weed Image Acquisition in Cereal Crops with Speeds up till 50 Km/H

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Mads Dyrmann, Robert Poulsen

Abstract:

For the past three years, the Danish project, RoboWeedSupport, has sought to bridge the gap between the potential herbicide savings using a decision support system and the required weed inspections. In order to automate the weed inspections it is desired to generate a map of the weed species present within the field, to generate the map images must be captured with samples covering the field. This paper investigates the economical cost of performing this data collection based on a camera system mounted on a all-terain vehicle (ATV) able to drive and collect data at up to 50 km/h while still maintaining a image quality sufficient for identifying newly emerged grass weeds. The economical estimates are based on approximately 100 hectares recorded at three different locations in Denmark. With an average image density of 99 images per hectare the ATV had an capacity of 28 ha per hour, which is estimated to cost 6.6 EUR/ha. Alternatively relying on a boom solution for an existing tracktor it was estimated that a cost of 2.4 EUR/ha is obtainable under equal conditions.

Keywords: Weed mapping, integrated weed management, weed recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
2317 Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation

Authors: Ashutosh Kumar Singh, Anand Mohan

Abstract:

This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.

Keywords: Binary Decision Diagrams, Spectral Coefficients, Fault detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
2316 Scenario and Decision Analysis for Solar Energy in Egypt by 2035 Using Dynamic Bayesian Network

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

Bayesian networks are now considered to be a promising tool in the field of energy with different applications. In this study, the aim was to indicate the states of a previous constructed Bayesian network related to the solar energy in Egypt and the factors affecting its market share, depending on the followed data distribution type for each factor, and using either the Z-distribution approach or the Chebyshev’s inequality theorem. Later on, the separate and the conditional probabilities of the states of each factor in the Bayesian network were derived, either from the collected and scrapped historical data or from estimations and past studies. Results showed that we could use the constructed model for scenario and decision analysis concerning forecasting the total percentage of the market share of the solar energy in Egypt by 2035 and using it as a stable renewable source for generating any type of energy needed. Also, it proved that whenever the use of the solar energy increases, the total costs decreases. Furthermore, we have identified different scenarios, such as the best, worst, 50/50, and most likely one, in terms of the expected changes in the percentage of the solar energy market share. The best scenario showed an 85% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market, while the worst scenario showed only a 24% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market. Furthermore, we applied policy analysis to check the effect of changing the controllable (decision) variable’s states acting as different scenarios, to show how it would affect the target nodes in the model. Additionally, the best environmental and economical scenarios were developed to show how other factors are expected to be, in order to affect the model positively. Additional evidence and derived probabilities were added for the weather dynamic nodes whose states depend on time, during the process of converting the Bayesian network into a dynamic Bayesian network.

Keywords: Bayesian network, Chebyshev, decision variable, dynamic Bayesian network, Z-distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504
2315 A Performance Model for Designing Network in Reverse Logistic

Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi

Abstract:

In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.

Keywords: Reverse logistics, Network design, Performance model, Open loop configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
2314 A Dual Method for Solving General Convex Quadratic Programs

Authors: Belkacem Brahmi, Mohand Ouamer Bibi

Abstract:

In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.

Keywords: Convex quadratic programming, dual support methods, active set methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
2313 Transformer Top-Oil Temperature Modeling and Simulation

Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende

Abstract:

The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.

Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
2312 A Neutral Set Approach for Applying TOPSIS in Maintenance Strategy Selection

Authors: C. Ardil

Abstract:

This paper introduces the concept of neutral sets (NSs) and explores various operations on NSs, along with their associated properties. The foundation of the Neutral Set framework lies in ontological neutrality and the principles of logic, including the Law of Non-Contradiction. By encompassing components for possibility, indeterminacy, and necessity, the NS framework provides a flexible representation of truth, uncertainty, and necessity, accommodating diverse ontological perspectives without presupposing specific existential commitments. The inclusion of Possibility acknowledges the spectrum of potential states or propositions, promoting neutrality by accommodating various viewpoints. Indeterminacy reflects the inherent uncertainty in understanding reality, refraining from making definitive ontological commitments in uncertain situations. Necessity captures propositions that must hold true under all circumstances, aligning with the principle of logical consistency and implicitly supporting the Law of Non-Contradiction. Subsequently, a neutral set-TOPSIS approach is applied in the maintenance strategy selection problem, demonstrating the practical applicability of the NS framework. The paper further explores uncertainty relations and presents the fundamental preliminaries of NS theory, emphasizing its role in fostering ontological neutrality and logical coherence in reasoning.

Keywords: Uncertainty sets, neutral sets, maintenance strategy selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, distance function, multiple attribute, decision making, selection method, uncertainty, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117
2311 Fast Lines at Theme Parks

Authors: G. Hernandez-Maskivker, G. Ryan, M. Blazey, M. Pàmies

Abstract:

Waiting times and queues are a daily problem for theme parks. Fast lines or priority queues appear as a solution for a specific segment of customers, that is, tourists who are willing to pay to avoid waiting. This paper analyzes the fast line system and explores the factors that affect the decision to purchase a fast line pass. A greater understanding of these factors may help companies to design appropriate products and services. This conceptual paper was based on a literature review in marketing and consumer behavior. Additional research was identified in related disciplines such as leisure studies, psychology, and sociology. A conceptual framework of the factors influencing the decision to purchase a fast line pass is presented.

Keywords: Tourist behavior, fast lines, theme park, willing to pay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4478
2310 The Functionality and Usage of CRM Systems

Authors: Michael Torggler

Abstract:

Modern information and communication technologies offer a variety of support options for the efficient handling of customer relationships. CRM systems have been developed, which are designed to support the processes in the areas of marketing, sales and service. Along with technological progress, CRM systems are constantly changing, i.e. the systems are continually enhanced by new functions. However, not all functions are suitable for every company because of different frameworks and business processes. In this context the question arises whether or not CRM systems are widely used in Austrian companies and which business processes are most frequently supported by CRM systems. This paper aims to shed light on the popularity of CRM systems in Austrian companies in general and the use of different functions to support their daily business. First of all, the paper provides a theoretical overview of the structure of modern CRM systems and proposes a categorization of currently available software functionality for collaborative, operational and analytical CRM processes, which provides the theoretical background for the empirical study. Apart from these theoretical considerations, the paper presents the empirical results of a field survey on the use of CRM systems in Austrian companies and analyzes its findings.

Keywords: CRM systems, CRM system adoption, CRM system diffusion, CRM functionality, Market study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4049
2309 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines

Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma

Abstract:

Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.

Keywords: Road accident, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
2308 Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness

Authors: D. Estrella, A. Silva, R. Zapata, H. Rubio

Abstract:

A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.

Keywords: Deafness, psychological support, family, adaptation to disability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
2307 Easy-Interactive Ordering of the Pareto Optimal Set with Imprecise Weights

Authors: Maria Kalinina, Aron Larsson, Leif Olsson

Abstract:

In the multi objective optimization, in the case when generated set of Pareto optimal solutions is large, occurs the problem to select of the best solution from this set. In this paper, is suggested a method to order of Pareto set. Ordering the Pareto optimal set carried out in conformity with the introduced distance function between each solution and selected reference point, where the reference point may be adjusted to represent the preferences of a decision making agent. Preference information about objective weights from a decision maker may be expressed imprecisely. The developed elicitation procedure provides an opportunity to obtain surrogate numerical weights for the objectives, and thus, to manage impreciseness of preference. The proposed method is a scalable to many objectives and can be used independently or as complementary to the various visualization techniques in the multidimensional case.

Keywords: Imprecise weights, Multiple objectives, Pareto optimality, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
2306 A Critical Review of the Adequacy of EIA Reports-Evidence from Pakistan

Authors: Obaidullah Nadeem, Rizwan Hameed

Abstract:

The preparation of good-quality Environmental Impact Assessment (EIA) reports contribute to enhancing overall effectiveness of EIA. This component of the EIA process becomes more important in situation where public participation is weak and there is lack of expertise on the part of the competent authority. In Pakistan, EIA became mandatory for every project likely to cause adverse environmental impacts from July 1994. The competent authority also formulated guidelines for preparation and review of EIA reports in 1997. However, EIA is yet to prove as a successful decision support tool to help in environmental protection. One of the several reasons of this ineffectiveness is the generally poor quality of EIA reports. This paper critically reviews EIA reports of some randomly selected projects. Interviews of EIA consultants, project proponents and concerned government officials have also been conducted to underpin the root causes of poor quality of EIA reports. The analysis reveals several inadequacies particularly in areas relating to identification, evaluation and mitigation of key impacts and consideration of alternatives. The paper identifies some opportunities and suggests measures for improving the quality of EIA reports and hence making EIA an effective tool to help in environmental protection.

Keywords: Environmental Impact Assessment, EIA Guidelines, EIA Reports, Pakistan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308
2305 Discovery and Capture of Organizational Knowledge from Unstructured Information

Authors: J. Gu, W.B. Lee, C.F. Cheung, E. Tsui, W.M. Wang

Abstract:

Knowledge of an organization does not merely reside in structured form of information and data; it is also embedded in unstructured form. The discovery of such knowledge is particularly difficult as the characteristic is dynamic, scattered, massive and multiplying at high speed. Conventional methods of managing unstructured information are considered too resource demanding and time consuming to cope with the rapid information growth. In this paper, a Multi-faceted and Automatic Knowledge Elicitation System (MAKES) is introduced for the purpose of discovery and capture of organizational knowledge. A trial implementation has been conducted in a public organization to achieve the objective of decision capture and navigation from a number of meeting minutes which are autonomously organized, classified and presented in a multi-faceted taxonomy map in both document and content level. Key concepts such as critical decision made, key knowledge workers, knowledge flow and the relationship among them are elicited and displayed in predefined knowledge model and maps. Hence, the structured knowledge can be retained, shared and reused. Conducting Knowledge Management with MAKES reduces work in searching and retrieving the target decision, saves a great deal of time and manpower, and also enables an organization to keep pace with the knowledge life cycle. This is particularly important when the amount of unstructured information and data grows extremely quickly. This system approach of knowledge management can accelerate value extraction and creation cycles of organizations.

Keywords: Knowledge-Based System, Knowledge Elicitation, Knowledge Management, Taxonomy, Unstructured Information Management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
2304 A Fuzzy Mathematical Model for Order Acceptance and Scheduling Problem

Authors: E. Koyuncu

Abstract:

The problem of Order Acceptance and Scheduling (OAS) is defined as a joint decision of which orders to accept for processing and how to schedule them. Any linear programming model representing real-world situation involves the parameters defined by the decision maker in an uncertain way or by means of language statement. Fuzzy data can be used to incorporate vagueness in the real-life situation. In this study, a fuzzy mathematical model is proposed for a single machine OAS problem, where the orders are defined by their fuzzy due dates, fuzzy processing times, and fuzzy sequence dependent setup times. The signed distance method, one of the fuzzy ranking methods, is used to handle the fuzzy constraints in the model.

Keywords: Fuzzy mathematical programming, fuzzy ranking, order acceptance, single machine scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
2303 Impact of Brand Origin on Brand Loyalty: A Case of Personal Care Products in Pakistan

Authors: Aimen Batool Bint-E-Rashid, Syed Muhammad Dawood Ali Shah, Muhammad Usman Farooq, Mahgul Anwar

Abstract:

As the world is progressing, the needs and demands of the consumer market are also changing. Nowadays the trends of consumer purchase decisions are dependent upon multiple factors. This study aims to identify the influential impact of country of origin over the perception and devotion towards daily personal care products specifically in reference to the knowledge and awareness regarding that particular brand in Pakistan. To corroborate this study, a 30-item brand origin questionnaire has been used with 300 purchase decision makers belonging to different age groups. To illustrate this study, a model has been developed based on brand origin, brand awareness and brand loyalty. Correlation and regression analysis have been used to find out the results which conclude the findings on the perspective of Pakistan’s consumer market as that brand origin has a direct relationship with brand loyalty provided that the consumer has a positive brand awareness. Support for the fact that brand origin impacts brand loyalty through brand awareness has been presented in this study.

Keywords: Brand awareness, brand loyalty, brand origin, personal care products, P&G, Unilever.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1103
2302 High-Speed Train Planning in France, Lessons from Mediterranean TGV-Line

Authors: Stéphanie Leheis

Abstract:

To fight against the economic crisis, French Government, like many others in Europe, has decided to give a boost to high-speed line projects. This paper explores the implementation and decision-making process in TGV projects, their evolutions, especially since the Mediterranean TGV-line. This project was probably the most controversial, but paradoxically represents today a huge success for all the actors involved. What kind of lessons we can learn from this experience? How to evaluate the impact of this project on TGV-line planning? How can we characterize this implementation and decision-making process regards to the sustainability challenges? The construction of Mediterranean TGV-line was the occasion to make several innovations: to introduce more dialog into the decisionmaking process, to take into account the environment, to introduce a new project management and technological innovations. That-s why this project appears today as an example in terms of integration of sustainable development. In this paper we examine the different kinds of innovations developed in this project, by using concepts from sociology of innovation to understand how these solutions emerged in a controversial situation. Then we analyze the lessons which were drawn from this decision-making process (in the immediacy and a posteriori) and the way in which procedures evolved: creation of new tools and devices (public consultation, project management...). Finally we try to highlight the impact of this evolution on TGV projects governance. In particular, new methods of implementation and financing involve a reconfiguration of the system of actors. The aim of this paper is to define the impact of this reconfiguration on negotiations between stakeholders.

Keywords: High-speed train, innovation, governance, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
2301 Corporate Governance of Enterprise IT: Research Study on IT Governance Maturity

Authors: Mario Spremić

Abstract:

Despite the financial crisis and ongoing need for cost cutting, companies all around the world heavily invest in Information Systems (IS) and underlying Information Technology (IT). Proliferation of governance of enterprise IT helps companies manage, or rather, governs IS as a primary business function with executive management involved in making decision about IS and IT. The business value of IT is raising with the involvement of the executive management in IT decision making process and quality IT governance mechanisms in place. In this paper the practice of governing the enterprise IT will be investigated on a sample of the largest 100 Croatian companies. Research questions posed here will reveal if there are some formal IT governance mechanisms, are there any differences in perceived role of IS and IT between CIOs (Chief Information Officers) and CEOs (Chief Executive Officers) of the sampled companies and what are the mechanisms to govern massive investment in enterprise IT.

Keywords: IT governance, governance of enterprise IT, information system auditing, IT maturity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
2300 An Integrated Logistics Model of Spare Parts Maintenance Planning within the Aviation Industry

Authors: Roy Fritzsche, Rainer Lasch

Abstract:

Avoidable unscheduled maintenance events and unnecessary spare parts deliveries are mostly caused by an incorrect choice of the underlying maintenance strategy. For a faster and more efficient supply of spare parts for aircrafts of an airline we examine options for improving the underlying logistics network integrated in an existing aviation industry network. This paper presents a dynamic prediction model as decision support for maintenance method selection considering requirements of an entire flight network. The objective is to guarantee a high supply of spare parts by an optimal interaction of various network levels and thus to reduce unscheduled maintenance events and minimize total costs. By using a prognostics-based preventive maintenance strategy unscheduled component failures are avoided for an increase in availability and reliability of the entire system. The model is intended for use in an aviation company that utilizes a structured planning process based on collected failures data of components.

Keywords: Aviation industry, Prognosis, Reliability, Preventive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4535
2299 Review of Trust Models in Wireless Sensor Networks

Authors: V. Uma Rani, K. Soma Sundaram

Abstract:

The major challenge faced by wireless sensor networks is security. Because of dynamic and collaborative nature of sensor networks the connected sensor devices makes the network unusable. To solve this issue, a trust model is required to find malicious, selfish and compromised insiders by evaluating trust worthiness sensors from the network. It supports the decision making processes in wireless sensor networks such as pre key-distribution, cluster head selection, data aggregation, routing and self reconfiguration of sensor nodes. This paper discussed the kinds of trust model, trust metrics used to address attacks by monitoring certain behavior of network. It describes the major design issues and their countermeasures of building trust model. It also discusses existing trust models used in various decision making process of wireless sensor networks.

Keywords: Attacks, Security, Trust, Trust model, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4566
2298 Change Detector Combination in Remotely Sensed Images Using Fuzzy Integral

Authors: H. Nemmour, Y. Chibani

Abstract:

Decision fusion is one of hot research topics in classification area, which aims to achieve the best possible performance for the task at hand. In this paper, we investigate the usefulness of this concept to improve change detection accuracy in remote sensing. Thereby, outputs of two fuzzy change detectors based respectively on simultaneous and comparative analysis of multitemporal data are fused by using fuzzy integral operators. This method fuses the objective evidences produced by the change detectors with respect to fuzzy measures that express the difference of performance between them. The proposed fusion framework is evaluated in comparison with some ordinary fuzzy aggregation operators. Experiments carried out on two SPOT images showed that the fuzzy integral was the best performing. It improves the change detection accuracy while attempting to equalize the accuracy rate in both change and no change classes.

Keywords: change detection, decision fusion, fuzzy logic, remote sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616