Search results for: time series forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7165

Search results for: time series forecast

6595 Super Resolution Blind Reconstruction of Low Resolution Images using Wavelets based Fusion

Authors: Liyakathunisa, V. K. Ananthashayana

Abstract:

Crucial information barely visible to the human eye is often embedded in a series of low resolution images taken of the same scene. Super resolution reconstruction is the process of combining several low resolution images into a single higher resolution image. The ideal algorithm should be fast, and should add sharpness and details, both at edges and in regions without adding artifacts. In this paper we propose a super resolution blind reconstruction technique for linearly degraded images. In our proposed technique the algorithm is divided into three parts an image registration, wavelets based fusion and an image restoration. In this paper three low resolution images are considered which may sub pixels shifted, rotated, blurred or noisy, the sub pixel shifted images are registered using affine transformation model; A wavelet based fusion is performed and the noise is removed using soft thresolding. Our proposed technique reduces blocking artifacts and also smoothens the edges and it is also able to restore high frequency details in an image. Our technique is efficient and computationally fast having clear perspective of real time implementation.

Keywords: Affine Transforms, Denoiseing, DWT, Fusion, Image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
6594 Modern Trends in Foreign Direct Investments in Georgia

Authors: Rusudan Kinkladze, Guguli Kurashvili, Ketevan Chitaladze

Abstract:

Foreign direct investment is a driving force in the development of the interdependent national economies, and the study and analysis of investments is an urgent problem. It is particularly important for transitional economies, such as Georgia, and the study and analysis of investments is an urgent problem. Consequently, the goal of the research is the study and analysis of direct foreign investments in Georgia, and identification and forecasting of modern trends, and covers the period of 2006-2015. The study uses the methods of statistical observation, grouping and analysis, the methods of analytical indicators of time series, trend identification and the predicted values are calculated, as well as various literary and Internet sources relevant to the research. The findings showed that modern investment policy In Georgia is favorable for domestic as well as foreign investors. Georgia is still a net importer of investments. In 2015, the top 10 investing countries was led by Azerbaijan, United Kingdom and Netherlands, and the largest share of FDIs were allocated in the transport and communication sector; the financial sector was the second, followed by the health and social work sector, and the same trend will continue in the future. 

Keywords: Foreign Direct Investments, methods, statistics, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
6593 Spatial Analysis of Park and Ride Users’ Dynamic Accessibility to Train Station: A Case Study in Perth

Authors: Ting (Grace) Lin, Jianhong (Cecilia) Xia, Todd Robinson

Abstract:

Accessibility analysis, examining people’s ability to access facilities and destinations, is a fundamental assessment for transport planning, policy making, and social exclusion research. Dynamic accessibility which measures accessibility in real-time traffic environment has been an advanced accessibility indicator in transport research. It is also a useful indicator to help travelers to understand travel time daily variability, assists traffic engineers to monitor traffic congestions, and finally develop effective strategies in order to mitigate traffic congestions. This research involved real-time traffic information by collecting travel time data with 15-minute interval via the TomTom® API. A framework for measuring dynamic accessibility was then developed based on the gravity theory and accessibility dichotomy theory through space and time interpolation. Finally, the dynamic accessibility can be derived at any given time and location under dynamic accessibility spatial analysis framework.

Keywords: Dynamic accessibility, space-time continuum, transport research, TomTom® API.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082
6592 Controller Synthesis of Switched Positive Systems with Bounded Time-Varying Delays

Authors: Xinhui Wang, Xiuyong Ding

Abstract:

This paper addresses the controller synthesis problem of discrete-time switched positive systems with bounded time-varying delays. Based on the switched copositive Lyapunov function approach, some necessary and sufficient conditions for the existence of state-feedback controller are presented as a set of linear programming and linear matrix inequality problems, hence easy to be verified. Another advantage is that the state-feedback law is independent on time-varying delays and initial conditions. A numerical example is provided to illustrate the effectiveness and feasibility of the developed controller.

Keywords: Switched copositive Lyapunov functions, positive linear systems, switched systems, time-varying delays, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
6591 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: Ganoderma, oil palm, regression model, yield loss, economic loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236
6590 Novel Delay-Dependent Stability Criteria for Uncertain Discrete-Time Stochastic Neural Networks with Time-Varying Delays

Authors: Mengzhuo Luo, Shouming Zhong

Abstract:

This paper investigates the problem of exponential stability for a class of uncertain discrete-time stochastic neural network with time-varying delays. By constructing a suitable Lyapunov-Krasovskii functional, combining the stochastic stability theory, the free-weighting matrix method, a delay-dependent exponential stability criteria is obtained in term of LMIs. Compared with some previous results, the new conditions obtain in this paper are less conservative. Finally, two numerical examples are exploited to show the usefulness of the results derived.

Keywords: Delay-dependent stability, Neural networks, Time varying delay, Linear matrix inequality (LMI).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
6589 Stability and Bifurcation Analysis of a Discrete Gompertz Model with Time Delay

Authors: Yingguo Li

Abstract:

In this paper, we consider a discrete Gompertz model with time delay. Firstly, the stability of the equilibrium of the system is investigated by analyzing the characteristic equation. By choosing the time delay as a bifurcation parameter, we prove that Neimark- Sacker bifurcations occur when the delay passes a sequence of critical values. The direction and stability of the Neimark-Sacker are determined by using normal forms and centre manifold theory. Finally, some numerical simulations are given to verify the theoretical analysis.

Keywords: Gompertz system, Neimark-Sacker bifurcation, stability, time delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
6588 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao

Abstract:

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.

Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
6587 A Study for the Effect of Fire Initiated Location on Evacuation Success Rate

Authors: Jin A Ryu, Ga Ye Kim, Hee Sun Kim

Abstract:

As the number of fire accidents is gradually raising, many studies have been reported on evacuation. Previous studies have mostly focused on evaluating the safety of evacuation and the risk of fire in particular buildings. However, studies on effects of various parameters on evacuation have not been nearly done. Therefore, this paper aims at observing evacuation time under the effect of fire initiated location. In this study, evacuation simulations are performed on a 5-floor building located in Seoul, South Korea using the commercial program, Fire Dynamics Simulator with Evacuation (FDS+EVAC). Only the fourth and fifth floors are modeled with an assumption that fire starts in a room located on the fourth floor. The parameter for evacuation simulations is location of fire initiation to observe the evacuation time and safety. Results show that the location of fire initiation is closer to exit, the more time is taken to evacuate. The case having the nearest location of fire initiation to exit has the lowest ratio of successful occupants to the total occupants. In addition, for safety evaluation, the evacuation time calculated from computer simulation model is compared with the tolerable evacuation time according to code in Japan. As a result, all cases are completed within the tolerable evacuation time. This study allows predicting evacuation time under various conditions of fire and can be used to evaluate evacuation appropriateness and fire safety of building.

Keywords: Evacuation safety, Evacuation simulation, FDS+Evac, Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
6586 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds

Authors: Sahar Sohrabi

Abstract:

The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.

Keywords: Bayesian, cloud computing, real-time private cloud, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
6585 Precipitation Change and its Implication in the Change of Winter Wheat drought and Production in North China Region from 2000 to 2010

Authors: Y. Huang, Q. J. Tian, L. T. Du, J. Liu, S. S. Li

Abstract:

Understanding how precipitation inter-annually changes and its implication in agricultural drought and production change in winter wheat (Triticum aestivum L.) growth season is critical for crop production in China. MODIS Temperature-Vegetation Dryness Index (TVDI) and daily mean precipitation time series for the main growth season(Feb. to May) of winter wheat from 2000 to 2010 were used to analyze the distribution of trends of precipitation, agricultural drought and winter wheat yield change respectively, and relationships between them in North China region(Huang-huai-hai region, HHH region), China. The results indicated that the trend of precipitation in HHH region past 11 years was increasing, which had induced generally corresponding decreasing trend of agricultural drought and increasing trend of wheat yield, while the trend of drought was spatially diverse. The study could provide a basis for agricultural drought research during winter wheat season in HHH region under the ground of climate change.

Keywords: drought, MODIS, precipitation change, TVDI, winter wheat production

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
6584 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
6583 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: Data Estimation, link data, machine learning, road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
6582 On Constructing Approximate Convex Hull

Authors: M. Zahid Hossain, M. Ashraful Amin

Abstract:

The algorithms of convex hull have been extensively studied in literature, principally because of their wide range of applications in different areas. This article presents an efficient algorithm to construct approximate convex hull from a set of n points in the plane in O(n + k) time, where k is the approximation error control parameter. The proposed algorithm is suitable for applications preferred to reduce the computation time in exchange of accuracy level such as animation and interaction in computer graphics where rapid and real-time graphics rendering is indispensable.

Keywords: Convex hull, Approximation algorithm, Computational geometry, Linear time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2299
6581 Electricity Load Modeling: An Application to Italian Market

Authors: Giovanni Masala, Stefania Marica

Abstract:

Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.

Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1485
6580 A New Time Dependent, High Temperature Analytical Model for the Single-electron Box in Digital Applications

Authors: M.J. Sharifi

Abstract:

Several models have been introduced so far for single electron box, SEB, which all of them were restricted to DC response and or low temperature limit. In this paper we introduce a new time dependent, high temperature analytical model for SEB for the first time. DC behavior of the introduced model will be verified against SIMON software and its time behavior will be verified against a newly published paper regarding step response of SEB.

Keywords: Single electron box, SPICE, SIMON, Timedependent, Circuit model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
6579 Proprioceptive Neuromuscular Facilitation Exercises of Upper Extremities Assessment Using Microsoft Kinect Sensor and Color Marker in a Virtual Reality Environment

Authors: M. Owlia, M. H. Azarsa, M. Khabbazan, A. Mirbagheri

Abstract:

Proprioceptive neuromuscular facilitation exercises are a series of stretching techniques that are commonly used in rehabilitation and exercise therapy. Assessment of these exercises for true maneuvering requires extensive experience in this field and could not be down with patients themselves. In this paper, we developed software that uses Microsoft Kinect sensor, a spherical color marker, and real-time image processing methods to evaluate patient’s performance in generating true patterns of movements. The software also provides the patient with a visual feedback by showing his/her avatar in a Virtual Reality environment along with the correct path of moving hand, wrist and marker. Primary results during PNF exercise therapy of a patient in a room environment shows the ability of the system to identify any deviation of maneuvering path and direction of the hand from the one that has been performed by an expert physician.

Keywords: Image processing, Microsoft Kinect, proprioceptive neuromuscular facilitation, upper extremities assessment, virtual reality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
6578 Regional Analysis of Streamflow Drought: A Case Study for Southwestern Iran

Authors: M. Byzedi, B. Saghafian

Abstract:

Droughts are complex, natural hazards that, to a varying degree, affect some parts of the world every year. The range of drought impacts is related to drought occurring in different stages of the hydrological cycle and usually different types of droughts, such as meteorological, agricultural, hydrological, and socioeconomical are distinguished. Streamflow drought was analyzed by the method of truncation level (at 70% level) on daily discharges measured in 54 hydrometric stations in southwestern Iran. Frequency analysis was carried out for annual maximum series (AMS) of drought deficit volume and duration series. Some factors including physiographic, climatic, geologic, and vegetation cover were studied as influential factors in the regional analysis. According to the results of factor analysis, six most effective factors were identified as area, rainfall from December to February, the percent of area with Normalized Difference Vegetation Index (NDVI) <0.1, the percent of convex area, drainage density and the minimum of watershed elevation that explained 90.9% of variance. The homogenous regions were determined by cluster analysis and discriminate function analysis. Suitable multivariate regression models were evaluated for streamflow drought deficit volume with 2 years return period. The significance level of regression models was 0.01. The results showed that the watershed area is the most effective factor with high correlation with deficit volume. Also, drought duration was not a suitable drought index for regional analysis.

Keywords: Iran, Streamflow drought, truncation level method, regional analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
6577 Determine of Constant Coefficients to RelateTotal Dissolved Solids to Electrical Conductivity

Authors: M. Siosemarde, F. Kave, E. Pazira, H. Sedghi, S. J. Ghaderi

Abstract:

Salinity is a measure of the amount of salts in the water. Total Dissolved Solids (TDS) as salinity parameter are often determined using laborious and time consuming laboratory tests, but it may be more appropriate and economical to develop a method which uses a more simple soil salinity index. Because dissolved ions increase salinity as well as conductivity, the two measures are related. The aim of this research was determine of constant coefficients for predicting of Total Dissolved Solids (TDS) based on Electrical Conductivity (EC) with Statistics of Correlation coefficient, Root mean square error, Maximum error, Mean Bias error, Mean absolute error, Relative error and Coefficient of residual mass. For this purpose, two experimental areas (S1, S2) of Khuzestan province-IRAN were selected and four treatments with three replications by series of double rings were applied. The treatments were included 25cm, 50cm, 75cm and 100cm water application. The results showed the values 16.3 & 12.4 were the best constant coefficients for predicting of Total Dissolved Solids (TDS) based on EC in Pilot S1 and S2 with correlation coefficient 0.977 & 0.997 and 191.1 & 106.1 Root mean square errors (RMSE) respectively.

Keywords: constant coefficients, electrical conductivity, Khuzestan plain and total dissolved solids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3902
6576 Model Development for Allocation of Raw Material in Timber Processing Industry in Indonesia

Authors: Muh. Hisjam, Nancy Oktyajati, Wakhid A. Jauhari, Wahyudi Sutopo

Abstract:

This research is intended to develop a raw material allocation model in timber processing industry in Perum Perhutani Unit I, Central Java, Indonesia. The model can be used to determine the quantity of allocation of timber between chain in the supply chain to select supplier considering factors that are log price and the distance. In determining the quantity of allocation of timber between chains in the supply chain, the model considers the optimal inventory in each chain. Whilst the optimal inventory is determined based on demand forecast, the capacity and safety stock. Problem solving allocation is conducted by developing linear programming model that aims to minimize the total cost of the purchase, transportation cost and storage costs at each chain. The results of numerical examples show that the proposed model can generate savings of the purchase cost of 20.84% and select suppliers with mileage closer.

Keywords: Allocation model, linear programming, purchase costs, storage costs, suppliers, transportation costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
6575 Dynamic Analysis by a Family of Time Marching Procedures Based On Numerically Computed Green’s Functions

Authors: Delfim Soares Jr.

Abstract:

In this work, a new family of time marching procedures based on Green’s function matrices is presented. The formulation is based on the development of new recurrence relationships, which employ time integral terms to treat initial condition values. These integral terms are numerically evaluated taking into account Newton-Cotes formulas. The Green’s matrices of the model are also numerically computed, taking into account the generalized-α method and subcycling techniques. As it is discussed and illustrated along the text, the proposed procedure is efficient and accurate, providing a very attractive time marching technique. 

Keywords: Dynamics, Time-Marching, Green’s Function, Generalized-α Method, Subcycling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
6574 Periodic Solutions for a Food Chain System with Monod–Haldane Functional Response on Time Scales

Authors: Kejun Zhuang, Hailong Zhu

Abstract:

In this paper, the three species food chain model on time scales is established. The Monod–Haldane functional response and time delay are considered. With the help of coincidence degree theory, existence of periodic solutions is investigated, which unifies the continuous and discrete analogies.

Keywords: Food chain system, periodic solution, time scales, coincidence degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8469
6573 Classification of Soil Aptness to Establish of Panicum virgatum in Mississippi using Sensitivity Analysis and GIS

Authors: Eduardo F. Arias, William Cooke III, Zhaofei Fan, William Kingery

Abstract:

During the last decade Panicum virgatum, known as Switchgrass, has been broadly studied because of its remarkable attributes as a substitute pasture and as a functional biofuel source. The objective of this investigation was to establish soil suitability for Switchgrass in the State of Mississippi. A linear weighted additive model was developed to forecast soil suitability. Multicriteria analysis and Sensitivity analysis were utilized to adjust and optimize the model. The model was fit using seven years of field data associated with soils characteristics collected from Natural Resources Conservation System - United States Department of Agriculture (NRCS-USDA). The best model was selected by correlating calculated biomass yield with each model's soils-based output for Switchgrass suitability. Coefficient of determination (r2) was the decisive factor used to establish the 'best' soil suitability model. Coefficients associated with the 'best' model were implemented within a Geographic Information System (GIS) to create a map of relative soil suitability for Switchgrass in Mississippi. A Geodatabase associated with soil parameters was built and is available for future Geographic Information System use.

Keywords: Aptness, GIS, sensitivity analysis, switchgrass, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
6572 Numerical Studies of Galerkin-type Time-discretizations Applied to Transient Convection-diffusion-reaction Equations

Authors: Naveed Ahmed, Gunar Matthies

Abstract:

We deal with the numerical solution of time-dependent convection-diffusion-reaction equations. We combine the local projection stabilization method for the space discretization with two different time discretization schemes: the continuous Galerkin-Petrov (cGP) method and the discontinuous Galerkin (dG) method of polynomial of degree k. We establish the optimal error estimates and present numerical results which shows that the cGP(k) and dG(k)- methods are accurate of order k +1, respectively, in the whole time interval. Moreover, the cGP(k)-method is superconvergent of order 2k and dG(k)-method is of order 2k +1 at the discrete time points. Furthermore, the dependence of the results on the choice of the stabilization parameter are discussed and compared.

Keywords: Convection-diffusion-reaction equations, stabilized finite elements, discontinuous Galerkin, continuous Galerkin-Petrov.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
6571 Improved Robust Stability Criteria for Discrete-time Neural Networks

Authors: Zixin Liu, Shu Lü, Shouming Zhong, Mao Ye

Abstract:

In this paper, the robust exponential stability problem of uncertain discrete-time recurrent neural networks with timevarying delay is investigated. By constructing a new augmented Lyapunov-Krasovskii function, some new improved stability criteria are obtained in forms of linear matrix inequality (LMI). Compared with some recent results in literature, the conservatism of the new criteria is reduced notably. Two numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.

Keywords: Robust exponential stability, delay-dependent stability, discrete-time neutral networks, time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
6570 Artificial Accelerated Ageing Test of 22 kVXLPE Cable for Distribution System Applications in Thailand

Authors: A. Rawangpai, B. Maraungsri, N. Chomnawang

Abstract:

This paper presents the experimental results on artificial ageing test of 22 kV XLPE cable for distribution system application in Thailand. XLPE insulating material of 22 kV cable was sliced to 60-70 μm in thick and was subjected to ac high voltage at 23 Ôùª C, 60 Ôùª C and 75 Ôùª C. Testing voltage was constantly applied to the specimen until breakdown. Breakdown voltage and time to breakdown were used to evaluate life time of insulating material. Furthermore, the physical model by J. P. Crine for predicts life time of XLPE insulating material was adopted as life time model and was calculated in order to compare the experimental results. Acceptable life time results were obtained from Crine-s model comparing with the experimental result. In addition, fourier transform infrared spectroscopy (FTIR) for chemical analysis and scanning electron microscope (SEM) for physical analysis were conducted on tested specimens.

Keywords: Artificial accelerated ageing test, XLPE cable, distribution system, insulating material, life time, life time model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3673
6569 Mathematical Model and Solution Algorithm for Containership Operation/Maintenance Scheduling

Authors: Hun Go, Ji-Su Kim, Dong-Ho Lee

Abstract:

This study considers the problem of determining operation and maintenance schedules for a containership equipped with components during its sailing according to a pre-determined navigation schedule. The operation schedule, which specifies work time of each component, determines the due-date of each maintenance activity, and the maintenance schedule specifies the actual start time of each maintenance activity. The main constraints are component requirements, workforce availability, working time limitation, and inter-maintenance time. To represent the problem mathematically, a mixed integer programming model is developed. Then, due to the problem complexity, we suggest a heuristic for the objective of minimizing the sum of earliness and tardiness between the due-date and the starting time of each maintenance activity. Computational experiments were done on various test instances and the results are reported.

Keywords: Containerships, operation and preventive maintenance schedules, integer programming, heuristic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
6568 Real-Time Image Analysis of Capsule Endoscopy for Bleeding Discrimination in Embedded System Platform

Authors: Yong-Gyu Lee, Gilwon Yoon

Abstract:

Image processing for capsule endoscopy requires large memory and it takes hours for diagnosis since operation time is normally more than 8 hours. A real-time analysis algorithm of capsule images can be clinically very useful. It can differentiate abnormal tissue from health structure and provide with correlation information among the images. Bleeding is our interest in this regard and we propose a method of detecting frames with potential bleeding in real-time. Our detection algorithm is based on statistical analysis and the shapes of bleeding spots. We tested our algorithm with 30 cases of capsule endoscopy in the digestive track. Results were excellent where a sensitivity of 99% and a specificity of 97% were achieved in detecting the image frames with bleeding spots.

Keywords: bleeding, capsule endoscopy, image processing, real time analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
6567 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
6566 A Signal Driven Adaptive Resolution Short-Time Fourier Transform

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

The frequency contents of the non-stationary signals vary with time. For proper characterization of such signals, a smart time-frequency representation is necessary. Classically, the STFT (short-time Fourier transform) is employed for this purpose. Its limitation is the fixed timefrequency resolution. To overcome this drawback an enhanced STFT version is devised. It is based on the signal driven sampling scheme, which is named as the cross-level sampling. It can adapt the sampling frequency and the window function (length plus shape) by following the input signal local variations. This adaptation results into the proposed technique appealing features, which are the adaptive time-frequency resolution and the computational efficiency.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570