Search results for: target concept selection
2304 Effective Implementation of Burst SegmentationTechniques in OBS Networks
Authors: A. Abid, F. M. Abbou, H. T. Ewe
Abstract:
Optical Bursts Switching (OBS) is a relatively new optical switching paradigm. Contention and burst loss in OBS networks are major concerns. To resolve contentions, an interesting alternative to discarding the entire data burst is to partially drop the burst. Partial burst dropping is based on burst segmentation concept that its implementation is constrained by some technical challenges, besides the complexity added to the algorithms and protocols on both edge and core nodes. In this paper, the burst segmentation concept is investigated, and an implementation scheme is proposed and evaluated. An appropriate dropping policy that effectively manages the size of the segmented data bursts is presented. The dropping policy is further supported by a new control packet format that provides constant transmission overhead.Keywords: Burst length, Burst Segmentation, Optical BurstSwitching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14342303 Offset Dependent Uniform Delay Mathematical Optimization Model for Signalized Traffic Network Using Differential Evolution Algorithm
Authors: Tahseen Al-Shaikhli, Halim Ceylan, Jonathan Weaver, Osman Nuri Çelik, Onur Gungor Sahin
Abstract:
A concept of uniform delay offset dependent mathematical optimization problem is derived as the main objective for this study using a differential evolution algorithm. Furthermore, the objectives are to control the coordination problem which mainly depends on offset selection, and to estimate the uniform delay based on the offset choice at each signalized intersection. The assumption is the periodic sinusoidal function for arrival and departure patterns. The cycle time is optimized at the entry links and the optimized value is used in the non-entry links as a common cycle time. The offset optimization algorithm is used to calculate the uniform delay at each link. The results are illustrated by using a case study and compared with the canonical uniform delay model derived by Webster and the highway capacity manual’s model. The findings show that the derived model minimizes the total uniform delay to almost half compared to conventional models; the mathematical objective function is robust; the algorithm convergence time is fast.
Keywords: Area traffic control, differential evolution, offset variable, sinusoidal periodic function, traffic flow, uniform delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3652302 Nepros- An Innovated Crystal Necklace
Authors: Amir A. N, Fadzilan A. M, Baskaran G.
Abstract:
In this paper, we proposed an invention of an accessory into a communication device that will help humans to be connected universally. Generally, this device will be made up of crystal and will combine many technologies that will enable the user to run various applications and software anywhere and everywhere. Bringing up the concept of from being user friendly, we had used the crystal as the main material of the device that will trap the surrounding lights to produce projection of its screen. This leads to a lesser energy consumption and allows smaller sized battery to be used, making the device less bulky. Additionally, we proposed the usage of micro batteries as our energy source. Thus, researches regarding crystal were made along with explanations in details of specification and function of the technology used in the device. Finally, we had also drawn several views of the invention from different sides to be visualized.
Keywords: Crystal, Communication Technology, Future concept device, Micro batteries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15302301 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages
Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson
Abstract:
Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.Keywords: Electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9642300 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel
Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian
Abstract:
A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18402299 Aircraft Selection Problem Using Decision Uncertainty Distance in Fuzzy Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
Aircraft have different capabilities and specifications according to the required strategic goals and objectives in operations. With various types on the market with different aircraft characteristics, it becomes difficult to select a suitable aircraft for certain operations and requirements. The entropy weighting method (EWM) is a useful, highly consistent, and reliable method for obtaining the weights of the criteria and is worth integrating with the decision uncertainty distance (DUD) method, which is more applicable and requires less computation than other methods. An illustrative example is presented to demonstrate the validity and usability of the proposed methodology. Comparing the ranking results matches the distance-based approach, which is the technique for order preference by similarity to ideal solution (TOPSIS) method, which shows the robustness of the entropy DUD hybrid method. Validity analysis shows that the proposed hybrid multiple criteria decision-making analysis (MCDMA) methodology is quantitatively stable and reliable.
Keywords: aircraft selection, decision uncertainty distance (DUD), multiple criteria decision making analysis, MCDMA, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5392298 Seamless Handover in Urban 5G-UAV Systems Using Entropy Weighted Method
Authors: Anirudh Sunil Warrier, Saba Al-Rubaye, Dimitrios Panagiotakopoulos, Gokhan Inalhan, Antonios Tsourdos
Abstract:
The demand for increased data transfer rate and network traffic capacity has given rise to the concept of heterogeneous networks. Heterogeneous networks are wireless networks, consisting of devices using different underlying radio access technologies (RAT). For Unmanned Aerial Vehicles (UAVs) this enhanced data rate and network capacity are even more critical especially in their applications of medicine, delivery missions and military. In an urban heterogeneous network environment, the UAVs must be able switch seamlessly from one base station (BS) to another for maintaining a reliable link. Therefore, seamless handover in such urban environments has become a major challenge. In this paper, a scheme to achieve seamless handover is developed, an algorithm based on Received Signal Strength (RSS) criterion for network selection is used and Entropy Weighted Method (EWM) is implemented for decision making. Seamless handover using EWM decision-making is demonstrated successfully for a UAV moving across fifth generation (5G) and long-term evolution (LTE) networks via a simulation level analysis. Thus, a solution for UAV-5G communication, specifically the mobility challenge in heterogeneous networks is solved and this work could act as step forward in making UAV-5G architecture integration a possibility.
Keywords: Air to ground, A2G, fifth generation, 5G, handover, mobility, unmanned aerial vehicle, UAV, urban environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4292297 Sorptive Storage of Natural Gas on Molecular Sieves: Dynamic Investigation
Authors: S. Al-Asheh, K. Al-Emadi
Abstract:
In recent years, there have been attempts to store natural gas in adsorptive form. This is called adsorptive natural gas, or ANG. The problem with this technology is the low sorption capacity. The purpose is to achieve compressed natural gas (CNG) capacity of 230 V/V. Further research is required to achieve such target. Several research studies have been performed with this target; through either the modification or development of new sorbents or the optimization of the operation sorption process itself. In this work, storage of methane on molecular sieves 5A and 13X was studied on dry basis, and on wet basis to certain extent. The temperature and the pressure dynamics were investigated. The results indicated that regardless of the charge pressure, the time for the peak temperature during the methane charge process is always the same. This can be used as a characteristic of the adsorbent. The total achieved deliveries using molecular sieves were much lower than that of activated carbons; 53.0 V/V for the case of 13X molecular sieves and 43 V/V for the case of 5A molecular sieves, both at 2oC and 4 MPa (580 psi). Investigation of charge pressure dynamic using wet molecular sieves at 2oC and a mass ratio of 0.5, revealed slowness of the process and unexpected behavior.Keywords: Methane, Molecular sieves, Adsorption, Delivery, Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19912296 Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem
Authors: D.Venkatesan, K.Kannan, S. Raja Balachandar
Abstract:
In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operators forms a competitive algorithm to the existing ones. Computational results show that the proposed algorithm is capable of obtaining high quality solutions for problems of standard randomly generated knapsack instances. Comparative study of CMGA with simple GA in terms of results for unbounded knapsack instances of size up to 200 show the superiority of CMGA. Thus CMGA is an efficient tool of solving UKP and this algorithm is competitive with other Genetic Algorithms also.
Keywords: Genetic Algorithm, Unbounded Knapsack Problem, Combinatorial Optimization, Meta-Heuristic, Center of Mass
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16982295 Transmission Loss Allocation via Loss Function Decomposition and Current Projection Concept
Authors: M.R. Ebrahimi, Z. Ghofrani, M. Ehsan
Abstract:
One of the major problems in liberalized power markets is loss allocation. In this paper, a different method for allocating transmission losses to pool market participants is proposed. The proposed method is fundamentally based on decomposition of loss function and current projection concept. The method has been implemented and tested on several networks and one sample summarized in the paper. The results show that the method is comprehensive and fair to allocating the energy losses of a power market to its participants.Keywords: Transmission loss, loss allocation, current projectionconcept, loss function decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17442294 Competitive Advantage on the Road Again: Exploring Nuances through a Conceptual Review and Future Research Avenues
Authors: Abdolali Mortazavi, Faegheh Taheran
Abstract:
By giving an overview of previous arguments and findings concerned with the concept of competitive advantage, first, we define the overall concept of competitive advantage and discuss nuances of understanding such an important and strategic idea. Finally, by considering the major concerns of marketing academia, including globalization, Artificial Intelligence (AI)-based technologies, consumer well-being, and internal coopetition between a firm’s units, fruitful avenues to be explored by future studies are presented in the form of research propositions. In the end, relevant gaps mentioned by numerous studies that are worth investigating are demonstrated.
Keywords: Artificial Intelligence, competitive advantage, consumer well-being, coopetition, globalization, literature review, temporary competitive advantage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532293 Addressing the Oracle Problem: Decentralized Authentication in Blockchain-Based Green Hydrogen Certification
Authors: Volker Wannack
Abstract:
The aim of this paper is to present a concept for addressing the Oracle Problem in the context of hydrogen production using renewable energy sources. The proposed approach relies on the authentication of the electricity used for hydrogen production by multiple surrounding actors with similar electricity generation facilities, which attest to the authenticity of the electricity production. The concept introduces an Authenticity Score assigned to each certificate, as well as a Trust Score assigned to each witness. Each certificate must be attested by different actors with a sufficient Trust Score to achieve an Authenticity Score above a predefined threshold, thereby demonstrating that the produced hydrogen is indeed "green."
Keywords: Hydrogen, blockchain, sustainability, structural change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 702292 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources
Authors: Rade M. Ciric, Nikola L. J. Rajakovic
Abstract:
This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.Keywords: Distributed generation, renewable energy sources, techno-economic analysis, energy policy, curriculum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13972291 Unmanned Combat Aircraft Selection using Fuzzy Proximity Measure Method in Multiple Criteria Group Decision Making
Authors: C. Ardil
Abstract:
The decision to select an unmanned combat aircraft is complicated since several options and conflicting criteria must be considered at simultaneously. When making multiple criteria decision, it is important to consider the selected evaluation criteria, including priceability, payloadability, stealthability, speedability , and survivability. The fundamental goal of the study is to select the best unmanned combat aircraft by taking these evaluation criteria into account. The optimal aircraft was chosen using the fuzzy proximity measure method, which enables decision-makers to designate preferences as standard fuzzy set numbers during the multiple criteria decision-making process. To assess the applicability of the proposed approach, a numerical example is provided. Finally, by comparing determined unmanned combat aircraft, the proposed method produced a successful application, and the best aircraft was selected.
Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), multiple criteria group decision making (MCGDM), proximity measure method (PMM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4292290 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms
Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang
Abstract:
Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.
Keywords: Bioassay, machine learning, preprocessing, virtual screen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9802289 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7072288 A Methodology for Data Migration between Different Database Management Systems
Authors: Bogdan Walek, Cyril Klimes
Abstract:
In present days the area of data migration is very topical. Current tools for data migration in the area of relational database have several disadvantages that are presented in this paper. We propose a methodology for data migration of the database tables and their data between various types of relational database systems (RDBMS). The proposed methodology contains an expert system. The expert system contains a knowledge base that is composed of IFTHEN rules and based on the input data suggests appropriate data types of columns of database tables. The proposed tool, which contains an expert system, also includes the possibility of optimizing the data types in the target RDBMS database tables based on processed data of the source RDBMS database tables. The proposed expert system is shown on data migration of selected database of the source RDBMS to the target RDBMS.
Keywords: Expert system, fuzzy, data migration, database, relational database, data type, relational database management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34912287 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45232286 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21982285 Concept to Enhance the Project Success and Promote the Implementation of Success Factors in Infrastructure Projects
Abstract:
Infrastructure projects are often subjected to delays and cost overruns and mistakenly described as unsuccessful projects. These projects have many peculiarities such as public attention, impact on the environment, subjected to special regulations, etc. They also deal with several stakeholders with different motivations and face unique risks. With this in mind we need to reconsider our approach to manage them, define their success factors and implement these success factors. Infrastructure projects are not only lacking a unified meaning of project success or a definition of success factors, but also a clear method to implement these factors. This paper investigates this gap and introduces a concept to implement success factors in an efficient way, taking into consideration the specific characteristics of infrastructure projects. This concept consists of six enablers such as project organization, project team, project management workflow, contract management, communication and knowledge transfer and project documentations. These enablers allow other success factors to be efficiently implemented in projects. In conclusion, this paper provides project managers as well as company managers with a tool to define and implement success factors efficiently in their projects, along with upgrading their assets for the coming projects. This tool consists of processes and validated checklists to ensure the best use of company resources and knowledge. Due to the special features of infrastructure projects this tool will be tested in the German infrastructure market. However, it is meant to be adaptable to other markets and industries.
Keywords: Infrastructure projects, enablers, project success, success factors, transportation projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9922284 A TRIZ-based Approach to Generation of Service-supporting Product Concepts
Authors: Seungkyum Kim, Yongtae Park
Abstract:
Recently, business environment and customer needs have become rapidly changing, hence it is very difficult to fulfill sophisticated customer needs by product or service innovation only. In practice, to cope with this problem, various manufacturing companies have developed services to combine with their products. Along with this, many academic studies on PSS (Product Service System) which is the integrated system of products and services have been conducted from the viewpoint of manufacturers. On the other hand, service providers are also attempting to develop service-supporting products to increase their service competitiveness and provide differentiated value. However, there is a lack of research based on the service-centric point of view. Accordingly, this paper proposes a concept generation method for service-supporting product development from the service-centric point of view. This method is designed to be executed in five consecutive steps: situation analysis, problem definition, problem resolution, solution evaluation, and concept generation. In the proposed approach, some tools of TRIZ (Theory of Solving Inventive Problem) such as ISQ (Innovative Situation Questionnaire) and 40 inventive principles are employed in order to define problems of the current services and solve them by generating service-supporting product concepts. This research contributes to the development of service-supporting products and service-centric PSSs.Keywords: TRIZ, PSS (Product Service System), service-supporting product, concept generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19272283 Development of a Non-invasive System to Measure the Thickness of the Subcutaneous Adipose Tissue Layer for Human
Authors: Hyuck Ki Hong, Young Chang Jo, Yeon Shik Choi, Beom Joon Kim, Hyo Derk Park
Abstract:
To measure the thickness of the subcutaneous adipose tissue layer, a non-invasive optical measurement system (λ=1300 nm) is introduced. Animal and human subjects are used for the experiments. The results of human subjects are compared with the data of ultrasound device measurements, and a high correlation (r=0.94 for n=11) is observed. There are two modes in the corresponding signals measured by the optical system, which can be explained by two-layered and three-layered tissue models. If the target tissue is thinner than the critical thickness, detected data using diffuse reflectance method follow the three-layered tissue model, so the data increase as the thickness increases. On the other hand, if the target tissue is thicker than the critical thickness, the data follow the two-layered tissue model, so they decrease as the thickness increases.Keywords: Subcutaneous adipose tissue layer, non-invasive measurement system, two-layered and three-layered tissue models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18452282 Visual Attention Analysis on Mutated Brand Name using Eye-Tracking: A Case Study
Authors: Anirban Chowdhury, Sougata Karmakar, Swathi Matta Reddy, Sanjog J., Subrata Ghosh, Debkumar Chakrabarti
Abstract:
Brand name plays a vital role for in-shop buying behavior of consumers and mutated brand name may affect the selling of leading branded products. In Indian market, there are many products with mutated brand names which are either orthographically or phonologically similar. Due to presence of such products, Indian consumers very often fall under confusion when buying some regularly used stuff. Authors of the present paper have attempted to demonstrate relationship between less attention and false recognition of mutated brand names during a product selection process. To achieve this goal, visual attention study was conducted on 15 male college students using eye-tracker against a mutated brand name and errors in recognition were noted using questionnaire. Statistical analysis of the acquired data revealed that there was more false recognition of mutated brand name when less attention was paid during selection of favorite product. Moreover, it was perceived that eye tracking is an effective tool for analyzing false recognition of brand name mutation.Keywords: Brand Name Mutation, Consumer Behavior, Visual Attention, Orthography
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25332281 Thread Lift: Classification, Technique, and How to Approach to the Patient
Authors: Panprapa Yongtrakul, Punyaphat Sirithanabadeekul, Pakjira Siriphan
Abstract:
Background: The thread lift technique has become popular because it is less invasive, requires a shorter operation, less downtime, and results in fewer postoperative complications. The advantage of the technique is that the thread can be inserted under the skin without the need for long incisions. Currently, there are a lot of thread lift techniques with respect to the specific types of thread used on specific areas, such as the mid-face, lower face, or neck area. Objective: To review the thread lift technique for specific areas according to type of thread, patient selection, and how to match the most appropriate to the patient. Materials and Methods: A literature review technique was conducted by searching PubMed and MEDLINE, then compiled and summarized. Result: We have divided our protocols into two sections: Protocols for short suture, and protocols for long suture techniques. We also created 3D pictures for each technique to enhance understanding and application in a clinical setting. Conclusion: There are advantages and disadvantages to short suture and long suture techniques. The best outcome for each patient depends on appropriate patient selection and determining the most suitable technique for the defect and area of patient concern.
Keywords: Thread lift, thread lift method, thread lift technique, thread lift procedure, threading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 102142280 Spatial Data Mining by Decision Trees
Authors: S. Oujdi, H. Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.
Keywords: C4.5 Algorithm, Decision trees, S-CART, Spatial data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29842279 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin- Staphylococcus aureus Infections
Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu
Abstract:
Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.Keywords: Dihydroxyacetone kinase, essential genes, Methicillin-resistant Staphylococcus aureus, drug target.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17682278 Operating System Based Virtualization Models in Cloud Computing
Authors: Dev Ras Pandey, Bharat Mishra, S. K. Tripathi
Abstract:
Cloud computing is ready to transform the structure of businesses and learning through supplying the real-time applications and provide an immediate help for small to medium sized businesses. The ability to run a hypervisor inside a virtual machine is important feature of virtualization and it is called nested virtualization. In today’s growing field of information technology, many of the virtualization models are available, that provide a convenient approach to implement, but decision for a single model selection is difficult. This paper explains the applications of operating system based virtualization in cloud computing with an appropriate/suitable model with their different specifications and user’s requirements. In the present paper, most popular models are selected, and the selection was based on container and hypervisor based virtualization. Selected models were compared with a wide range of user’s requirements as number of CPUs, memory size, nested virtualization supports, live migration and commercial supports, etc. and we identified a most suitable model of virtualization.
Keywords: Virtualization, OS based virtualization, container and hypervisor based virtualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19422277 A Multiple-State Based Power Control for Multi-Radio Multi-Channel Wireless Mesh Networks
Authors: T. O. Olwal, K. Djouani, B. J. van Wyk, Y. Hamam, P. Siarry, N. Ntlatlapa
Abstract:
Multi-Radio Multi-Channel (MRMC) systems are key to power control problems in wireless mesh networks (WMNs). In this paper, we present asynchronous multiple-state based power control for MRMC WMNs. First, WMN is represented as a set of disjoint Unified Channel Graphs (UCGs). Second, each network interface card (NIC) or radio assigned to a unique UCG adjusts transmission power using predicted multiple interaction state variables (IV) across UCGs. Depending on the size of queue loads and intra- and inter-channel states, each NIC optimizes transmission power locally and asynchronously. A new power selection MRMC unification protocol (PMMUP) is proposed that coordinates interactions among radios. The efficacy of the proposed method is investigated through simulations.
Keywords: Asynchronous convergence, Multi-Radio Multi-Channel (MRMC), Power Selection Multi-Radio Multi-Channel Unification Protocol (PMMUP) and Wireless Mesh Networks(WMNs)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16052276 Achieving Environmentally Sustainable Supply Chain in Textile and Apparel Industries
Authors: Faisal Bin Alam
Abstract:
Most of the manufacturing entities cause negative footprint to nature that demand due attention. Textile industries have one of the longest supply chains and bear the liability of significant environmental impact to our planet. Issues of environmental safety, scarcity of energy and resources, and demand for eco-friendly products have driven research to search for safe and suitable alternatives in apparel processing. Consumer awareness, increased pressure from fashion brands and actions from local legislative authorities have somewhat been able to improve the practices. Objective of this paper is to reveal the best selection of raw materials and methods of production, taking environmental sustainability into account. Methodology used in this study is exploratory in nature based on personal experience, field visits in the factories of Bangladesh and secondary sources. Findings are limited to exploring better alternatives to conventional operations of a Readymade Garment manufacturing, from fibre selection to final product delivery, therefore showing some ways of achieving greener environment in the supply chain of a clothing industry.Keywords: Textile and apparel, environment, sustainability, supply chain, production, clothing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15372275 Modeling Uncertainty in Multiple Criteria Decision Making Using the Technique for Order Preference by Similarity to Ideal Solution for the Selection of Stealth Combat Aircraft
Authors: C. Ardil
Abstract:
Uncertainty set theory is a generalization of fuzzy set theory and intuitionistic fuzzy set theory. It serves as an effective tool for dealing with inconsistent, imprecise, and vague information. The technique for order preference by similarity to ideal solution (TOPSIS) method is a multiple-attribute method used to identify solutions from a finite set of alternatives. It simultaneously minimizes the distance from an ideal point and maximizes the distance from a nadir point. In this paper, an extension of the TOPSIS method for multiple attribute group decision-making (MAGDM) based on uncertainty sets is presented. In uncertainty decision analysis, decision-makers express information about attribute values and weights using uncertainty numbers to select the best stealth combat aircraft.
Keywords: Uncertainty set, stealth combat aircraft selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142