Search results for: steady shear
393 Computer-Aided Teaching of Transformers for Undergraduates
Authors: Rajesh Kumar, Roopali Dogra, Puneet Aggarwal
Abstract:
In the era of technological advancement, use of computer technology has become inevitable. Hence it has become the need of the hour to integrate software methods in engineering curriculum as a part to boost pedagogy techniques. Simulations software is a great help to graduates of disciplines such as electrical engineering. Since electrical engineering deals with high voltages and heavy instruments, extra care must be taken while operating with them. The viable solution would be to have appropriate control. The appropriate control could be well designed if engineers have knowledge of kind of waveforms associated with the system. Though these waveforms can be plotted manually, but it consumes a lot of time. Hence aid of simulation helps to understand steady state of system and resulting in better performance. In this paper computer, aided teaching of transformer is carried out using MATLAB/Simulink. The test carried out on a transformer includes open circuit test and short circuit respectively. The respective parameters of transformer are then calculated using the values obtained from open circuit and short circuit test respectively using Simulink.
Keywords: Computer aided teaching, transformer, open circuit test, short circuit test, Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971392 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium
Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil
Abstract:
A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.Keywords: Keller-box, MHD boundary layer flow, permeability stretching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980391 Simulation of Heat Transfer in the Multi-Layer Door of the Furnace
Authors: U. Prasopchingchana
Abstract:
The temperature distribution and the heat transfer rates through a multi-layer door of a furnace were investigated. The inside of the door was in contact with hot air and the other side of the door was in contact with room air. Radiation heat transfer from the walls of the furnace to the door and the door to the surrounding area was included in the problem. This work is a two dimensional steady state problem. The Churchill and Chu correlation was used to find local convection heat transfer coefficients at the surfaces of the furnace door. The thermophysical properties of air were the functions of the temperatures. Polynomial curve fitting for the fluid properties were carried out. Finite difference method was used to discretize for conduction heat transfer within the furnace door. The Gauss-Seidel Iteration was employed to compute the temperature distribution in the door. The temperature distribution in the horizontal mid plane of the furnace door in a two dimensional problem agrees with the one dimensional problem. The local convection heat transfer coefficients at the inside and outside surfaces of the furnace door are exhibited.Keywords: Conduction, heat transfer, multi-layer door, natural convection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097390 CFD Analysis of Incompressible Turbulent Swirling Flow through Circle Grids Space Filling Plate
Authors: B. Manshoor, M. Jaat, Amir Khalid
Abstract:
Circle grid space filling plate is a flow conditioner with a fractal pattern and used to eliminate turbulence originating from pipe fittings in experimental fluid flow applications. In this paper, steady state, incompressible, swirling turbulent flow through circle grid space filling plate has been studied. The solution and the analysis were carried out using finite volume CFD solver FLUENT 6.2. Three turbulence models were used in the numerical investigation and their results were compared with the pressure drop correlation of BS EN ISO 5167-2:2003. The turbulence models investigated here are the standard k-ε, realizable k-ε, and the Reynolds Stress Model (RSM). The results showed that the RSM model gave the best agreement with the ISO pressure drop correlation. The effects of circle grids space filling plate thickness and Reynolds number on the flow characteristics have been investigated as well.
Keywords: Flow conditioning, turbulent flow, turbulent modeling, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2077389 Reduced Order Modelling of Linear Dynamic Systems using Particle Swarm Optimized Eigen Spectrum Analysis
Authors: G. Parmar, S. Mukherjee, R. Prasad
Abstract:
The authors present an algorithm for order reduction of linear time invariant dynamic systems using the combined advantages of the eigen spectrum analysis and the error minimization by particle swarm optimization technique. Pole centroid and system stiffness of both original and reduced order systems remain same in this method to determine the poles, whereas zeros are synthesized by minimizing the integral square error in between the transient responses of original and reduced order models using particle swarm optimization technique, pertaining to a unit step input. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The algorithm is illustrated with the help of two numerical examples and the results are compared with the other existing techniques.Keywords: Eigen spectrum, Integral square error, Orderreduction, Particle swarm optimization, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662388 A Preliminary Study of Drug Perfusion Enhancement by Microstreaming Induced by an Oscillating Microbubble
Authors: Jin Sun Oh, Kyung Ho Lee, S ang Gug Chung, Kyehan Rhee
Abstract:
Microbubbbles incorporating ultrasound have been used to increase the efficacy of targeted drug delivery, because microstreaming induced by cavitating bubbles affects the drug perfusion into the target cells and tissues. In order to clarify the physical effects of microstreaming on drug perfusion into tissues, a preliminary experimental study of perfusion enhancement by a stably oscillating microbubble was performed. Microstreaming was induced by an oscillating bubble at 15 kHz, and perfusion of dye into an agar phantom was optically measured by histology on agar phantom. Surface color intensity and the penetration length of dye in the agar phantom were increased more than 70% and 30%, respectively, due to the microstreaming induced by an oscillating bubble. The mass of dye perfused into a tissue phantom for 30 s was increased about 80% in the phantom with an oscillating bubble. This preliminary experiment shows the physical effects of steady streaming by an oscillating bubble can enhance the drug perfusion into the tissues while minimizing the biological effects.
Keywords: Bubble, Mass Transfer, Microstreaming, Drug Delivery, Acoustic Wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885387 Mean-Square Performance of Adaptive Filter Algorithms in Nonstationary Environments
Authors: Mohammad Shams Esfand Abadi, John Hakon Husøy
Abstract:
Employing a recently introduced unified adaptive filter theory, we show how the performance of a large number of important adaptive filter algorithms can be predicted within a general framework in nonstationary environment. This approach is based on energy conservation arguments and does not need to assume a Gaussian or white distribution for the regressors. This general performance analysis can be used to evaluate the mean square performance of the Least Mean Square (LMS) algorithm, its normalized version (NLMS), the family of Affine Projection Algorithms (APA), the Recursive Least Squares (RLS), the Data-Reusing LMS (DR-LMS), its normalized version (NDR-LMS), the Block Least Mean Squares (BLMS), the Block Normalized LMS (BNLMS), the Transform Domain Adaptive Filters (TDAF) and the Subband Adaptive Filters (SAF) in nonstationary environment. Also, we establish the general expressions for the steady-state excess mean square in this environment for all these adaptive algorithms. Finally, we demonstrate through simulations that these results are useful in predicting the adaptive filter performance.Keywords: Adaptive filter, general framework, energy conservation, mean-square performance, nonstationary environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187386 CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings
Authors: Krishnan V. Pagalthivarthi, Pankaj K. Gupta, Vipin Tyagi, M. R. Ravi
Abstract:
Dense slurry flow through centrifugal pump casing has been modeled using the Eulerian-Eulerian approach with Eulerian multiphase model in FLUENT 6.1®. First order upwinding is considered for the discretization of momentum, k and ε terms. SIMPLE algorithm has been applied for dealing with pressurevelocity coupling. A mixture property based k-ε turbulence model has been used for modeling turbulence. Results are validated first against mesh independence and experiments for a particular set of operational and geometric conditions. Parametric analysis is then performed to determine the effect on important physical quantities viz. solid velocities, solid concentration and solid stresses near the wall with various operational geometric conditions of the pump.Keywords: Centrifugal pump casing, Dense slurry, Solidsconcentration, Wall shear stress, Pump geometric parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4913385 Enhancement of Tribological Behavior for Diesel Engine Piston of Solid Skirt by an Optimal Choice of Interface Material
Authors: M. Amara, M. Tahar Abbes, A. Dokkiche, M. Benbrike
Abstract:
Shear stresses generate frictional forces thus lead to the reduction of engine performance due to the power losses. This friction can also cause damage to the piston material. Thus, the choice of an optimal material for the piston is necessary to improve the elastohydrodynamical contacts of the piston. In this study, to achieve this objective, an elastohydrodynamical lubrication model that satisfies the best tribological behavior of the piston with the optimum choice of material is developed. Several aluminum alloys composed of different components are studied in this simulation. An application is made on the piston 60 x 120 mm Diesel engine type F8L413 currently mounted on Deutz trucks TB230 by using different aluminum alloys where alloys based on aluminum-silicon have better tribological performance.
Keywords: EHD lubricated contacts, friction, properties of materials, tribological performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217384 Experimental and Theoretical Study of Melt Viscosity in Injection Process
Authors: Chung-Chih Lin, Wen-Teng Wang, Chin-Chiuan Kuo, Chieh-Liang Wu
Abstract:
The state of melt viscosity in injection process is significantly influenced by the setting parameters due to that the shear rate of injection process is higher than other processes. How to determine plastic melt viscosity during injection process is important to understand the influence of setting parameters on the melt viscosity. An apparatus named as pressure sensor bushing (PSB) module that is used to evaluate the melt viscosity during injection process is developed in this work. The formulations to coupling melt viscosity with fill time and injection pressure are derived and then the melt viscosity is determined. A test mold is prepared to evaluate the accuracy on viscosity calculations between the PSB module and the conventional approaches. The influence of melt viscosity on the tensile strength of molded part is proposed to study the consistency of injection quality.
Keywords: Injection molding, melt viscosity, injection quality, injection speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4399383 CFD Analysis of Natural Ventilation Behaviour in Four Sided Wind Catcher
Authors: M. Hossein Ghadiri, Mohd Farid Mohamed, N. Lukman N. Ibrahim
Abstract:
Wind catchers are traditional natural ventilation systems attached to buildings in order to ventilate the indoor air. The most common type of wind catcher is four sided one which is capable to catch wind in all directions. CFD simulation is the perfect way to evaluate the wind catcher performance. The accuracy of CFD results is the issue of concern, so sensitivity analyses is crucial to find out the effect of different settings of CFD on results. This paper presents a series of 3D steady RANS simulations for a generic isolated four-sided wind catcher attached to a room subjected to wind direction ranging from 0º to 180º with an interval of 45º. The CFD simulations are validated with detailed wind tunnel experiments. The influence of an extensive range of computational parameters is explored in this paper, including the resolution of the computational grid, the size of the computational domain and the turbulence model. This study found that CFD simulation is a reliable method for wind catcher study, but it is less accurate in prediction of models with non perpendicular wind directions.Keywords: Wind catcher, CFD, natural ventilation, sensitivity study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2694382 Pushover Analysis of Short Structures
Authors: M.O. Makhmalbaf, M. GhanooniBagha, M.A. Tutunchian, M. Zabihi Samani
Abstract:
In this paper first, Two buildings have been modeled and then analyzed using nonlinear static analysis method under two different conditions in Nonlinear SAP 2000 software. In the first condition the interaction of soil adjacent to the walls of basement are ignored while in the second case this interaction have been modeled using Gap elements of nonlinear SAP2000 software. Finally, comparing the results of two models, the effects of soil-structure on period, target point displacement, internal forces, shape deformations and base shears have been studied. According to the results, this interaction has always increased the base shear of buildings, decreased the period of structure and target point displacement, and often decreased the internal forces and displacements.Keywords: Seismic Rehabilitation, Soil-Structure Interaction, Short Structure, Nonlinear Static Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952381 Modeling of a Small Unmanned Aerial Vehicle
Authors: A. Elsayed Ahmed, A. Hafez, A. N. Ouda, H. Eldin Hussein Ahmed, H. Mohamed Abd-Elkader
Abstract:
Unmanned aircraft systems (UAS) are playing increasingly prominent roles in defense programs and defense strategies around the world. Technology advancements have enabled the development of it to do many excellent jobs as reconnaissance, surveillance, battle fighters, and communications relays. Simulating a small unmanned aerial vehicle (SUAV) dynamics and analyzing its behavior at the preflight stage is too important and more efficient. The first step in the UAV design is the mathematical modeling of the nonlinear equations of motion. . In this paper, a survey with a standard method to obtain the full non-linear equations of motion is utilized, and then the linearization of the equations according to a steady state flight condition (trimming) is derived. This modeling technique is applied to an Ultrastick-25e fixed wing UAV to obtain the valued linear longitudinal and lateral models. At the end the model is checked by matching between the behavior of the states of the nonlinear UAV and the resulted linear model with doublet at the control surfaces.
Keywords: Equations of motion, linearization, modeling, nonlinear model, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5611380 Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection
Authors: Vikas Kumar
Abstract:
The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. The results thus obtained are presented numerically and graphically in the paper.
Keywords: Axi-symmetric, ferrofluid, magnetic field, porous rotating disk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055379 Conjugate Heat and Mass Transfer for MHD Mixed Convection with Viscous Dissipation and Radiation Effect for Viscoelastic Fluid past a Stretching Sheet
Authors: Kai-Long Hsiao, BorMing Lee
Abstract:
In this study, an analysis has been performed for conjugate heat and mass transfer of a steady laminar boundary-layer mixed convection of magnetic hydrodynamic (MHD) flow with radiation effect of second grade subject to suction past a stretching sheet. Parameters E Nr, Gr, Gc, Ec and Sc represent the dominance of the viscoelastic fluid heat and mass transfer effect which have presented in governing equations, respectively. The similar transformation and the finite-difference method have been used to analyze the present problem. The conjugate heat and mass transfer results show that the non-Newtonian viscoelastic fluid has a better heat transfer effect than the Newtonian fluid. The free convection with a larger r G or c G has a good heat transfer effect better than a smaller r G or c G , and the radiative convection has a good heat transfer effect better than non-radiative convection.Keywords: Conjugate heat and mass transfer, Radiation effect, Magnetic effect, Viscoelastic fluid, Viscous dissipation, Stretchingsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680378 Interface Analysis of Annealed Al/Cu Cladded Sheet
Authors: Joon Ho Kim, Tae Kwon Ha
Abstract:
Effect of aging treatment on microstructural aspects of interfacial layers of the Cu/Al clad sheet produced by differential speed rolling (DSR) process were studied by electron back scattered diffraction (EBSD). Clad sheet of Al/Cu has been fabricated by using DSR, which caused severe shear deformation between Al and Cu plate to easily bond to each other. Rolling was carried out at 100oC with speed ratio of 2, in which the total thickness reduction was 45%. Interface layers of clad sheet were analyzed by EBSD after subsequent annealing at 400oC for 30 to 120min. With increasing annealing time, thickness of interface layer and fraction of high angle grain boundary were increased and average grain size was decreased.
Keywords: Aluminum/Copper clad sheet, differential speed rolling, interface layer, microstructure, annealing, electron back scattered diffraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087377 Robust Design of Electroosmosis Driven Self-Circulating Micromixer for Biological Applications
Authors: Bahram Talebjedi, Emily Earl, Mina Hoorfar
Abstract:
One of the issues that arises with microscale lab-on-a-chip technology is that the laminar flow within the microchannels limits the mixing of fluids. To combat this, micromixers have been introduced as a means to try and incorporate turbulence into the flow to better aid the mixing process. This study presents an electroosmotic micromixer that balances vortex generation and degeneration with the inlet flow velocity to greatly increase the mixing efficiency. A comprehensive parametric study was performed to evaluate the role of the relevant parameters on the mixing efficiency. It was observed that the suggested micromixer is perfectly suited for biological applications due to its low pressure drop (below 10 Pa) and low shear rate. The proposed micromixer with optimized working parameters is able to attain a mixing efficiency of 95% in a span of 0.5 seconds using a frequency of 10 Hz, a voltage of 0.7 V, and an inlet velocity of 0.366 mm/s.
Keywords: Microfluidics, active mixer, pulsed AC electroosmosis flow, micromixer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 504376 Research of Amplitude-Frequency Characteristics of Nonlinear Oscillations of the Interface of Two-Layered Liquid
Authors: Win Ko Ko, A. N. Temnov
Abstract:
The problem of nonlinear oscillations of a two-layer liquid completely filling a limited volume is considered. Using two basic asymmetric harmonics excited in two mutually perpendicular planes, ordinary differential equations of nonlinear oscillations of the interface of a two-layer liquid are investigated. In this paper, hydrodynamic coefficients of linear and nonlinear problems in integral relations were determined. As a result, the instability regions of forced oscillations of a two-layered liquid in a cylindrical tank occurring in the plane of action of the disturbing force are constructed, as well as the dynamic instability regions of the parametric resonance for different ratios of densities of the upper and lower liquids depending on the amplitudes of liquids from the excitations frequencies. Steady-state regimes of fluid motion were found in the regions of dynamic instability of the initial oscillation form. The Bubnov-Galerkin method is used to construct instability regions for approximate solution of nonlinear differential equations.
Keywords: Hydrodynamic coefficients, instability region, nonlinear oscillations, resonance frequency, two-layered liquid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565375 Useful Lifetime Prediction of Chevron Rubber Spring for Railway Vehicle
Authors: Chang Su Woo, Hyun Sung Park
Abstract:
Useful lifetime evaluation of chevron rubber spring was very important in design procedure to assure the safety and reliability. It is, therefore, necessary to establish a suitable criterion for the replacement period of chevron rubber spring. In this study, we performed characteristic analysis and useful lifetime prediction of chevron rubber spring. Rubber material coefficient was obtained by curve fittings of uniaxial tension equibiaxial tension and pure shear test. Computer simulation was executed to predict and evaluate the load capacity and stiffness for chevron rubber spring. In order to useful lifetime prediction of rubber material, we carried out the compression set with heat aging test in an oven at the temperature ranging from 50°C to 100°C during a period 180 days. By using the Arrhenius plot, several useful lifetime prediction equations for rubber material was proposed.Keywords: Chevron rubber spring, material coefficient, finite element analysis, useful lifetime prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2828374 Effect of Conjugate Heat and Mass Transfer on MHD Mixed Convective Flow past Inclined Porous Plate in Porous Medium
Authors: Md. Nasir Uddin, M. A. Alim, M. M. K. Chowdhury
Abstract:
This analysis is performed to study the momentum, heat and mass transfer characteristics of MHD mixed convective flow past inclined porous plate in porous medium, including the effect of fluid suction. The fluid is assumed to be steady, incompressible and dense. Similarity solution is used to transform the problem under consideration into coupled nonlinear boundary layer equations which are then solved numerically by using the Runge-Kutta sixth-order integration scheme together with Nachtsheim-Swigert shooting iteration technique. Numerical results for the various types of parameters entering into the problem for velocity, temperature and concentration distributions are presented graphically and analyzed thereafter. Moreover, expressions for the skin-friction, heat transfer co-efficient and mass transfer co-efficient are discussed with graphs against streamwise distance for various governing parameters.
Keywords: Fluid suction, heat and mass transfer, inclined porous plate, MHD, mixed convection, porous medium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2276373 Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section
Authors: Malcolm R Davidson, Ram P. Bharti, Petar Liovic, Dalton J.E. Harvie
Abstract:
The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced.Keywords: Contraction, Electroviscous, Microfluidic, Numerical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781372 Transient Solution of an Incompressible Viscous Flow in a Channel with Sudden Expansion/Contraction
Authors: Durga C. Dalal, Swapan K. Pandit
Abstract:
In this paper, a numerical study has been made to analyze the transient 2-D flows of a viscous incompressible fluid through channels with forward or backward constriction. Problems addressed include flow through sudden contraction and sudden expansion channel geometries with rounded and increasingly sharp reentrant corner. In both the cases, numerical results are presented for the separation and reattachment points, streamlines, vorticity and flow patterns. A fourth order accurate compact scheme has been employed to efficiently capture steady state solutions of the governing equations. It appears from our study that sharpness of the throat in the channel is one of the important parameters to control the strength and size of the separation zone without modifying the general flow patterns. The comparison between the two cases shows that the upstream geometry plays a significant role on vortex growth dynamics.Keywords: Forward and backward constriction, HOC scheme, Incompressible viscous flows, Separation and reattachment points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696371 Spectral Analysis of Radiation-Induced Natural Convection in Littoral Waters
Authors: Yadan Mao, Chengwang Lei, John C. Patterson
Abstract:
The mixing of pollutions and sediments in near shore regions of natural water bodies depends heavily on the characteristics such as the strength and frequency of flow instability. In the present paper, the instability of natural convection induced by absorption of solar radiation in littoral regions is considered. Spectral analysis is conducted on the quasi-steady state flow to reveal the power and frequency modes of the instability at various positions. Results indicate that the power of instability, the number of frequency modes, the prominence of higher frequency modes, and the highest frequency mode increase with the offshore distance and/or Rayleigh number. Harmonic modes are present at relatively low Rayleigh numbers. For a given offshore distance, the position with the strongest power of instability is located adjacent to the sloping bottom while the frequency modes are the same over the local depth. As the Rayleigh number increases, the unstable region extends toward the shore.
Keywords: Instability, Littoral waters, natural convection, Spectral analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358370 DNS of a Laminar Separation Bubble
Authors: N. K. Singh, S. Sarkar
Abstract:
Direct numerical simulation (DNS) is used to study the evolution of a boundary layer that was laminar initially followed by separation and then reattachment owing to generation of turbulence. This creates a closed region of recirculation, known as the laminar-separation bubble. The present simulation emulates the flow environment encountered in a modern LP turbine blade, where a laminar separation bubble may occur on the suction surface. The unsteady, incompressible three-dimensional (3-D) Navier-Stokes (NS) equations have been solved over a flat plate in the Cartesian coordinates. The adverse pressure gradient, which causes the flow to separate, is created by a boundary condition. The separated shear layer undergoes transition through appearance of ╬ø vortices, stretching of these create longitudinal streaks. Breakdown of the streaks into small and irregular structures makes the flow turbulent downstream.
Keywords: Adverse pressure gradient, direct numerical simulation, laminar separation bubble.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603369 Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field
Authors: Shun-Qi Zhang, Shu-Yang Zhang, Min Chen
Abstract:
Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure.Keywords: Smart structures, piezolamintes, material nonlinearity, geometric nonlinearity, strong electric field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031368 New Feed-Forward/Feedback Generalized Minimum Variance Self-tuning Pole-placement Controller
Authors: S. A. Mohamed, A. S. Zayed, O. A. Abolaeha
Abstract:
A new Feed-Forward/Feedback Generalized Minimum Variance Pole-placement Controller to incorporate the robustness of classical pole-placement into the flexibility of generalized minimum variance self-tuning controller for Single-Input Single-Output (SISO) has been proposed in this paper. The design, which provides the user with an adaptive mechanism, which ensures that the closed loop poles are, located at their pre-specified positions. In addition, the controller design which has a feed-forward/feedback structure overcomes the certain limitations existing in similar poleplacement control designs whilst retaining the simplicity of adaptation mechanisms used in other designs. It tracks set-point changes with the desired speed of response, penalizes excessive control action, and can be applied to non-minimum phase systems. Besides, at steady state, the controller has the ability to regulate the constant load disturbance to zero. Example simulation results using both simulated and real plant models demonstrate the effectiveness of the proposed controller.Keywords: Pole-placement, Minimum variance control, self-tuning control and feedforward control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747367 Improved Small-Signal Characteristics of Infrared 850 nm Top-Emitting Vertical-Cavity Lasers
Authors: Ahmad Al-Omari, Osama Khreis, Ahmad M. K. Dagamseh, Abdullah Ababneh, Kevin Lear
Abstract:
High-speed infrared vertical-cavity surface-emitting laser diodes (VCSELs) with Cu-plated heat sinks were fabricated and tested. VCSELs with 10 mm aperture diameter and 4 mm of electroplated copper demonstrated a -3dB modulation bandwidth (f-3dB) of 14 GHz and a resonance frequency (fR) of 9.5 GHz at a bias current density (Jbias) of only 4.3 kA/cm2, which corresponds to an improved f-3dB2/Jbias ratio of 44 GHz2/kA/cm2. At higher and lower bias current densities, the f-3dB2/ Jbias ratio decreased to about 30 GHz2/kA/cm2 and 18 GHz2/kA/cm2, respectively. Examination of the analogue modulation response demonstrated that the presented VCSELs displayed a steady f-3dB/ fR ratio of 1.41±10% over the whole range of the bias current (1.3Ith to 6.2Ith). The devices also demonstrated a maximum modulation bandwidth (f-3dB max) of more than 16 GHz at a bias current less than the industrial bias current standard for reliability by 25%.Keywords: Current density, High-speed VCSELs, Modulation bandwidth, Small-Signal Characteristics, Thermal impedance, Vertical-cavity surface-emitting lasers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291366 Multilayer Soft Tissue Continuum Model: Towards Realistic Simulation of Facial Expressions
Authors: A. Hung, K. Mithraratne, M. Sagar, P. Hunter
Abstract:
A biophysically based multilayer continuum model of the facial soft tissue composite has been developed for simulating wrinkle formation. The deformed state of the soft tissue block was determined by solving large deformation mechanics equations using the Galerkin finite element method. The proposed soft tissue model is composed of four layers with distinct mechanical properties. These include stratum corneum, epidermal-dermal layer (living epidermis and dermis), subcutaneous tissue and the underlying muscle. All the layers were treated as non-linear, isotropic Mooney Rivlin materials. Contraction of muscle fibres was approximated using a steady-state relationship between the fibre extension ratio, intracellular calcium concentration and active stress in the fibre direction. Several variations of the model parameters (stiffness and thickness of epidermal-dermal layer, thickness of subcutaneous tissue layer) have been considered.
Keywords: Bio-physically based, soft tissue mechanics, facialtissue composite, wrinkling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2195365 Lateral Torsional Buckling of an Eccentrically Loaded Channel Section Beam
Authors: L. Dahmani, S. Drizi, M. Djemai, A. Boudjemia, M. O. Mechiche
Abstract:
Channel sections are widely used in practice as beams. However, design rules for eccentrically loaded (not through shear center) beams with channel cross- sections are not available in Eurocode 3. This paper compares the ultimate loads based on the adjusted design rules for lateral torsional buckling of eccentrically loaded channel beams in bending to the ultimate loads obtained with Finite Element (FE) simulations on the basis of a parameter study. Based on the proposed design rule, this study has led to a new design rule which conforms to Eurocode 3.Keywords: ANSYS, Eurocode 3, finite element method, lateral torsional buckling, steel channel beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051364 Improved Torque Control of Electrical Load Simulator with Parameters and State Estimation
Authors: Nasim Ullah, Shaoping Wang
Abstract:
ELS is an important ground based hardware in the loop simulator used for aerodynamics torque loading experiments of the actuators under test. This work focuses on improvement of the transient response of torque controller with parameters uncertainty of Electrical Load Simulator (ELS).The parameters of load simulator are estimated online and the model is updated, eliminating the model error and improving the steady state torque tracking response of torque controller. To improve the Transient control performance the gain of robust term of SMC is updated online using fuzzy logic system based on the amount of uncertainty in parameters of load simulator. The states of load simulator which cannot be measured directly are estimated using luenberger observer with update of new estimated parameters. The stability of the control scheme is verified using Lyapunov theorem. The validity of proposed control scheme is verified using simulations.Keywords: ELS, Observer, Transient Performance, SMC, Extra Torque, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036