Search results for: Degradation signal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1596

Search results for: Degradation signal

996 Comparison of Different Discontinuous PWM Technique for Switching Losses Reduction in Modular Multilevel Converters

Authors: Kaumil B. Shah, Hina Chandwani

Abstract:

The modular multilevel converter (MMC) is one of the advanced topologies for medium and high-voltage applications. In high-power, high-voltage MMC, a large number of switching power devices are required. These switching power devices (IGBT) considerable switching losses. This paper analyzes the performance of different discontinuous pulse width modulation (DPWM) techniques and compares the results against a conventional carrier based pulse width modulation method, in order to reduce the switching losses of an MMC. The DPWM reference wave can be generated by adding the zero-sequence component to the original (sine) reference modulation signal. The result of the addition gives the reference signal of DPWM techniques. To minimize the switching losses of the MMC, the clamping period is controlled according to the absolute value of the output load current. No switching is generated in the clamping period so overall switching of the power device is reduced. The simulation result of the different DPWM techniques is compared with conventional carrier-based pulse-width modulation technique.

Keywords: Modular multilevel converter, discontinuous pulse width modulation, switching losses, zero-sequence voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
995 A Hybrid Expert System for Generating Stock Trading Signals

Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour

Abstract:

In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.

Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
994 Dynamic Clustering Estimation of Tool Flank Wear in Turning Process using SVD Models of the Emitted Sound Signals

Authors: A. Samraj, S. Sayeed, J. E. Raja., J. Hossen, A. Rahman

Abstract:

Monitoring the tool flank wear without affecting the throughput is considered as the prudent method in production technology. The examination has to be done without affecting the machining process. In this paper we proposed a novel work that is used to determine tool flank wear by observing the sound signals emitted during the turning process. The work-piece material we used here is steel and aluminum and the cutting insert was carbide material. Two different cutting speeds were used in this work. The feed rate and the cutting depth were constant whereas the flank wear was a variable. The emitted sound signal of a fresh tool (0 mm flank wear) a slightly worn tool (0.2 -0.25 mm flank wear) and a severely worn tool (0.4mm and above flank wear) during turning process were recorded separately using a high sensitive microphone. Analysis using Singular Value Decomposition was done on these sound signals to extract the feature sound components. Observation of the results showed that an increase in tool flank wear correlates with an increase in the values of SVD features produced out of the sound signals for both the materials. Hence it can be concluded that wear monitoring of tool flank during turning process using SVD features with the Fuzzy C means classification on the emitted sound signal is a potential and relatively simple method.

Keywords: Fuzzy c means, Microphone, Singular ValueDecomposition, Tool Flank Wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
993 Active Segment Selection Method in EEG Classification Using Fractal Features

Authors: Samira Vafaye Eslahi

Abstract:

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
992 Speaker Identification using Neural Networks

Authors: R.V Pawar, P.P.Kajave, S.N.Mali

Abstract:

The speech signal conveys information about the identity of the speaker. The area of speaker identification is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computers becomes more pervasive in activities such as the telephone, financial transactions and information retrieval from speech databases, the utility of automatically identifying a speaker is based solely on vocal characteristic. This paper emphasizes on text dependent speaker identification, which deals with detecting a particular speaker from a known population. The system prompts the user to provide speech utterance. System identifies the user by comparing the codebook of speech utterance with those of the stored in the database and lists, which contain the most likely speakers, could have given that speech utterance. The speech signal is recorded for N speakers further the features are extracted. Feature extraction is done by means of LPC coefficients, calculating AMDF, and DFT. The neural network is trained by applying these features as input parameters. The features are stored in templates for further comparison. The features for the speaker who has to be identified are extracted and compared with the stored templates using Back Propogation Algorithm. Here, the trained network corresponds to the output; the input is the extracted features of the speaker to be identified. The network does the weight adjustment and the best match is found to identify the speaker. The number of epochs required to get the target decides the network performance.

Keywords: Average Mean Distance function, Backpropogation, Linear Predictive Coding, MultilayeredPerceptron,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
991 Statistical Measures and Optimization Algorithms for Gene Selection in Lung and Ovarian Tumor

Authors: C. Gunavathi, K. Premalatha

Abstract:

Microarray technology is universally used in the study of disease diagnosis using gene expression levels. The main shortcoming of gene expression data is that it includes thousands of genes and a small number of samples. Abundant methods and techniques have been proposed for tumor classification using microarray gene expression data. Feature or gene selection methods can be used to mine the genes that directly involve in the classification and to eliminate irrelevant genes. In this paper statistical measures like T-Statistics, Signal-to-Noise Ratio (SNR) and F-Statistics are used to rank the genes. The ranked genes are used for further classification. Particle Swarm Optimization (PSO) algorithm and Shuffled Frog Leaping (SFL) algorithm are used to find the significant genes from the top-m ranked genes. The Naïve Bayes Classifier (NBC) is used to classify the samples based on the significant genes. The proposed work is applied on Lung and Ovarian datasets. The experimental results show that the proposed method achieves 100% accuracy in all the three datasets and the results are compared with previous works.

Keywords: Microarray, T-Statistics, Signal-to-Noise Ratio, FStatistics, Particle Swarm Optimization, Shuffled Frog Leaping, Naïve Bayes Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
990 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset

Authors: Adrienne Kline, Jaydip Desai

Abstract:

Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.

Keywords: Brain-machine interface, EEGLAB, emotiv EEG neuroheadset, openViBE, simulink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786
989 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden

Abstract:

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455
988 Effect of Different Contaminants on Mineral Insulating Oil Characteristics

Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto

Abstract:

Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.

Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
987 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control

Authors: Rami N. Khushaba, Adel Al-Jumaily

Abstract:

The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.

Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
986 Fast Algorithm of Shot Cut Detection

Authors: Lenka Krulikovská, Jaroslav Polec, Tomáš Hirner

Abstract:

In this paper we present a novel method, which reduces the computational complexity of abrupt cut detection. We have proposed fast algorithm, where the similarity of frames within defined step is evaluated instead of comparing successive frames. Based on the results of simulation on large video collection, the proposed fast algorithm is able to achieve 80% reduction of needed frames comparisons compared to actually used methods without the shot cut detection accuracy degradation.

Keywords: Abrupt cut, fast algorithm, shot cut detection, Pearson correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
985 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification

Authors: C. Gunavathi, K. Premalatha

Abstract:

Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.

Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4518
984 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: Electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
983 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals

Authors: Fahad Alhussein, Huaping Liu

Abstract:

This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.

Keywords: Correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 463
982 Processing the Medical Sensors Signals Using Fuzzy Inference System

Authors: S. Bouharati, I. Bouharati, C. Benzidane, F. Alleg, M. Belmahdi

Abstract:

Sensors possess several properties of physical measures. Whether devices that convert a sensed signal into an electrical signal, chemical sensors and biosensors, thus all these sensors can be considered as an interface between the physical and electrical equipment. The problem is the analysis of the multitudes of saved settings as input variables. However, they do not all have the same level of influence on the outputs. In order to identify the most sensitive parameters, those that can guide users in gathering information on the ground and in the process of model calibration and sensitivity analysis for the effect of each change made. Mathematical models used for processing become very complex. In this paper a fuzzy rule-based system is proposed as a solution for this problem. The system collects the available signals information from sensors. Moreover, the system allows the study of the influence of the various factors that take part in the decision system. Since its inception fuzzy set theory has been regarded as a formalism suitable to deal with the imprecision intrinsic to many problems. At the same time, fuzzy sets allow to use symbolic models. In this study an example was applied for resolving variety of physiological parameters that define human health state. The application system was done for medical diagnosis help. The inputs are the signals expressed the cardiovascular system parameters, blood pressure, Respiratory system paramsystem was done, it will be able to predict the state of patient according any input values.

Keywords: Sensors, Sensivity, fuzzy logic, analysis, physiological parameters, medical diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
981 Hydrothermal Synthesis of ZnO/SnO2 Nanoparticles with High Photocatalytic Activity

Authors: Azam Anaraki Firooz, Ali Reza Mahjoub, Abbas Ali Khodadadi

Abstract:

The paper reports the preparation and photocatalytic activity of ZnO/SnO2 and SnO2 nanoparticles. These nanoparticles were synthesized by hydrothermal method. The products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their grain sizes are about 50-100 nm. The photocatalytic activities of these materials were investigated for congo red removal from aqueous solution under UV light irradiation. It was shown that the use of ZnO/SnO2 as photocatalyst have better photocatalytic activity for degradation of congo red than SnO2 or TiO2 (anatase, particle size: 30nm) alone.

Keywords: ZnO/SnO2 nanoparticle, hydrothermal, photocatalysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3441
980 Potential of Native Microorganisms in Tagus Estuary

Authors: Ana C. Sousa, Beatriz C. Santos, Fátima N. Serralha

Abstract:

The Tagus estuary is heavily affected by industrial and urban activities, making bioremediation studies crucial for environmental preservation. Fuel contamination in the area can arise from various anthropogenic sources, such as oil spills from shipping, fuel storage and transfer operations, and industrial discharges. These pollutants can cause severe harm to the ecosystem and the organisms, including humans, that inhabit it. Nonetheless, there are always natural organisms with the ability to resist these pollutants and transform them into non-toxic or harmless substances, which defines the process of bioremediation. Exploring the microbial communities existing in soil and their capacity to break down hydrocarbons has the potential to enhance the development of more efficient bioremediation approaches. The aim of this investigation was to explore the existence of hydrocarbonoclastic microorganisms in six locations within the Tagus estuary, three on the north bank: Trancão River, Praia Fluvial do Cais das Colinas and Praia de Algés, and three on the south bank: Praia Fluvial de Alcochete, Praia Fluvial de Alburrica, and Praia da Trafaria. In all studied locations, native microorganisms of the genus Pseudomonas were identified. The bioremediation rate of common hydrocarbons like gasoline, hexane, and toluene was assessed using the redox indicator 2,6-dichlorophenolindophenol (DCPIP). Effective hydrocarbon-degrading bacterial strains were identified in all analyzed areas, despite adverse environmental conditions. The highest bioremediation rates were achieved for gasoline (68%) in Alburrica, hexane (65%) in Algés, and toluene (79%) in Algés. Generally, the bacteria demonstrated efficient degradation of hydrocarbons added to the culture medium, with higher rates of aerobic biodegradation of hydrocarbons observed. These findings underscore the necessity for further in situ studies to better comprehend the relationship between native microbial communities and the potential for pollutant degradation in soil.

Keywords: Biodegradability rate, hydrocarbonoclastic microorganisms, soil bioremediation, Tagus estuary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117
979 Optimal Sliding Mode Controller for Knee Flexion During Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145
978 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: Broken bar, condition monitoring, diagnostics, empirical mode decomposition, Fourier transform, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
977 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: Lithium-Ion batteries, genetic algorithm optimization, battery aging test, and parameter identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
976 Implementation of Congestion Management Strategies on Arterial Roads: Case Study of Geelong

Authors: A. Das, L. Hitihamillage, S. Moridpour

Abstract:

Natural disasters are inevitable to the biodiversity. Disasters such as flood, tsunami and tornadoes could be brutal, harsh and devastating. In Australia, flooding is a major issue experienced by different parts of the country. In such crisis, delays in evacuation could decide the life and death of the people living in those regions. Congestion management could become a mammoth task if there are no steps taken before such situations. In the past to manage congestion in such circumstances, many strategies were utilised such as converting the road shoulders to extra lanes or changing the road geometry by adding more lanes. However, expansion of road to resolving congestion problems is not considered a viable option nowadays. The authorities avoid this option due to many reasons, such as lack of financial support and land space. They tend to focus their attention on optimising the current resources they possess and use traffic signals to overcome congestion problems. Traffic Signal Management strategy was considered a viable option, to alleviate congestion problems in the City of Geelong, Victoria. Arterial road with signalised intersections considered in this paper and the traffic data required for modelling collected from VicRoads. Traffic signalling software SIDRA used to model the roads, and the information gathered from VicRoads. In this paper, various signal parameters utilised to assess and improve the corridor performance to achieve the best possible Level of Services (LOS) for the arterial road.

Keywords: Congestion, constraints, management, LOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
975 X-Ray Intensity Measurement Using Frequency Output Sensor for Computed Tomography

Authors: R. M. Siddiqui, D. Z. Moghaddam, T. R. Turlapati, S. H. Khan, I. Ul Ahad

Abstract:

Quality of 2D and 3D cross-sectional images produce by Computed Tomography primarily depend upon the degree of precision of primary and secondary X-Ray intensity detection. Traditional method of primary intensity detection is apt to errors. Recently the X-Ray intensity measurement system along with smart X-Ray sensors is developed by our group which is able to detect primary X-Ray intensity unerringly. In this study a new smart X-Ray sensor is developed using Light-to-Frequency converter TSL230 from Texas Instruments which has numerous advantages in terms of noiseless data acquisition and transmission. TSL230 construction is based on a silicon photodiode which converts incoming X-Ray radiation into the proportional current signal. A current to frequency converter is attached to this photodiode on a single monolithic CMOS integrated circuit which provides proportional frequency count to incoming current signal in the form of the pulse train. The frequency count is delivered to the center of PICDEM FS USB board with PIC18F4550 microcontroller mounted on it. With highly compact electronic hardware, this Demo Board efficiently read the smart sensor output data. The frequency output approaches overcome nonlinear behavior of sensors with analog output thus un-attenuated X-Ray intensities could be measured precisely and better normalization could be acquired in order to attain high resolution.

Keywords: Computed tomography, detector technology, X-Ray intensity measurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
974 Computation of Natural Logarithm Using Abstract Chemical Reaction Networks

Authors: Iuliia Zarubiieva, Joyun Tseng, Vishwesh Kulkarni

Abstract:

Recent researches has focused on nucleic acids as a substrate for designing biomolecular circuits for in situ monitoring and control. A common approach is to express them by a set of idealised abstract chemical reaction networks (ACRNs). Here, we present new results on how abstract chemical reactions, viz., catalysis, annihilation and degradation, can be used to implement circuit that accurately computes logarithm function using the method of Arithmetic-Geometric Mean (AGM), which has not been previously used in conjunction with ACRNs.

Keywords: Abstract chemical reaction network, DNA strand displacement, natural logarithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004
973 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise

Authors: J. P. Dubois, Omar M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.

Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
972 Coordinated Multi-Point Scheme Based On Channel State Information in MIMO-OFDM System

Authors: Su-Hyun Jung, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

Recently, increasing the quality of experience (QoE) is an important issue. Since performance degradation at cell edge extremely reduces the QoE, several techniques are defined at LTE/LTE-A standard to remove inter-cell interference (ICI). However, the conventional techniques have disadvantage because there is a trade-off between resource allocation and reliable communication. The proposed scheme reduces the ICI more efficiently by using channel state information (CSI) smartly. It is shown that the proposed scheme can reduce the ICI with fewer resources.

Keywords: Adaptive beam forming, CoMP, LTE-A, ICI reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
971 Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites

Authors: Pasquale Verde, Giuseppe Lamanna

Abstract:

A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.

Keywords: Fatigue life, strength, composites, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
970 Multiple Subcarrier Indoor Geolocation System in MIMO-OFDM WLAN APs Structure

Authors: Abdul Hafiizh, Shigeki Obote, Kenichi Kagoshima

Abstract:

This report aims to utilize existing and future Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing Wireless Local Area Network (MIMO-OFDM WLAN) systems characteristics–such as multiple subcarriers, multiple antennas, and channel estimation characteristics–for indoor location estimation systems based on the Direction of Arrival (DOA) and Radio Signal Strength Indication (RSSI) methods. Hybrid of DOA-RSSI methods also evaluated. In the experimental data result, we show that location estimation accuracy performances can be increased by minimizing the multipath fading effect. This is done using multiple subcarrier frequencies over wideband frequencies to estimate one location. The proposed methods are analyzed in both a wide indoor environment and a typical room-sized office. In the experiments, WLAN terminal locations are estimated by measuring multiple subcarriers from arrays of three dipole antennas of access points (AP). This research demonstrates highly accurate, robust and hardware-free add-on software for indoor location estimations based on a MIMO-OFDM WLAN system.

Keywords: Direction of Arrival (DOA), Indoor location estimation method, Multipath Fading, MIMO-OFDM, Received Signal Strength Indication (RSSI), WLAN, Hybrid DOA-RSSI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
969 Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals

Authors: C.-C. Lin, S.-C. Kan, C.-W. Yeh, C.-I Chen, C.-J. Shieh, Y.-C. Liu

Abstract:

In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol.

Keywords: Lipid-deprived residuals of microalgae, cellulosome, cellulose, reducing sugars, kinetics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
968 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System

Authors: Jason Chien-Hsun Tseng

Abstract:

This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.

Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
967 Pilot-Assisted Direct-Current Biased Optical Orthogonal Frequency Division Multiplexing Visible Light Communication System

Authors: Ayad A. Abdulkafi, Shahir F. Nawaf, Mohammed K. Hussein, Ibrahim K. Sileh, Fouad A. Abdulkafi

Abstract:

Visible light communication (VLC) is a new approach of optical wireless communication proposed to support the congested radio frequency (RF) spectrum. VLC systems are combined with orthogonal frequency division multiplexing (OFDM) to achieve high rate transmission and high spectral efficiency. In this paper, we investigate the Pilot-Assisted Channel Estimation for DC biased Optical OFDM (PACE-DCO-OFDM) systems to reduce the effects of the distortion on the transmitted signal. Least-square (LS) and linear minimum mean-squared error (LMMSE) estimators are implemented in MATLAB/Simulink to enhance the bit-error-rate (BER) of PACE-DCO-OFDM. Results show that DCO-OFDM system based on PACE scheme has achieved better BER performance compared to conventional system without pilot assisted channel estimation. Simulation results show that the proposed PACE-DCO-OFDM based on LMMSE algorithm can more accurately estimate the channel and achieves better BER performance when compared to the LS based PACE-DCO-OFDM and the traditional system without PACE. For the same signal to noise ratio (SNR) of 25 dB, the achieved BER is about 5×10-4 for LMMSE-PACE and 4.2×10-3 with LS-PACE while it is about 2×10-1 for system without PACE scheme.

Keywords: Channel estimation, OFDM, pilot-assist, VLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652