Search results for: network properties
4903 Effects of Temperature-Dependent Material Properties on Stress and Temperature in Cracked Metal Plate under Electric Current Load
Authors: Thomas Jin-Chee Liu
Abstract:
Using the finite element analyses, this paper discusses the effects of temperature-dependent material properties on the stress and temperature fields in a cracked metal plate under the electric current load. The practical and complicated results are obtained when the temperature-dependent material properties are adopted in the analysis. If the simplified (temperature-independent) material properties are used, incorrect results will be obtained.
Keywords: Joule heating, temperature-dependent, crack tip, finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20054902 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency
Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde
Abstract:
The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.
Keywords: Excess properties, relaxation time, static dielectric constant, time domain refelectometry technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5724901 Control-flow Complexity Measurement of Processes and Weyuker's Properties
Authors: Jorge Cardoso
Abstract:
Process measurement is the task of empirically and objectively assigning numbers to the properties of business processes in such a way as to describe them. Desirable attributes to study and measure include complexity, cost, maintainability, and reliability. In our work we will focus on investigating process complexity. We define process complexity as the degree to which a business process is difficult to analyze, understand or explain. One way to analyze a process- complexity is to use a process control-flow complexity measure. In this paper, an attempt has been made to evaluate the control-flow complexity measure in terms of Weyuker-s properties. Weyuker-s properties must be satisfied by any complexity measure to qualify as a good and comprehensive one.
Keywords: Business process measurement, workflow, complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26964900 A Taxonomy of Internal Attacks in Wireless Sensor Network
Authors: Muhammad R Ahmed, Xu Huang, Dharmendra Sharma
Abstract:
Developments in communication technologies especially in wireless have enabled the progress of low-cost and lowpower wireless sensor networks (WSNs). The features of such WSN are holding minimal energy, weak computational capabilities, wireless communication and an open-medium nature where sensors are deployed. WSN is underpinned by application driven such as military applications, the health sector, etc. Due to the intrinsic nature of the network and application scenario, WSNs are vulnerable to many attacks externally and internally. In this paper we have focused on the types of internal attacks of WSNs based on OSI model and discussed some security requirements, characterizers and challenges of WSNs, by which to contribute to the WSN-s security research.Keywords: Wireless sensor network, internal attacks, security, OSI model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30254899 Electrospinning and Characterization of Silk Fibroin/Gelatin Nanofibre Mats
Authors: S. Mohammadzadehmoghadam, Y. Dong
Abstract:
In this study, Bombyx mori silk fibroin/gelatin (SF/GT) nanocomposite with different GT ratio (SF/GT 100/0, 90/10 and 70/30) were prepared by electrospinning process and crosslinked with glutaraldehyde (GA) vapor. Properties of crosslinked SF/GT nanocomposites were investigated by scanning electron microscopy (SEM), mechanical test, water uptake capacity (WUC) and porosity. From SEM images, it was found that fiber diameter increased as GT content increased. The results of mechanical test indicated that the SF/GT 70/30 nanocomposites had both the highest Young’s modulus of 342 MPa and the highest tensile strength of about 14 MPa. However, porosity and WUC decreased from 62% and 405% for pristine SF to 47% and 232% for SF/GT 70/30, respectively. This behavior can be related to higher degree of crosslinking as GT ratio increased which altered the structure and physical properties of scaffolds. This study showed that incorporation of GT into SF nanofibers can enhance mechanical properties of resultant nanocomposite, but the GA treatment should be optimized to control and fine-tune other properties to warrant their biomedical application.Keywords: Electrospinning, gelatin, mechanical properties, nanocomposites, silk fibroin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8924898 Estimating Development Time of Software Projects Using a Neuro Fuzzy Approach
Authors: Venus Marza, Amin Seyyedi, Luiz Fernando Capretz
Abstract:
Software estimation accuracy is among the greatest challenges for software developers. This study aimed at building and evaluating a neuro-fuzzy model to estimate software projects development time. The forty-one modules developed from ten programs were used as dataset. Our proposed approach is compared with fuzzy logic and neural network model and Results show that the value of MMRE (Mean of Magnitude of Relative Error) applying neuro-fuzzy was substantially lower than MMRE applying fuzzy logic and neural network.Keywords: Artificial Neural Network, Fuzzy Logic, Neuro-Fuzzy, Software Estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16644897 Effect of Fine-Ground Ceramic Admixture on Early Age Properties of Cement Paste
Authors: Z. Pavlík, M. Pavlíková, P. Volfová, M. Keppert, R. Černý
Abstract:
Properties of cement pastes with fine-ground ceramics used as an alternative binder replacing Portland cement up to 20% of its mass are investigated. At first, the particle size distribution of cement and fine-ground ceramics is measured using laser analyser. Then, the material properties are studied in the early hardening period up to 28 days. The hydration process of studied materials is monitored by electrical conductivity measurement using TDR sensors. The changes of materials- structures within the hardening are observed using pore size distribution measurement. The compressive strength measurements are done as well. Experimental results show that the replacement of Portland cement by fine-ground ceramics in the amount of up to 20% by mass is acceptable solution from the mechanical point of view. One can also assume similar physical properties of designed materials to the reference material with only Portland cement as binder.Keywords: Fine-ground ceramics, cement pastes, early age properties, mechanical properties, pore size distribution, electrical conductivity measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15964896 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia
Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur
Abstract:
Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.Keywords: ANN, discharge, modeling, prediction, suspendedsediment,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17254895 Dynamic Admission Control Based on Effective Demand for Next Generation Wireless Networks
Authors: Somenath Mukherjee, Rajdeep Ray, Raj Kumar Samanta, Mofazzal H. Khondekar, Gautam Sanyal
Abstract:
In next generation wireless networks (i.e., 4G and beyond), one of the main objectives is to ensure highest level of customer satisfaction in terms of data transfer speed, decrease in cost and delay, non-rejection and no drop of calls, availability of ‘always-on’ connectivity and services, continuity of connected services, hastle-free roaming in addition to the convenience of use of network services from anywhere and anytime. To take care of these requirements effectively, internet service providers (ISPs) and network planners have to go for major capacity enhancement of network resources and at the same time these resources are to be used effectively and efficiently to reduce cost and to increase revenue. In this work, the effective bandwidth available in a Mobile Switching Center (MSC) of a wireless network providing multi-class multimedia services is analyzed. Bandwidth requirement of the users for a customized Quality of Service (QoS) is estimated. The findings of the QoS estimation are applied for the capacity planning and admission control of the multi-class traffic flows coming into the MSC.
Keywords: Next generation wireless network, mobile switching center, multi-class traffic, quality of service, admission control, effective bandwidth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8434894 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection
Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson
Abstract:
A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.Keywords: Image processing, artificial neural network, anomaly detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21154893 Two Day Ahead Short Term Load Forecasting Neural Network Based
Authors: Firas M. Tuaimah
Abstract:
This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity.
The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.
Keywords: Short-Term Load Forecasting, Artificial Neural Networks, Back propagation learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15604892 Losses Analysis in TEP Considering Uncertainity in Demand by DPSO
Authors: S. Jalilzadeh, A. Kimiyaghalam, A. Ashouri
Abstract:
This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.Keywords: DPSO, TEP, Uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14774891 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –
Authors: Reinhold Decker, Christian Holsing, Sascha Lerke
Abstract:
This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12024890 Hubs as Catalysts for Geospatial Communication in Kinship Networks
Authors: Sameer Kumar, Jariah Mohd. Jan
Abstract:
Earlier studies in kinship networks have primarily focused on observing the social relationships existing between family relatives. In this study, we pre-identified hubs in the network to investigate if they could play a catalyst role in the transfer of physical information. We conducted a case study of a ceremony performed in one of the families of a small Hindu community – the Uttar Rarhi Kayasthas. Individuals (n = 168) who resided in 11 geographically dispersed regions were contacted through our hub-based representation. We found that using this representation, over 98% of the individuals were successfully contacted within the stipulated period. The network also demonstrated a small-world property, with an average geodesic distance of 3.56.Keywords: Social Networks, Kinship Networks, Social Network Analysis, Geospatial Communication, Hubs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19364889 Molecular Evolutionary Analysis of Yeast Protein Interaction Network
Authors: Soichi Ogishima, Takeshi Hase, So Nakagawa, Yasuhiro Suzuki, Hiroshi Tanaka
Abstract:
To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.Keywords: Protein interaction network, evolution, modularity, evolutionary rate, connection degrees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13654888 On the Coupled Electromechanical Behavior of Artificial Materials with Chiral-Shell Elements
Authors: Anna Girchenko, Victor A. Eremeyev, Holm Altenbach
Abstract:
In the present work we investigate both the elastic and electric properties of a chiral material. We consider a composite structure made from a polymer matrix and anisotropic inclusions of GaAs taking into account piezoelectric and dielectric properties of the composite material. The principal task of the work is the estimation of the functional properties of the composite material.Keywords: Coupled electromechanical behavior, Composite structure, Chiral metamaterial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16664887 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
Authors: Huihai Wu, Xiaohui Liu
Abstract:
Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.
Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18874886 The Using Artificial Neural Network to Estimate of Chemical Oxygen Demand
Authors: S. Areerachakul
Abstract:
Nowadays, the increase of human population every year results in increasing of water usage and demand. Saen Saep canal is important canal in Bangkok. The main objective of this study is using Artificial Neural Network (ANN) model to estimate the Chemical Oxygen Demand (COD) on data from 11 sampling sites. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2007-2011. The twelve parameters of water quality are used as the input of the models. These water quality indices affect the COD. The experimental results indicate that the ANN model provides a high correlation coefficient (R=0.89).
Keywords: Artificial neural network, chemical oxygen demand, estimate, surface water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22694885 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.
Keywords: Bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31534884 Video-On-Demand QoE Evaluation across Different Age-Groups and Its Significance for Network Capacity
Authors: Mujtaba Roshan, John A. Schormans
Abstract:
Quality of Experience (QoE) drives churn in the broadband networks industry, and good QoE plays a large part in the retention of customers. QoE is known to be affected by the Quality of Service (QoS) factors packet loss probability (PLP), delay and delay jitter caused by the network. Earlier results have shown that the relationship between these QoS factors and QoE is non-linear, and may vary from application to application. We use the network emulator Netem as the basis for experimentation, and evaluate how QoE varies as we change the emulated QoS metrics. Focusing on Video-on-Demand, we discovered that the reported QoE may differ widely for users of different age groups, and that the most demanding age group (the youngest) can require an order of magnitude lower PLP to achieve the same QoE than is required by the most widely studied age group of users. We then used a bottleneck TCP model to evaluate the capacity cost of achieving an order of magnitude decrease in PLP, and found it be (almost always) a 3-fold increase in link capacity that was required.
Keywords: Quality of experience, quality of service, packet loss probability, network capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9424883 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks
Authors: Zongyan Li, Matt Best
Abstract:
This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21914882 Mobile Robot Path Planning in a 2-Dimentional Mesh
Authors: Doraid Dalalah
Abstract:
A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.Keywords: Mobile robot, Path Planning, Mesh, Potential field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19274881 Spreading Dynamics of a Viral Infection in a Complex Network
Authors: Khemanand Moheeput, Smita S. D. Goorah, Satish K. Ramchurn
Abstract:
We report a computational study of the spreading dynamics of a viral infection in a complex (scale-free) network. The final epidemic size distribution (FESD) was found to be unimodal or bimodal depending on the value of the basic reproductive number R0 . The FESDs occurred on time-scales long enough for intermediate-time epidemic size distributions (IESDs) to be important for control measures. The usefulness of R0 for deciding on the timeliness and intensity of control measures was found to be limited by the multimodal nature of the IESDs and by its inability to inform on the speed at which the infection spreads through the population. A reduction of the transmission probability at the hubs of the scale-free network decreased the occurrence of the larger-sized epidemic events of the multimodal distributions. For effective epidemic control, an early reduction in transmission at the index cell and its neighbors was essential.
Keywords: Basic reproductive number, epidemic control, scalefree network, viral infection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17214880 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks
Authors: Ashanie Guanathillake, Kithsiri Samarasinghe
Abstract:
Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.
Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23714879 Anomaly Detection and Characterization to Classify Traffic Anomalies Case Study: TOT Public Company Limited Network
Authors: O. Siriporn, S. Benjawan
Abstract:
This paper represents four unsupervised clustering algorithms namely sIB, RandomFlatClustering, FarthestFirst, and FilteredClusterer that previously works have not been used for network traffic classification. The methodology, the result, the products of the cluster and evaluation of these algorithms with efficiency of each algorithm from accuracy are shown. Otherwise, the efficiency of these algorithms considering form the time that it use to generate the cluster quickly and correctly. Our work study and test the best algorithm by using classify traffic anomaly in network traffic with different attribute that have not been used before. We analyses the algorithm that have the best efficiency or the best learning and compare it to the previously used (K-Means). Our research will be use to develop anomaly detection system to more efficiency and more require in the future.
Keywords: Unsupervised, clustering, anomaly, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21154878 Toward Delegated Democracy: Vote by Yourself, or Trust Your Network
Authors: Hiroshi Yamakawa, Michiko Yoshida, Motohiro Tsuchiya
Abstract:
The recent development of Information and Communication Technology (ICT) enables new ways of "democratic" decision-making such as a page-ranking system, which estimates the importance of a web page based on indirect trust on that page shared by diverse group of unorganized individuals. These kinds of "democracy" have not been acclaimed yet in the world of real politics. On the other hand, a large amount of data about personal relations including trust, norms of reciprocity, and networks of civic engagement has been accumulated in a computer-readable form by computer systems (e.g., social networking systems). We can use these relations as a new type of social capital to construct a new democratic decision-making system based on a delegation network. In this paper, we propose an effective decision-making support system, which is based on empowering someone's vote whom you trust. For this purpose, we propose two new techniques: the first is for estimating entire vote distribution from a small number of votes, and the second is for estimating active voter choice to promote voting using a delegation network. We show that these techniques could increase the voting ratio and credibility of the whole decision by agent-based simulations.
Keywords: Delegation, network centrality, social network, voting ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17874877 Big Data Strategy for Telco: Network Transformation
Abstract:
Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.
Keywords: Big Data, Next Generation Networks, Network Transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25164876 Forecasting Optimal Production Program Using Profitability Optimization by Genetic Algorithm and Neural Network
Authors: Galal H. Senussi, Muamar Benisa, Sanja Vasin
Abstract:
In our business field today, one of the most important issues for any enterprises is cost minimization and profit maximization. Second issue is how to develop a strong and capable model that is able to give us desired forecasting of these two issues. Many researches deal with these issues using different methods. In this study, we developed a model for multi-criteria production program optimization, integrated with Artificial Neural Network.
The prediction of the production cost and profit per unit of a product, dealing with two obverse functions at same time can be extremely difficult, especially if there is a great amount of conflict information about production parameters.
Feed-Forward Neural Networks are suitable for generalization, which means that the network will generate a proper output as a result to input it has never seen. Therefore, with small set of examples the network will adjust its weight coefficients so the input will generate a proper output.
This essential characteristic is of the most important abilities enabling this network to be used in variety of problems spreading from engineering to finance etc.
From our results as we will see later, Feed-Forward Neural Networks has a strong ability and capability to map inputs into desired outputs.
Keywords: Project profitability, multi-objective optimization, genetic algorithm, Pareto set, Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20574875 Integrated Subset Split for Balancing Network Utilization and Quality of Routing
Authors: S. V. Kasmir Raja, P. Herbert Raj
Abstract:
The overlay approach has been widely used by many service providers for Traffic Engineering (TE) in large Internet backbones. In the overlay approach, logical connections are set up between edge nodes to form a full mesh virtual network on top of the physical topology. IP routing is then run over the virtual network. Traffic engineering objectives are achieved through carefully routing logical connections over the physical links. Although the overlay approach has been implemented in many operational networks, it has a number of well-known scaling issues. This paper proposes a new approach to achieve traffic engineering without full-mesh overlaying with the help of integrated approach and equal subset split method. Traffic engineering needs to determine the optimal routing of traffic over the existing network infrastructure by efficiently allocating resource in order to optimize traffic performance on an IP network. Even though constraint-based routing [1] of Multi-Protocol Label Switching (MPLS) is developed to address this need, since it is not widely tested or debugged, Internet Service Providers (ISPs) resort to TE methods under Open Shortest Path First (OSPF), which is the most commonly used intra-domain routing protocol. Determining OSPF link weights for optimal network performance is an NP-hard problem. As it is not possible to solve this problem, we present a subset split method to improve the efficiency and performance by minimizing the maximum link utilization in the network via a small number of link weight modifications. The results of this method are compared against results of MPLS architecture [9] and other heuristic methods.
Keywords: Constraint based routing, Link Utilization, Subsetsplit method and Traffic Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14004874 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: S. Areerachakul, N. Ployong, S. Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.
Keywords: Artificial neural network, classification, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498