Search results for: Risk acceptance and Multi-objective optimization.
2475 Method for Determining the Probing Points for Efficient Measurement of Freeform Surface
Authors: Yi Xu, Zexiang Li
Abstract:
In inspection and workpiece localization, sampling point data is an important issue. Since the devices for sampling only sample discrete points, not the completely surface, sampling size and location of the points will be taken into consideration. In this paper a method is presented for determining the sampled points size and location for achieving efficient sampling. Firstly, uncertainty analysis of the localization parameters is investigated. A localization uncertainty model is developed to predict the uncertainty of the localization process. Using this model the minimum size of the sampled points is predicted. Secondly, based on the algebra theory an eigenvalue-optimal optimization is proposed. Then a freeform surface is used in the simulation. The proposed optimization is implemented. The simulation result shows its effectivity.
Keywords: eigenvalue-optimal optimization, freeform surface inspection, sampling size and location, sampled points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12392474 Improved Artificial Immune System Algorithm with Local Search
Authors: Ramin Javadzadeh., Zahra Afsahi, MohammadReza Meybodi
Abstract:
The Artificial immune systems algorithms are Meta heuristic optimization method, which are used for clustering and pattern recognition applications are abundantly. These algorithms in multimodal optimization problems are more efficient than genetic algorithms. A major drawback in these algorithms is their slow convergence to global optimum and their weak stability can be considered in various running of these algorithms. In this paper, improved Artificial Immune System Algorithm is introduced for the first time to overcome its problems of artificial immune system. That use of the small size of a local search around the memory antibodies is used for improving the algorithm efficiently. The credibility of the proposed approach is evaluated by simulations, and it is shown that the proposed approach achieves better results can be achieved compared to the standard artificial immune system algorithmsKeywords: Artificial immune system, Cellular Automata, Cellular learning automata, Cellular learning automata, , Local search, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18922473 Multi-objective Optimization of Vehicle Passive Suspension with a Two-Terminal Mass Using Chebyshev Goal Programming
Authors: Chuan Li, Ming Liang, Qibing Yu
Abstract:
To improve the dynamics response of the vehicle passive suspension, a two-terminal mass is suggested to connect in parallel with the suspension strut. Three performance criteria, tire grip, ride comfort and suspension deflection, are taken into consideration to optimize the suspension parameters. However, the three criteria are conflicting and non-commensurable. For this reason, the Chebyshev goal programming method is applied to find the best tradeoff among the three objectives. A simulation case is presented to describe the multi-objective optimization procedure. For comparison, the Chebyshev method is also employed to optimize the design of a conventional passive suspension. The effectiveness of the proposed design method has been clearly demonstrated by the result. It is also shown that the suspension with a two-terminal mass in parallel has better performance in terms of the three objectives.Keywords: Vehicle, passive suspension, two-terminal mass, optimization, Chebyshev goal programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17592472 Emergency Response Plan Establishment and Computerization through the Analysis of the Disasters Occurring on Long-Span Bridges by Type
Authors: Sungnam Hong, Sun-Kyu Park, Dooyong Cho, Jinwoong Choi
Abstract:
In this paper, a strategy for long-span bridge disaster response was developed, divided into risk analysis, business impact analysis, and emergency response plan. At the risk analysis stage, the critical risk was estimated. The critical risk was “car accident."The critical process by critical-risk classification was assessed at the business impact analysis stage. The critical process was the task related to the road conditions and traffic safety. Based on the results of the precedent analysis, an emergency response plan was established. By making the order of the standard operating procedures clear, an effective plan for dealing with disaster was formulated. Finally, a prototype software was developed based on the research findings. This study laid the foundation of an information-technology-based disaster response guideline and is significant in that it computerized the disaster response plan to improve the plan-s accessibility.
Keywords: Emergency response; Long-span bridge; Disaster management; Standard operating procedure; Ubiquitous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18352471 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints
Authors: S. Kavitha, Nirmala P. Ratchagar
Abstract:
This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.
Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35872470 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process
Authors: M. Massour El Aoud, M. Franceschi, M. Maher
Abstract:
The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.
Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19472469 Algorithm for Information Retrieval Optimization
Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran
Abstract:
When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (Keywords: Internet ranking,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14752468 An Advanced Nelder Mead Simplex Method for Clustering of Gene Expression Data
Authors: M. Pandi, K. Premalatha
Abstract:
The DNA microarray technology concurrently monitors the expression levels of thousands of genes during significant biological processes and across the related samples. The better understanding of functional genomics is obtained by extracting the patterns hidden in gene expression data. It is handled by clustering which reveals natural structures and identify interesting patterns in the underlying data. In the proposed work clustering gene expression data is done through an Advanced Nelder Mead (ANM) algorithm. Nelder Mead (NM) method is a method designed for optimization process. In Nelder Mead method, the vertices of a triangle are considered as the solutions. Many operations are performed on this triangle to obtain a better result. In the proposed work, the operations like reflection and expansion is eliminated and a new operation called spread-out is introduced. The spread-out operation will increase the global search area and thus provides a better result on optimization. The spread-out operation will give three points and the best among these three points will be used to replace the worst point. The experiment results are analyzed with optimization benchmark test functions and gene expression benchmark datasets. The results show that ANM outperforms NM in both benchmarks.
Keywords: Spread out, simplex, multi-minima, fitness function, optimization, search area, monocyte, solution, genomes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25582467 An Integrated Operational Research and System Dynamics Approach for Planning Decisions in Container Terminals
Authors: A. K. Abdel-Fattah, A. B. El-Tawil, N. A. Harraz
Abstract:
This paper focuses on the operational and strategic planning decisions related to the quayside of container terminals. We introduce an integrated operational research (OR) and system dynamics (SD) approach to solve the Berth Allocation Problem (BAP) and the Quay Crane Assignment Problem (QCAP). A BAP-QCAP optimization modeling approach which considers practical aspects not studied before in the integration of BAP and QCAP is discussed. A conceptual SD model is developed to determine the long-term effect of optimization on the system behavior factors like resource utilization, attractiveness to port, number of incoming vessels to port and port profits. The framework can be used for improving the operational efficiency of container terminals and providing a strategic view after applying optimization.
Keywords: Operational research, system dynamics, container terminal, quayside operational problems, strategic planning decisions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33232466 Innovativeness, Risk Taking, Focusing on Opportunity Attitudes on Nurse Managers and Nurses
Authors: Melek Kalkan, Hatice Odacı, Hatice Epli Koç
Abstract:
The aim of this study is to compare the innovativeness, risk taking, and focusing on opportunity of the nurse managers and nurses. The data are collected from nurse managers and nurses in Ondokuz Mayıs University, Faculty of Medicine Hospital and Karadeniz Technical University, Faculty of Medicine Hospital. The study sample consisted of 151 participants, 76 nurse managers (50.3%) and 75 nurses (49.7%). All participants have been assessed by Participant Information Form and Corporate Entrepreneurship Scale. In data analysis, independent t-test has applied. The results show that there are significant differences between nurse managers and nurses on innovativeness (t = 2.42, p < 0.05), risk taking (t = 3.62, p < 0.01), and focusing on opportunity (t = 2.16, p < 0.05). Consequently, it can be said that nurse managers have more innovativeness than nurses and tend to take more risks and focus more on opportunities.
Keywords: Focusing on opportunity attitudes, innovativeness, risk taking, nurse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24782465 Implementation of Feed-in Tariffs into Multi-Energy Systems
Authors: M. Schulze, P. Crespo Del Granado
Abstract:
This paper considers the influence of promotion instruments for renewable energy sources (RES) on a multi-energy modeling framework. In Europe, so called Feed-in Tariffs are successfully used as incentive structures to increase the amount of energy produced by RES. Because of the stochastic nature of large scale integration of distributed generation, many problems have occurred regarding the quality and stability of supply. Hence, a macroscopic model was developed in order to optimize the power supply of the local energy infrastructure, which includes electricity, natural gas, fuel oil and district heating as energy carriers. Unique features of the model are the integration of RES and the adoption of Feed-in Tariffs into one optimization stage. Sensitivity studies are carried out to examine the system behavior under changing profits for the feed-in of RES. With a setup of three energy exchanging regions and a multi-period optimization, the impact of costs and profits are determined.Keywords: Distributed generation, optimization methods, power system modeling, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16332464 Comparative Analysis of Commercial Property and Stock-Market Investments in Nigeria
Authors: Bello Nurudeen Akinsola
Abstract:
The study analyzed the risk and returns of commercial-property in Southwestern Nigeria and selected stocksmarket investment between 2000 and 2009; compared the inflation hedging characteristics and diversification potentials of investing in commercial-property and selected stock- market investment. Primary data were collected on characteristics, rental and capital values of commercial- properties from their property managers through the use of questionnaire. Secondary data on stock prices and dividends on banking, insurance and conglomerates sectors were sourced from the Nigerian Stock Exchange (2000-2009). The result showed that average return on all the selected stock- investments was higher than that of commercial-property. As regards risk, commercial-property indicated lower risk, compared to stocks. Also the stock-investment had better inflation hedging capacity than commercial-properties; combination of both had diversification potentials. The study concluded that stock-market investment offered attractive higher return than commercial-property although with higher risk and there could be diversification benefits in combining commercial-property with stock- investment.
Keywords: Commercial-Property, Return, Risk, Stock Market
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51932463 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21592462 Analysis of Possible Draught Size of Container Vessels on the Lower Danube
Authors: Todor Bačkalić, Marinko Maslarić, Milosav Georgijević, Sanja Bojić
Abstract:
Presented article outlines a rationale, why it is necessary to develop competence about infrastructure risk in water transport. Climate changes are evident and require special attention and global monitoring. Current risk assessment methods for Inland waterway transport just consider some dramatic events. We present a new method for the assessment of risk and vulnerability of inland waterway transport where river depth represents a crucial part. The analysis of water level changes in the lower Danube was done for two significant periods (1965-1979 and 1998-2012).Keywords: Container ship, draught, probability, the Danube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16162461 Maternal Smoking and Risk of Childhood Overweight and Obesity: A Meta-Analysis
Authors: Martina Kanciruk, Jac W. Andrews, Tyrone Donnon
Abstract:
The purpose of this study was to determine the significance of maternal smoking for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, smoking, parents, childhood, risk factors. Eighteen studies of maternal smoking during pregnancy and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that maternal smoking during pregnancy is a significant risk factor for overweight and obesity; mothers who smoke during pregnancy are at a greater risk for developing obesity or overweight; the quantity of cigarettes consumed by the mother during pregnancy influenced the odds of offspring overweight and/or obesity. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.
Keywords: Childhood obesity, overweight, smoking, parents, risk factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20332460 Particle Swarm Optimization Based Genetic Algorithm for Two-Stage Transportation Supply Chain
Authors: Siva Prasad Darla, C. D. Naiju, K. Annamalai, S. S. Rajiv Sushanth
Abstract:
Supply chain consists of all stages involved, directly or indirectly, includes all functions involved in fulfilling a customer demand. In two stage transportation supply chain problem, transportation costs are of a significant proportion of final product costs. It is often crucial for successful decisions making approaches in two stage supply chain to explicit account for non-linear transportation costs. In this paper, deterministic demand and finite supply of products was considered. The optimized distribution level and the routing structure from the manufacturing plants to the distribution centres and to the end customers is determined using developed mathematical model and solved by proposed particle swarm optimization based genetic algorithm. Numerical analysis of the case study is carried out to validate the model.Keywords: Genetic Algorithm, Particle Swarm Optimization, Production, Remanufacturing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18402459 An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices
Authors: F. Djeffal, N. Lakhdar, T. Bendib
Abstract:
The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.Keywords: Particle Swarm, electron mobility, Si-based devices, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15382458 Application of Pattern Search Method to Power System Security Constrained Economic Dispatch
Authors: A. K. Al-Othman, K. M. EL-Nagger
Abstract:
Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED). Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using one system. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED).
Keywords: Security Constrained Economic Dispatch, Direct Search method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22082457 Determining Occurrence in FMEA Using Hazard Function
Authors: Hazem J. Smadi
Abstract:
FMEA has been used for several years and proved its efficiency for system’s risk analysis due to failures. Risk priority number found in FMEA is used to rank failure modes that may occur in a system. There are some guidelines in the literature to assign the values of FMEA components known as Severity, Occurrence and Detection. This paper propose a method to assign the value for occurrence in more realistic manner representing the state of the system under study rather than depending totally on the experience of the analyst. This method uses the hazard function of a system to determine the value of occurrence depending on the behavior of the hazard being constant, increasing or decreasing.
Keywords: FMEA, Hazard Function, Risk Priority Number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35272456 Students' Acceptance of Incorporating Emerging Communication Technologies in Higher Education in Kuwait
Authors: Bashaiar Alsanaa
Abstract:
Never has a revolution affected all aspects of humanity as the communication revolution during the past two decades. This revolution, with all its advances and utilities, swept the world thus becoming an integral part of our lives, hence giving way to emerging applications at the social, economic, political, and educational levels. More specifically, such applications have changed the delivery system through which learning is acquired by students. Interaction with educators, accessibility to content, and creative delivery options are but a few facets of the new learning experience now being offered through the use of technology in the educational field. With different success rates, third world countries have tried to pace themselves with use of educational technology in advanced parts of the world. One such country is the small rich-oil state of Kuwait which has tried to adopt the e-educational model, however, an evaluation of such trial is yet to be done. This study aimed to fill the void of research conducted around that topic. The study explored students' acceptance of incorporating communication technologies in higher education in Kuwait. Students' responses to survey questions presented an overview of the e-learning experience in this country, and drew a framework through which implications and suggestions for future research were discussed to better serve the advancement of e-education in developing countries.Keywords: Communication technologies, E-learning, Kuwait, Social media
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17012455 Ranking - Convex Risk Minimization
Authors: Wojciech Rejchel
Abstract:
The problem of ranking (rank regression) has become popular in the machine learning community. This theory relates to problems, in which one has to predict (guess) the order between objects on the basis of vectors describing their observed features. In many ranking algorithms a convex loss function is used instead of the 0-1 loss. It makes these procedures computationally efficient. Hence, convex risk minimizers and their statistical properties are investigated in this paper. Fast rates of convergence are obtained under conditions, that look similarly to the ones from the classification theory. Methods used in this paper come from the theory of U-processes as well as empirical processes.
Keywords: Convex loss function, empirical risk minimization, empirical process, U-process, boosting, euclidean family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14142454 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.
Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24072453 Optimal Design of Reference Node Placement for Wireless Indoor Positioning Systems in Multi-Floor Building
Authors: Kittipob Kondee, Chutima Prommak
Abstract:
In this paper, we propose an optimization technique that can be used to optimize the placements of reference nodes and improve the location determination performance for the multi-floor building. The proposed technique is based on Simulated Annealing algorithm (SA) and is called MSMR-M. The performance study in this work is based on simulation. We compare other node-placement techniques found in the literature with the optimal node-placement solutions obtained from our optimization. The results show that using the optimal node-placement obtained by our proposed technique can improve the positioning error distances up to 20% better than those of the other techniques. The proposed technique can provide an average error distance within 1.42 meters.
Keywords: Indoor positioning System, Optimization System design, Multi-Floor Building, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19832452 A Genetic and Simulated Annealing Based Algorithms for Solving the Flow Assignment Problem in Computer Networks
Authors: Tarek M. Mahmoud
Abstract:
Selecting the routes and the assignment of link flow in a computer communication networks are extremely complex combinatorial optimization problems. Metaheuristics, such as genetic or simulated annealing algorithms, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult combinatorial optimization problems. This paper considers the route selection and hence the flow assignment problem. A genetic algorithm and simulated annealing algorithm are used to solve this problem. A new hybrid algorithm combining the genetic with the simulated annealing algorithm is introduced. A modification of the genetic algorithm is also introduced. Computational experiments with sample networks are reported. The results show that the proposed modified genetic algorithm is efficient in finding good solutions of the flow assignment problem compared with other techniques.Keywords: Genetic Algorithms, Flow Assignment, Routing, Computer network, Simulated Annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22562451 Optimal Manufacturing Scheduling for Dependent Details Processing
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.Keywords: Optimal manufacturing scheduling, linear programming, metalworking machines production, dependant details processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14872450 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.
Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8002449 Optimization Modeling of the Hybrid Antenna Array for the DoA Estimation
Authors: Somayeh Komeylian
Abstract:
The direction of arrival (DoA) estimation is the crucial aspect of the radar technologies for detecting and dividing several signal sources. In this scenario, the antenna array output modeling involves numerous parameters including noise samples, signal waveform, signal directions, signal number, and signal to noise ratio (SNR), and thereby the methods of the DoA estimation rely heavily on the generalization characteristic for establishing a large number of the training data sets. Hence, we have analogously represented the two different optimization models of the DoA estimation; (1) the implementation of the decision directed acyclic graph (DDAG) for the multiclass least-squares support vector machine (LS-SVM), and (2) the optimization method of the deep neural network (DNN) radial basis function (RBF). We have rigorously verified that the LS-SVM DDAG algorithm is capable of accurately classifying DoAs for the three classes. However, the accuracy and robustness of the DoA estimation are still highly sensitive to technological imperfections of the antenna arrays such as non-ideal array design and manufacture, array implementation, mutual coupling effect, and background radiation and thereby the method may fail in representing high precision for the DoA estimation. Therefore, this work has a further contribution on developing the DNN-RBF model for the DoA estimation for overcoming the limitations of the non-parametric and data-driven methods in terms of array imperfection and generalization. The numerical results of implementing the DNN-RBF model have confirmed the better performance of the DoA estimation compared with the LS-SVM algorithm. Consequently, we have analogously evaluated the performance of utilizing the two aforementioned optimization methods for the DoA estimation using the concept of the mean squared error (MSE).
Keywords: DoA estimation, adaptive antenna array, Deep Neural Network, LS-SVM optimization model, radial basis function, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5392448 Supply Chain Risk Management (SCRM): A Simplified Alternative for Implementing SCRM for Small and Medium Enterprises
Authors: Paul W. Murray, Marco Barajas
Abstract:
Recent changes in supply chains, especially globalization and collaboration, have created new risks for enterprises of all sizes. A variety of complex frameworks, often based on enterprise risk management strategies have been presented under the heading of Supply Chain Risk Management (SCRM). The literature on promotes the benefits of a robust SCRM strategy; however, implementing SCRM is difficult and resource demanding for Large Enterprises (LEs), and essentially out of reach for Small & Medium Enterprises (SMEs). This research debunks the idea that SCRM is necessary for all enterprises and instead proposes a simple and effective Vendor Selection Template (VST). Empirical testing and a survey of supply chain practitioners provide a measure of validation to the VST. The resulting VSTis a valuable contribution because is easy to use, provides practical results, and is sufficiently flexible to be universally applied to SMEs.
Keywords: Multiple Regression Analysis, Supply Chain Management, Risk Assessment, Vendor Selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28422447 Estimation of Structural Parameters in Time Domain Using One Dimensional Piezo Zirconium Titanium Patch Model
Authors: N. Jinesh, K. Shankar
Abstract:
This article presents a method of using the one dimensional piezo-electric patch on beam model for structural identification. A hybrid element constituted of one dimensional beam element and a PZT sensor is used with reduced material properties. This model is convenient and simple for identification of beams. Accuracy of this element is first verified against a corresponding 3D finite element model (FEM). The structural identification is carried out as an inverse problem whereby parameters are identified by minimizing the deviation between the predicted and measured voltage response of the patch, when subjected to excitation. A non-classical optimization algorithm Particle Swarm Optimization is used to minimize this objective function. The signals are polluted with 5% Gaussian noise to simulate experimental noise. The proposed method is applied on beam structure and identified parameters are stiffness and damping. The model is also validated experimentally.
Keywords: Structural identification, PZT patches, inverse problem, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9312446 Optimum Design of Trusses by Cuckoo Search
Authors: M. Saravanan, J. Raja Murugadoss, V. Jayanthi
Abstract:
Optimal design of structure has a main role in reduction of material usage which leads to deduction in the final cost of construction projects. Evolutionary approaches are found to be more successful techniques for solving size and shape structural optimization problem since it uses a stochastic random search instead of a gradient search. By reviewing the recent literature works the problem found was the optimization of weight. A new meta-heuristic algorithm called as Cuckoo Search (CS) Algorithm has used for the optimization of the total weight of the truss structures. This paper has used set of 10 bars and 25 bars trusses for the testing purpose. The main objective of this work is to reduce the number of iterations, weight and the total time consumption. In order to demonstrate the effectiveness of the present method, minimum weight design of truss structures is performed and the results of the CS are compared with other algorithms.
Keywords: Cuckoo search algorithm, levy’s flight, meta-heuristic, optimal weight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105