Search results for: fuzzy inference systems
4570 Adaptive E-Learning System Using Fuzzy Logic and Concept Map
Authors: Mesfer Al Duhayyim, Paul Newbury
Abstract:
This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.
Keywords: Adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11014569 A Fuzzy Logic Based Navigation of a Mobile Robot
Authors: Anis Fatmi, Amur Al Yahmadi, Lazhar Khriji, Nouri Masmoudi
Abstract:
One of the long standing challenging aspect in mobile robotics is the ability to navigate autonomously, avoiding modeled and unmodeled obstacles especially in crowded and unpredictably changing environment. A successful way of structuring the navigation task in order to deal with the problem is within behavior based navigation approaches. In this study, Issues of individual behavior design and action coordination of the behaviors will be addressed using fuzzy logic. A layered approach is employed in this work in which a supervision layer based on the context makes a decision as to which behavior(s) to process (activate) rather than processing all behavior(s) and then blending the appropriate ones, as a result time and computational resources are saved.
Keywords: Behavior based navigation, context based coordination, fuzzy logic, mobile robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18644568 Learning of Class Membership Values by Ellipsoidal Decision Regions
Authors: Leehter Yao, Chin-Chin Lin
Abstract:
A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.
Keywords: Ellipsoid, genetic algorithm, decision regions, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14284567 An Analytical Comparison between Open Loop, PID and Fuzzy Logic Based DC-DC Boost Convertor
Authors: Muhammad Mujtaba Asad, Razali Bin Hassan, Fahad Sherwani
Abstract:
This paper explains about the voltage output for DC to DC boost converter between open loop, PID controller and fuzzy logic controller through Matlab Simulink. Simulink input voltage was set at 12V and the voltage reference was set at 24V. The analysis on the deviation of voltage resulted that the difference between reference voltage setting and the output voltage is always lower. Comparison between open loop, PID and FLC shows that, the open loop circuit having a bit higher on the deviation of voltage. The PID circuit boosts for FLC has a lesser deviation of voltage and proved that it is such a better performance on control the deviation of voltage during the boost mode.
Keywords: Boost Convertors, Power Electronics, PID, Fuzzy logic, Open loop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38584566 Performance Comparison of AODV and Soft AODV Routing Protocol
Authors: Abhishek, Seema Devi, Jyoti Ohri
Abstract:
A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET's node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV.Keywords: ANFIS, AODV, fuzzy, MANET, reactive routing protocol, routing protocol, Truetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13294565 Navigation of Multiple Mobile Robots using Rule-based-Neuro-Fuzzy Technique
Authors: Saroj Kumar Pradhan, Dayal Ramakrushna Parhi, Anup Kumar Panda
Abstract:
This paper deals with motion planning of multiple mobile robots. Mobile robots working together to achieve several objectives have many advantages over single robot system. However, the planning and coordination between the mobile robots is extremely difficult. In the present investigation rule-based and rulebased- neuro-fuzzy techniques are analyzed for multiple mobile robots navigation in an unknown or partially known environment. The final aims of the robots are to reach some pre-defined goals. Based upon a reference motion, direction; distances between the robots and obstacles; and distances between the robots and targets; different types of rules are taken heuristically and refined later to find the steering angle. The control system combines a repelling influence related to the distance between robots and nearby obstacles and with an attracting influence between the robots and targets. Then a hybrid rule-based-neuro-fuzzy technique is analysed to find the steering angle of the robots. Simulation results show that the proposed rulebased- neuro-fuzzy technique can improve navigation performance in complex and unknown environments compared to this simple rulebased technique.Keywords: Mobile robots, Navigation, Neuro-fuzzy, Obstacle avoidance, Rule-based, Target seeking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17934564 Drainage Prediction for Dam using Fuzzy Support Vector Regression
Authors: S. Wiriyarattanakun, A. Ruengsiriwatanakun, S. Noimanee
Abstract:
The drainage Estimating is an important factor in dam management. In this paper, we use fuzzy support vector regression (FSVR) to predict the drainage of the Sirikrit Dam at Uttaradit province, Thailand. The results show that the FSVR is a suitable method in drainage estimating.Keywords: Drainage Estimation, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12704563 Study on Applying Fuzzy AHP and GRA in Selection of Agent Construction Enterprise
Authors: Shirong Li, Huan Yan
Abstract:
To help the client to select a competent agent construction enterprise (ACE), this study aims to investigate the selection standards by using the Fuzzy Analytic Hierarchy Process (FAHP) and build an evaluation mathematical model with Grey Relational Analysis (GRA). According to the outputs of literature review, four orderly levels are established within the model, taking the consideration of various agent construction models in practice. Then, the process of applying FAHP and GRA is discussed in detailed. Finally, through a case study, this paper illustrates how to apply these methods in getting the weights of each standard and the final assessment result.Keywords: agent construction enterprise, agent constructionmodel, fuzzy analytic hierarchy process, grey relational analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20434562 Risk Evaluation of Information Technology Projects Based on Fuzzy Analytic Hierarchal Process
Authors: H. Iranmanesh, S. Nazari Shirkouhi, M. R. Skandari
Abstract:
Information Technology (IT) projects are always accompanied by various risks and because of high rate of failure in such projects, managing risks in order to neutralize or at least decrease their effects on the success of the project is strongly essential. In this paper, fuzzy analytical hierarchy process (FAHP) is exploited as a means of risk evaluation methodology to prioritize and organize risk factors faced in IT projects. A real case of IT projects, a project of design and implementation of an integrated information system in a vehicle producing company in Iran is studied. Related risk factors are identified and then expert qualitative judgments about these factors are acquired. Translating these judgments to fuzzy numbers and using them as an input to FAHP, risk factors are then ranked and prioritized by FAHP in order to make project managers aware of more important risks and enable them to adopt suitable measures to deal with these highly devastative risks.Keywords: Information technology projects, Risk evaluation, Analytic hierarchal process, fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19424561 Forward Simulation of a Parallel Hybrid Vehicle and Fuzzy Controller Design for Driving/Regenerative Propose
Authors: Peyman Naderi, Ali Farhadi, S. Mohammad Taghi Bathaee
Abstract:
One of the best ways for achievement of conventional vehicle changing to hybrid case is trustworthy simulation result and using of driving realities. For this object, in this paper, at first sevendegree- of-freedom dynamical model of vehicle will be shown. Then by using of statically model of engine, gear box, clutch, differential, electrical machine and battery, the hybrid automobile modeling will be down and forward simulation of vehicle for pedals to wheels power transformation will be obtained. Then by design of a fuzzy controller and using the proper rule base, fuel economy and regenerative braking will be marked. Finally a series of MATLAB/SIMULINK simulation results will be proved the effectiveness of proposed structure.Keywords: Hybrid, Driving, Fuzzy, Regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14734560 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.
Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9614559 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator
Authors: K. Kouzi
Abstract:
In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.
Keywords: Direct torque control, dual stator induction motor, fuzzy logic estimation, stator resistance adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11624558 Synchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation
Authors: Changzhao Li, Juan Zhang
Abstract:
In this paper, we investigate a class of fuzzy Cohen- Grossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. Finally, a numerical example is given to show the effectiveness of the results in this paper.
Keywords: Fuzzy Cohen-Grossberg neural networks (FCGNNs), complete synchronization, time delays, impulsive, noise perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13444557 A Fuzzy Logic Based Model to Predict Surface Roughness of A Machined Surface in Glass Milling Operation Using CBN Grinding Tool
Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi
Abstract:
Nowadays, the demand for high product quality focuses extensive attention to the quality of machined surface. The (CNC) milling machine facilities provides a wide variety of parameters set-up, making the machining process on the glass excellent in manufacturing complicated special products compared to other machining processes. However, the application of grinding process on the CNC milling machine could be an ideal solution to improve the product quality, but adopting the right machining parameters is required. In glass milling operation, several machining parameters are considered to be significant in affecting surface roughness. These parameters include the lubrication pressure, spindle speed, feed rate and depth of cut. In this research work, a fuzzy logic model is offered to predict the surface roughness of a machined surface in glass milling operation using CBN grinding tool. Four membership functions are allocated to be connected with each input of the model. The predicted results achieved via fuzzy logic model are compared to the experimental result. The result demonstrated settlement between the fuzzy model and experimental results with the 93.103% accuracy.Keywords: CNC-machine, Glass milling, Grinding, Surface roughness, Cutting force, Fuzzy logic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26604556 Decision Support System “Crop-9-DSS“ for Identified Crops
Authors: Ganesan V.
Abstract:
Application of Expert System in the area of agriculture would take the form of Integrated Crop Management decision aids and would encompass water management, fertilizer management, crop protection systems and identification of implements. In order to remain competitive, the modern farmer often relies on agricultural specialists and advisors to provide information for decision-making. An expert system normally composed of a knowledge base (information, heuristics, etc.), inference engine (analyzes knowledge base), and end user interface (accepting inputs, generating outputs). Software named 'CROP-9-DSS' incorporating all modern features like, graphics, photos, video clippings etc. has been developed. This package will aid as a decision support system for identification of pest and diseases with control measures, fertilizer recommendation system, water management system and identification of farm implements for leading crops of Kerala (India) namely Coconut, Rice, Cashew, Pepper, Banana, four vegetables like Amaranthus, Bhindi, Brinjal and Cucurbits. 'CROP-9-DSS' will act as an expert system to agricultural officers, scientists in the field of agriculture and extension workers for decision-making and help them in suggesting suitable recommendations.
Keywords: Diagnostic, inference engine, knowledge base and user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30614555 Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming
Authors: Abbas Al-Refaie
Abstract:
This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L9 array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs.
Keywords: Fuzzy goal programming, control charts, process capability, tablet optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10044554 Fuzzy Fingerprint Vault using Multiple Polynomials
Authors: Daesung Moon, Woo-Yong Choi, Kiyoung Moon
Abstract:
Fuzzy fingerprint vault is a recently developed cryptographic construct based on the polynomial reconstruction problem to secure critical data with the fingerprint data. However, the previous researches are not applicable to the fingerprint having a few minutiae since they use a fixed degree of the polynomial without considering the number of fingerprint minutiae. To solve this problem, we use an adaptive degree of the polynomial considering the number of minutiae extracted from each user. Also, we apply multiple polynomials to avoid the possible degradation of the security of a simple solution(i.e., using a low-degree polynomial). Based on the experimental results, our method can make the possible attack difficult 2192 times more than using a low-degree polynomial as well as verify the users having a few minutiae.
Keywords: Fuzzy vault, fingerprint recognition multiple polynomials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15474553 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination
Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili
Abstract:
One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.
Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27244552 Similarity Measures and Weighted Fuzzy C-Mean Clustering Algorithm
Authors: Bainian Li, Kongsheng Zhang, Jian Xu
Abstract:
In this paper we study the fuzzy c-mean clustering algorithm combined with principal components method. Demonstratively analysis indicate that the new clustering method is well rather than some clustering algorithms. We also consider the validity of clustering method.
Keywords: FCM algorithm, Principal Components Analysis, Clustervalidity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17244551 A Multi-Agent Intelligent System for Monitoring Health Conditions of Elderly People
Authors: Ayman M. Mansour
Abstract:
In this paper, we propose a multi-agent intelligent system that is used for monitoring the health conditions of elderly people. Monitoring the health condition of elderly people is a complex problem that involves different medical units and requires continuous monitoring. Such expert system is highly needed in rural areas because of inadequate number of available specialized physicians or nurses. Such monitoring must have autonomous interactions between these medical units in order to be effective. A multi-agent system is formed by a community of agents that exchange information and proactively help one another to achieve the goal of elderly monitoring. The agents in the developed system are equipped with intelligent decision maker that arms them with the rule-based reasoning capability that can assist the physicians in making decisions regarding the medical condition of elderly people.
Keywords: Fuzzy Logic, Inference system, Monitoring system, Multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22824550 Medical Image Segmentation and Detection of MR Images Based on Spatial Multiple-Kernel Fuzzy C-Means Algorithm
Authors: J. Mehena, M. C. Adhikary
Abstract:
In this paper, a spatial multiple-kernel fuzzy C-means (SMKFCM) algorithm is introduced for segmentation problem. A linear combination of multiples kernels with spatial information is used in the kernel FCM (KFCM) and the updating rules for the linear coefficients of the composite kernels are derived as well. Fuzzy cmeans (FCM) based techniques have been widely used in medical image segmentation problem due to their simplicity and fast convergence. The proposed SMKFCM algorithm provides us a new flexible vehicle to fuse different pixel information in medical image segmentation and detection of MR images. To evaluate the robustness of the proposed segmentation algorithm in noisy environment, we add noise in medical brain tumor MR images and calculated the success rate and segmentation accuracy. From the experimental results it is clear that the proposed algorithm has better performance than those of other FCM based techniques for noisy medical MR images.Keywords: Clustering, fuzzy C-means, image segmentation, MR images, multiple kernels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21294549 The Defects Reduction in Injection Molding by Fuzzy Logic based Machine Selection System
Authors: S. Suwannasri, R. Sirovetnukul
Abstract:
The effective machine-job assignment of injection molding machines is very important for industry because it is not only directly affects the quality of the product but also the performance and lifetime of the machine as well. The phase of machine selection was mostly done by professionals or experienced planners, so the possibility of matching a job with an inappropriate machine might occur when it was conducted by an inexperienced person. It could lead to an uneconomical plan and defects. This research aimed to develop a machine selection system for plastic injection machines as a tool to help in decision making of the user. This proposed system could be used both in normal times and in times of emergency. Fuzzy logic principle is applied to deal with uncertainty and mechanical factors in the selection of both quantity and quality criteria. The six criteria were obtained from a plastic manufacturer's case study to construct a system based on fuzzy logic theory using MATLAB. The results showed that the system was able to reduce the defects of Short Shot and Sink Mark to 24.0% and 8.0% and the total defects was reduced around 8.7% per month.Keywords: Injection molding machine, machine selection, fuzzy logic, defects in injection molding, matlab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27554548 Generalized Mean-field Theory of Phase Unwrapping via Multiple Interferograms
Authors: Yohei Saika
Abstract:
On the basis of Bayesian inference using the maximizer of the posterior marginal estimate, we carry out phase unwrapping using multiple interferograms via generalized mean-field theory. Numerical calculations for a typical wave-front in remote sensing using the synthetic aperture radar interferometry, phase diagram in hyper-parameter space clarifies that the present method succeeds in phase unwrapping perfectly under the constraint of surface- consistency condition, if the interferograms are not corrupted by any noises. Also, we find that prior is useful for extending a phase in which phase unwrapping under the constraint of the surface-consistency condition. These results are quantitatively confirmed by the Monte Carlo simulation.
Keywords: Bayesian inference, generalized mean-field theory, phase unwrapping, statistical mechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16564547 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans
Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke
Abstract:
Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.
Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16734546 Fuzzy Numbers and MCDM Methods for Portfolio Optimization
Authors: Thi T. Nguyen, Lee N. Gordon-Brown
Abstract:
A new deployment of the multiple criteria decision making (MCDM) techniques: the Simple Additive Weighting (SAW), and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for portfolio allocation, is demonstrated in this paper. Rather than exclusive reference to mean and variance as in the traditional mean-variance method, the criteria used in this demonstration are the first four moments of the portfolio distribution. Each asset is evaluated based on its marginal impacts to portfolio higher moments that are characterized by trapezoidal fuzzy numbers. Then centroid-based defuzzification is applied to convert fuzzy numbers to the crisp numbers by which SAW and TOPSIS can be deployed. Experimental results suggest the similar efficiency of these MCDM approaches to selecting dominant assets for an optimal portfolio under higher moments. The proposed approaches allow investors flexibly adjust their risk preferences regarding higher moments via different schemes adapting to various (from conservative to risky) kinds of investors. The other significant advantage is that, compared to the mean-variance analysis, the portfolio weights obtained by SAW and TOPSIS are consistently well-diversified.Keywords: Fuzzy numbers, SAW, TOPSIS, portfolio optimization, higher moments, risk management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21434545 A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm
Abstract:
With the increasing complexity of engineering problems, the traditional, single-objective and deterministic optimization method can not meet people-s requirements. A multi-objective fuzzy optimization model of resource input is built for M chlor-alkali chemical eco-industrial park in this paper. First, the model is changed into the form that can be solved by genetic algorithm using fuzzy theory. And then, a fitness function is constructed for genetic algorithm. Finally, a numerical example is presented to show that the method compared with traditional single-objective optimization method is more practical and efficient.Keywords: Fitness function, genetic algorithm, multi-objectivefuzzy optimization, satisfaction degree membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13554544 Optimal Network of Secondary Warehouses for Production-Distribution Inventory Model
Authors: G. M. Arun Prasath, N. Arthi
Abstract:
This work proposed a multi-objective mathematical programming approach to select the appropriate supply network elements. The multi-item multi-objective production-distribution inventory model is formulated with possible constraints under fuzzy environment. The unit cost has taken under fuzzy environment. The inventory model and warehouse location model has combined to formulate the production-distribution inventory model. Warehouse location is important in supply chain network. Particularly, if a company maintains more selling stores it cannot maintain individual secondary warehouse near to each selling store. Hence, maintaining the optimum number of secondary warehouses is important. Hence, the combined mathematical model is formulated to reduce the total expenditure of the organization by arranging the network of minimum number of secondary warehouses. Numerical example has been taken to illustrate the proposed model.Keywords: Fuzzy inventory model, warehouse location model, triangular fuzzy number, secondary warehouse, LINGO software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12384543 Unmanned Combat Aircraft Selection using Fuzzy Proximity Measure Method in Multiple Criteria Group Decision Making
Authors: C. Ardil
Abstract:
The decision to select an unmanned combat aircraft is complicated since several options and conflicting criteria must be considered at simultaneously. When making multiple criteria decision, it is important to consider the selected evaluation criteria, including priceability, payloadability, stealthability, speedability , and survivability. The fundamental goal of the study is to select the best unmanned combat aircraft by taking these evaluation criteria into account. The optimal aircraft was chosen using the fuzzy proximity measure method, which enables decision-makers to designate preferences as standard fuzzy set numbers during the multiple criteria decision-making process. To assess the applicability of the proposed approach, a numerical example is provided. Finally, by comparing determined unmanned combat aircraft, the proposed method produced a successful application, and the best aircraft was selected.
Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), multiple criteria group decision making (MCGDM), proximity measure method (PMM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4344542 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System
Authors: N. Chayaopas, W. Assawinchaichote
Abstract:
In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.Keywords: H∞ fuzzy integral control, linear matrix inequality, wind energy system, doubly fed induction generator (DFIG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11534541 Improvements in Edge Detection Based on Mathematical Morphology and Wavelet Transform using Fuzzy Rules
Authors: Masrour Dowlatabadi, Jalil Shirazi
Abstract:
In this paper, an improved edge detection algorithm based on fuzzy combination of mathematical morphology and wavelet transform is proposed. The combined method is proposed to overcome the limitation of wavelet based edge detection and mathematical morphology based edge detection in noisy images. Experimental results show superiority of the proposed method, as compared to the traditional Prewitt, wavelet based and morphology based edge detection methods. The proposed method is an effective edge detection method for noisy image and keeps clear and continuous edges.Keywords: Edge detection, Wavelet transform, Mathematical morphology, Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403