Search results for: product features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2708

Search results for: product features

2138 An Exploration of the Dimensions of Place-Making: A South African Case Study

Authors: W. J. Strydom, K. Puren

Abstract:

Place-making is viewed here as an empowering process in which people represent, improve and maintain their spatial (natural or built) environment. With the above-mentioned in mind, place-making is multi-dimensional and include a spatial dimension (including visual properties or the end product/plan), a procedural dimension during which (negotiation/discussion of ideas with all relevant stakeholders in terms of end product/plan) and a psychological dimension (inclusion of intrinsic values and meanings related to a place in the end product/plan). These three represent dimensions of place-making. The purpose of this paper is to explore these dimensions of place-making in a case study of a local community in Ikageng, Potchefstroom, North-West Province, South Africa. This case study represents an inclusive process that strives to empower a local community (forcefully relocated due to Apartheid legislation in South Africa). This case study focussed on the inclusion of participants in the decision-making process regarding their daily environment. By means of focus group discussions and a collaborative design workshop, data is generated and ultimately creates a linkage with the theoretical dimensions of place-making. This paper contributes to the field of spatial planning due to the exploration of the dimensions of place-making and the relevancy of this process on spatial planning (especially in a South African setting).

Keywords: Case study, place-making, spatial planning, spatial dimension, procedural dimension, psychological dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
2137 Resolving Dependency Ambiguity of Subordinate Clauses using Support Vector Machines

Authors: Sang-Soo Kim, Seong-Bae Park, Sang-Jo Lee

Abstract:

In this paper, we propose a method of resolving dependency ambiguities of Korean subordinate clauses based on Support Vector Machines (SVMs). Dependency analysis of clauses is well known to be one of the most difficult tasks in parsing sentences, especially in Korean. In order to solve this problem, we assume that the dependency relation of Korean subordinate clauses is the dependency relation among verb phrase, verb and endings in the clauses. As a result, this problem is represented as a binary classification task. In order to apply SVMs to this problem, we selected two kinds of features: static and dynamic features. The experimental results on STEP2000 corpus show that our system achieves the accuracy of 73.5%.

Keywords: Dependency analysis, subordinate clauses, binaryclassification, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
2136 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
2135 Standard Deviation of Mean and Variance of Rows and Columns of Images for CBIR

Authors: H. B. Kekre, Kavita Patil

Abstract:

This paper describes a novel and effective approach to content-based image retrieval (CBIR) that represents each image in the database by a vector of feature values called “Standard deviation of mean vectors of color distribution of rows and columns of images for CBIR". In many areas of commerce, government, academia, and hospitals, large collections of digital images are being created. This paper describes the approach that uses contents as feature vector for retrieval of similar images. There are several classes of features that are used to specify queries: colour, texture, shape, spatial layout. Colour features are often easily obtained directly from the pixel intensities. In this paper feature extraction is done for the texture descriptor that is 'variance' and 'Variance of Variances'. First standard deviation of each row and column mean is calculated for R, G, and B planes. These six values are obtained for one image which acts as a feature vector. Secondly we calculate variance of the row and column of R, G and B planes of an image. Then six standard deviations of these variance sequences are calculated to form a feature vector of dimension six. We applied our approach to a database of 300 BMP images. We have determined the capability of automatic indexing by analyzing image content: color and texture as features and by applying a similarity measure Euclidean distance.

Keywords: Standard deviation Image retrieval, color distribution, Variance, Variance of Variance, Euclidean distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
2134 An Improved Fast Search Method Using Histogram Features for DNA Sequence Database

Authors: Qiu Chen, Feifei Lee, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we propose an efficient hierarchical DNA sequence search method to improve the search speed while the accuracy is being kept constant. For a given query DNA sequence, firstly, a fast local search method using histogram features is used as a filtering mechanism before scanning the sequences in the database. An overlapping processing is newly added to improve the robustness of the algorithm. A large number of DNA sequences with low similarity will be excluded for latter searching. The Smith-Waterman algorithm is then applied to each remainder sequences. Experimental results using GenBank sequence data show the proposed method combining histogram information and Smith-Waterman algorithm is more efficient for DNA sequence search.

Keywords: Fast search, DNA sequence, Histogram feature, Smith-Waterman algorithm, Local search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
2133 Implementation of an Improved Secure System Detection for E-passport by using EPC RFID Tags

Authors: A. Baith Mohamed, Ayman Abdel-Hamid, Kareem Youssri Mohamed

Abstract:

Current proposals for E-passport or ID-Card is similar to a regular passport with the addition of tiny contactless integrated circuit (computer chip) inserted in the back cover, which will act as a secure storage device of the same data visually displayed on the photo page of the passport. In addition, it will include a digital photograph that will enable biometric comparison, through the use of facial recognition technology at international borders. Moreover, the e-passport will have a new interface, incorporating additional antifraud and security features. However, its problems are reliability, security and privacy. Privacy is a serious issue since there is no encryption between the readers and the E-passport. However, security issues such as authentication, data protection and control techniques cannot be embedded in one process. In this paper, design and prototype implementation of an improved E-passport reader is presented. The passport holder is authenticated online by using GSM network. The GSM network is the main interface between identification center and the e-passport reader. The communication data is protected between server and e-passport reader by using AES to encrypt data for protection will transferring through GSM network. Performance measurements indicate a 19% improvement in encryption cycles versus previously reported results.

Keywords: RFID "Radio Frequency Identification", EPC"Electronic Product Code", ICAO "International Civil Aviation Organization", IFF "Identify Friend or Foe"

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
2132 Dynamic Features Selection for Heart Disease Classification

Authors: Walid MOUDANI

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
2131 Applying Case-Based Reasoning in Supporting Strategy Decisions

Authors: S. M. Seyedhosseini, A. Makui, M. Ghadami

Abstract:

Globalization and therefore increasing tight competition among companies, have resulted to increase the importance of making well-timed decision. Devising and employing effective strategies, that are flexible and adaptive to changing market, stand a greater chance of being effective in the long-term. In other side, a clear focus on managing the entire product lifecycle has emerged as critical areas for investment. Therefore, applying wellorganized tools to employ past experience in new case, helps to make proper and managerial decisions. Case based reasoning (CBR) is based on a means of solving a new problem by using or adapting solutions to old problems. In this paper, an adapted CBR model with k-nearest neighbor (K-NN) is employed to provide suggestions for better decision making which are adopted for a given product in the middle of life phase. The set of solutions are weighted by CBR in the principle of group decision making. Wrapper approach of genetic algorithm is employed to generate optimal feature subsets. The dataset of the department store, including various products which are collected among two years, have been used. K-fold approach is used to evaluate the classification accuracy rate. Empirical results are compared with classical case based reasoning algorithm which has no special process for feature selection, CBR-PCA algorithm based on filter approach feature selection, and Artificial Neural Network. The results indicate that the predictive performance of the model, compare with two CBR algorithms, in specific case is more effective.

Keywords: Case based reasoning, Genetic algorithm, Groupdecision making, Product management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
2130 Describing Learning Features of Reusable Resources: A Proposal

Authors: Serena Alvino, Paola Forcheri, Maria Grazia Ierardi, Luigi Sarti

Abstract:

One of the main advantages of the LO paradigm is to allow the availability of good quality, shareable learning material through the Web. The effectiveness of the retrieval process requires a formal description of the resources (metadata) that closely fits the user-s search criteria; in spite of the huge international efforts in this field, educational metadata schemata often fail to fulfil this requirement. This work aims to improve the situation, by the definition of a metadata model capturing specific didactic features of shareable learning resources. It classifies LOs into “teacher-oriented" and “student-oriented" categories, in order to describe the role a LO is to play when it is integrated into the educational process. This article describes the model and a first experimental validation process that has been carried out in a controlled environment.

Keywords: Learning object, pedagogical metadata, experimental validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
2129 Support Vector Machine for Persian Font Recognition

Authors: A. Borji, M. Hamidi

Abstract:

In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefaces

Keywords: Persian font recognition, support vector machine, gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
2128 Factors of Successful Wooden Furniture Design Process

Authors: S. Choodoung, U. Smutkupt

Abstract:

This study systemizes processes and methods in wooden furniture design that contains uniqueness in function and aesthetics. The study was done by research and analysis for designer-s consideration factors that affect function and production. Therefore, the study result indicates that such factors are design process (planning for design, product specifications, concept design, product architecture, industrial design, production), design evaluation as well as wooden furniture design dependent factors i.e. art (art style; furniture history, form), functionality (the strength and durability, area place, using), material (appropriate to function, wood mechanical properties), joints, cost, safety, and social responsibility. Specifically, all aforementioned factors affect good design. Resulting from direct experience gained through user-s usage, the designer must design the wooden furniture systemically and effectively. As a result, this study selected dinning armchair as a case study with all involving factors and all design process stated in this study.

Keywords: Furniture Design, Function Design, Aesthetic, Wooden Furniture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10014
2127 A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities

Authors: Elke Mackensen

Abstract:

Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. But there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.

Keywords: Educational systems engineering training, requirements analysis, system modelling, SysML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
2126 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
2125 Value from Environmental and Cultural Perspectives or Two Sides of the Same Coin

Authors: Vilém Pařil, Dominika Tóthová

Abstract:

This paper discusses the value theory in cultural heritage and the value theory in environmental economics. Two economic views of the value theory are compared, within the field of cultural heritage maintenance and within the field of the environment. The main aims are to find common features in these two differently structured theories under the layer of differently defined terms as well as really differing features of these two approaches; to clear the confusion which stems from different terminology as in fact these terms capture the same aspects of reality; and to show possible inspiration these two perspectives can offer one another. Another aim is to present these two value systems in one value framework. First, important moments of the value theory from the economic perspective are presented, leading to the marginal revolution of (not only) the Austrian School. Then the theory of value within cultural heritage and environmental economics are explored. Finally, individual approaches are compared and their potential mutual inspiration searched for.

Keywords: Cultural heritage, environmental economics, existence value, value theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
2124 Leadership in Future Operational Environment

Authors: M. Şimşek

Abstract:

Rapidly changing factors that affect daily life also affect operational environment and the way military leaders fulfill their missions. With the help of technological developments, traditional linearity of conflict and war has started to fade away. Furthermore, mission domain has broadened to include traditional threats, hybrid threats and new challenges of cyber and space. Considering the future operational environment, future military leaders need to adapt themselves to the new challenges of the future battlefield. But how to decide what kind of features of leadership are required to operate and accomplish mission in the new complex battlefield? In this article, the main aim is to provide answers to this question. To be able to find right answers, first leadership and leadership components are defined, and then characteristics of future operational environment are analyzed. Finally, leadership features that are required to be successful in redefined battlefield are explained. 

Keywords: Future operational environment, leadership, leadership components.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
2123 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: Cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
2122 Non-negative Principal Component Analysis for Face Recognition

Authors: Zhang Yan, Yu Bin

Abstract:

Principle component analysis is often combined with the state-of-art classification algorithms to recognize human faces. However, principle component analysis can only capture these features contributing to the global characteristics of data because it is a global feature selection algorithm. It misses those features contributing to the local characteristics of data because each principal component only contains some levels of global characteristics of data. In this study, we present a novel face recognition approach using non-negative principal component analysis which is added with the constraint of non-negative to improve data locality and contribute to elucidating latent data structures. Experiments are performed on the Cambridge ORL face database. We demonstrate the strong performances of the algorithm in recognizing human faces in comparison with PCA and NREMF approaches.

Keywords: classification, face recognition, non-negativeprinciple component analysis (NPCA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
2121 Multiclass Support Vector Machines for Environmental Sounds Classification Using log-Gabor Filters

Authors: S. Souli, Z. Lachiri

Abstract:

In this paper we propose a robust environmental sound classification approach, based on spectrograms features driven from log-Gabor filters. This approach includes two methods. In the first methods, the spectrograms are passed through an appropriate log-Gabor filter banks and the outputs are averaged and underwent an optimal feature selection procedure based on a mutual information criteria. The second method uses the same steps but applied only to three patches extracted from each spectrogram.

To investigate the accuracy of the proposed methods, we conduct experiments using a large database containing 10 environmental sound classes. The classification results based on Multiclass Support Vector Machines show that the second method is the most efficient with an average classification accuracy of 89.62 %.

Keywords: Environmental sounds, Log-Gabor filters, Spectrogram, SVM Multiclass, Visual features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
2120 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain

Authors: Bita Payami-Shabestari, Dariush Eslami

Abstract:

The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.

Keywords: Economic production quantity, random cost, supply chain management, vendor-managed inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682
2119 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
2118 Geochemistry of Coal Ash in the Equatorial Wet Disposal System Environment

Authors: Kolay P. K., Singh H.

Abstract:

The coal utilization in thermal power plants in Malaysia has increased significantly which produces an enormous amount of coal combustion by-product (CCBP) or coal ash and poses severe disposal problem. As each coal ash is distinct, this study presents the geochemistry of the coal ash, in particular fly ash, produced from the combustion of local coal from Kuching Sarawak, Malaysia. The geochemical composition of the ash showed a high amount of silica, alumina, iron oxides and alkalies which was found to be a convenient starting material for the hydrothermal synthesis of zeolites with the higher Na2O percentage being a positive factor for its alkaline activation; while the mineral phases are mainly quartz, mullite, calcium oxide, silica, and iron oxide hydrate. The geochemical changes upon alkali activation that can be predicted in a similar type of ash have been described in this paper. The result shows that this particular ash has a good potential for a high value industrial product like zeolites upon alkali activation.

Keywords: Coal ash, chemical composition, mineralogical composition, alkali activation, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
2117 Video Classification by Partitioned Frequency Spectra of Repeating Movements

Authors: Kahraman Ayyildiz, Stefan Conrad

Abstract:

In this paper we present a system for classifying videos by frequency spectra. Many videos contain activities with repeating movements. Sports videos, home improvement videos, or videos showing mechanical motion are some example areas. Motion of these areas usually repeats with a certain main frequency and several side frequencies. Transforming repeating motion to its frequency domain via FFT reveals these frequencies. Average amplitudes of frequency intervals can be seen as features of cyclic motion. Hence determining these features can help to classify videos with repeating movements. In this paper we explain how to compute frequency spectra for video clips and how to use them for classifying. Our approach utilizes series of image moments as a function. This function again is transformed into its frequency domain.

Keywords: action recognition, frequency feature, motion recognition, repeating movement, video classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
2116 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, Thermophoresis, Diffusiophoresis, Brownian motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
2115 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419
2114 Differences in Innovative Orientation of the Entrepreneurially Active Adults: The Case of Croatia

Authors: Nataša Šarlija, Sanja Pfeifer

Abstract:

This study analyzes the innovative orientation of the Croatian entrepreneurs. Innovative orientation is represented by the perceived extent to which an entrepreneur’s product or service or technology is new, and no other businesses offer the same product. The sample is extracted from the GEM Croatia Adult Population Survey dataset for the years 2003-2013. We apply descriptive statistics, t-test, Chi-square test and logistic regression. Findings indicate that innovative orientations vary with personal, firm, meso and macro level variables, and between different stages in entrepreneurship process. Significant predictors are occupation of the entrepreneurs, size of the firm and export aspiration for both early stage and established entrepreneurs. In addition, fear of failure, expecting to start a new business and seeing an entrepreneurial career as a desirable choice are predictors of innovative orientation among early stage entrepreneurs.

Keywords: Multilevel determinants of the innovative orientation, Croatian early stage entrepreneurs, established businesses, GEM evidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
2113 Development of Industry Sector Specific Factory Standards

Authors: Peter Burggräf, Moritz Krunke, Hanno Voet

Abstract:

Due to shortening product and technology lifecycles, many companies use standardization approaches in product development and factory planning to reduce costs and time to market. Unlike large companies, where modular systems are already widely used, small and medium-sized companies often show a much lower degree of standardization due to lower scale effects and missing capacities for the development of these standards. To overcome these challenges, the development of industry sector specific standards in cooperations or by third parties is an interesting approach. This paper analyzes which branches that are mainly dominated by small or medium-sized companies might be especially interesting for the development of factory standards using the example of the German industry. For this, a key performance indicator based approach was developed that will be presented in detail with its specific results for the German industry structure.

Keywords: Factory planning, factory standards, industry sector specific standardization, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1231
2112 Signal Generator Circuit Carrying Information as Embedded Features from Multi-Transducer Signals

Authors: Sheroz Khan, Mustafa Zeki, Shihab Abdel Hameed, AHM Zahirul Alam, Aisha Hassan Abdalla, A. F. Salami, W. A. Lawal

Abstract:

A novel circuit for generating a signal embedded with features about data from three sensors is presented. This suggested circuit is making use of a resistance-to-time converter employing a bridge amplifier, an integrator and a comparator. The second resistive sensor (Rz) is transformed into duty cycle. Another bridge with varying resistor, (Ry) in the feedback of an OP AMP is added in series to change the amplitude of the resulting signal in a proportional relationship while keeping the same frequency and duty cycle representing proportional changes in resistors Rx and Rz already mentioned. The resultant output signal carries three types of information embedded as variations of its frequency, duty cycle and amplitude.

Keywords: Integrator, Comparator, Bridge Circuit, Resistanceto-Time Converter, Conditioning Circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
2111 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.

As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
2110 Quantitative Analysis of Weld Defect Images in Industrial Radiography Based Invariant Attributes

Authors: N. Nacereddine, M. Tridi, S. S. Belaïfa, M. Zelmat

Abstract:

For the characterization of the weld defect region in the radiographic image, looking for features which are invariant regarding the geometrical transformations (rotation, translation and scaling) proves to be necessary because the same defect can be seen from several angles according to the orientation and the distance from the welded framework to the radiation source. Thus, panoply of geometrical attributes satisfying the above conditions is proposed and which result from the calculation of the geometrical parameters (surface, perimeter, etc.) on the one hand and the calculation of the different order moments, on the other hand. Because the large range in values of the raw features and taking into account other considerations imposed by some classifiers, the scaling of these values to lie between 0 and 1 is indispensable. The principal component analysis technique is used in order to reduce the number of the attribute variables in the aim to give better performance to the further defect classification.

Keywords: Geometric parameters, invariant attributes, principal component analysis, weld defect image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
2109 Facial Expressions Animation and Lip Tracking Using Facial Characteristic Points and Deformable Model

Authors: Hadi Seyedarabi, Ali Aghagolzadeh, Sohrab Khanmohammadi

Abstract:

Face and facial expressions play essential roles in interpersonal communication. Most of the current works on the facial expression recognition attempt to recognize a small set of the prototypic expressions such as happy, surprise, anger, sad, disgust and fear. However the most of the human emotions are communicated by changes in one or two of discrete features. In this paper, we develop a facial expressions synthesis system, based on the facial characteristic points (FCP's) tracking in the frontal image sequences. Selected FCP's are automatically tracked using a crosscorrelation based optical flow. The proposed synthesis system uses a simple deformable facial features model with a few set of control points that can be tracked in original facial image sequences.

Keywords: Deformable face model, facial animation, facialcharacteristic points, optical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633