Search results for: multimodal text
42 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System
Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi
Abstract:
Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.
Keywords: RFID, asset tracking system, MongoDB, NoSQL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164941 Displacement Solution for a Static Vertical Rigid Movement of an Interior Circular Disc in a Transversely Isotropic Tri-Material Full-Space
Authors: D. Mehdizadeh, M. Rahimian, M. Eskandari-Ghadi
Abstract:
This article is concerned with the determination of the static interaction of a vertically loaded rigid circular disc embedded at the interface of a horizontal layer sandwiched in between two different transversely isotropic half-spaces called as tri-material full-space. The axes of symmetry of different regions are assumed to be normal to the horizontal interfaces and parallel to the movement direction. With the use of a potential function method, and by implementing Hankel integral transforms in the radial direction, the government partial differential equation for the solely scalar potential function is transformed to an ordinary 4th order differential equation, and the mixed boundary conditions are transformed into a pair of integral equations called dual integral equations, which can be reduced to a Fredholm integral equation of the second kind, which is solved analytically. Then, the displacements and stresses are given in the form of improper line integrals, which is due to inverse Hankel integral transforms. It is shown that the present solutions are in exact agreement with the existing solutions for a homogeneous full-space with transversely isotropic material. To confirm the accuracy of the numerical evaluation of the integrals involved, the numerical results are compared with the solutions exists for the homogeneous full-space. Then, some different cases with different degrees of material anisotropy are compared to portray the effect of degree of anisotropy.
Keywords: Transversely isotropic, rigid disc, elasticity, dual integral equations, tri-material full-space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167540 Work System Design in Productivity for Small and Medium Enterprises: A Systematic Literature Review
Authors: S. Halofaki, D. R. Seenivasagam, P. Bijay, K. Singh, R. Ananthanarayanan
Abstract:
This comprehensive literature review delves into the effects and applications of work system design on the performance of Small and Medium-sized Enterprises (SMEs). The review process involved three independent reviewers who screened 514 articles through a four-step procedure: removing duplicates, assessing keyword relevance, evaluating abstract content, and thoroughly reviewing full-text articles. Various criteria such as relevance to the research topic, publication type, study type, language, publication date, and methodological quality were employed to exclude certain publications. A portion of articles that met the predefined inclusion criteria were included as a result of this systematic literature review. These selected publications underwent data extraction and analysis to compile insights regarding the influence of work system design on SME performance. Additionally, the quality of the included studies was assessed, and the level of confidence in the body of evidence was established. The findings of this review shed light on how work system design impacts SME performance, emphasizing important implications and applications. Furthermore, the review offers suggestions for further research in this critical area and summarizes the current state of knowledge in the field. Understanding the intricate connections between work system design and SME success can enhance operational efficiency, employee engagement, and overall competitiveness for SMEs. This comprehensive examination of the literature contributes significantly to both academic research and practical decision-making for SMEs.
Keywords: Literature review, productivity, small and medium-sized enterprises, SMEs, work system design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10239 Information Retrieval: Improving Question Answering Systems by Query Reformulation and Answer Validation
Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour
Abstract:
Question answering (QA) aims at retrieving precise information from a large collection of documents. Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems to reformulate questions. Moreover answer processing module is an emerging topic in QA systems, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic relations and co-occurrence keywords. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing which both affect on the evaluation of the system operations. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. The objective of an Answer Validation task is thus to judge the correctness of an answer returned by a QA system, according to the text snippet given to support it. For validating answers we apply candidate answer filtering, candidate answer ranking and also it has a final validation section by user voting. Also this paper described new architecture of question and answer processing modules with modeling, implementing and evaluating the system. The system differs from most question answering systems in its answer validation model. This module makes it more suitable to find exact answer. Results show that, from total 50 asked questions, evaluation of the model, show 92% improving the decision of the system.
Keywords: Answer processing, answer validation, classification, question answering, query reformulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284738 The Study of Formal and Semantic Errors of Lexis by Persian EFL Learners
Authors: Mohammad J. Rezai, Fereshteh Davarpanah
Abstract:
Producing a text in a language which is not one’s mother tongue can be a demanding task for language learners. Examining lexical errors committed by EFL learners is a challenging area of investigation which can shed light on the process of second language acquisition. Despite the considerable number of investigations into grammatical errors, few studies have tackled formal and semantic errors of lexis committed by EFL learners. The current study aimed at examining Persian learners’ formal and semantic errors of lexis in English. To this end, 60 students at three different proficiency levels were asked to write on 10 different topics in 10 separate sessions. Finally, 600 essays written by Persian EFL learners were collected, acting as the corpus of the study. An error taxonomy comprising formal and semantic errors was selected to analyze the corpus. The formal category covered misselection and misformation errors, while the semantic errors were classified into lexical, collocational and lexicogrammatical categories. Each category was further classified into subcategories depending on the identified errors. The results showed that there were 2583 errors in the corpus of 9600 words, among which, 2030 formal errors and 553 semantic errors were identified. The most frequent errors in the corpus included formal error commitment (78.6%), which were more prevalent at the advanced level (42.4%). The semantic errors (21.4%) were more frequent at the low intermediate level (40.5%). Among formal errors of lexis, the highest number of errors was devoted to misformation errors (98%), while misselection errors constituted 2% of the errors. Additionally, no significant differences were observed among the three semantic error subcategories, namely collocational, lexical choice and lexicogrammatical. The results of the study can shed light on the challenges faced by EFL learners in the second language acquisition process.
Keywords: Collocational errors, lexical errors, Persian EFL learners, semantic errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122937 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).
Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27636 Response Time Behavior Trends of Proptional, Propotional Integral and Proportional Integral Derivative Mode on Lab Scale
Authors: Syed Zohaib Javaid Zaidi, W. Iqbal
Abstract:
The industrial automation is dependent upon pneumatic control systems. The industrial units are now controlled with digital control systems to tackle the process variables like Temperature, Pressure, Flow rates and Composition.
This research work produces an evaluation of the response time fluctuations for proportional mode, proportional integral and proportional integral derivative modes of automated chemical process control. The controller output is measured for different values of gain with respect to time in three modes (P, PI and PID). In case of P-mode for different values of gain the controller output has negligible change. When the controller output of PI-mode is checked for constant gain, it can be seen that by decreasing the integral time the controller output has showed more fluctuations. The PID mode results have found to be more interesting in a way that when rate minute has changed, the controller output has also showed fluctuations with respect to time. The controller output for integral mode and derivative mode are observed with lesser steady state error, minimum offset and larger response time to control the process variable. The tuning parameters in case of P-mode are only steady state gain with greater errors with respect to controller output. The integral mode showed controller outputs with intermediate responses during integral gain (ki). By increasing the rate minute the derivative gain (kd) also increased which showed the controlled oscillations in case of PID mode and lesser overshoot.
Keywords: Controller Output, P, PI &PID modes, Steady state gain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558335 Fertigation Use in Agriculture and Biosorption of Residual Nitrogen by Soil Microorganisms
Authors: A. Irina Mikajlo, B. Jakub Elbl, C. Antonín Kintl, D. Jindřich Kynický, E. Martin Brtnický, F. Jaroslav Záhora
Abstract:
Present work deals with the possible use of fertigation in agriculture and its impact on the availability of mineral nitrogen (Nmin) in topsoil and subsoil horizons. The aim of the present study is to demonstrate the effect of the organic matter presence in fertigation on microbial transformation and availability of mineral nitrogen forms. The main investigation reason is the potential use of pretreated waste water, as a source of organic carbon (Corg) and residual nutrients (Nmin) for fertigation. Laboratory experiment has been conducted to demonstrate the effect of the arable land fertilization method on the Nmin availability in different depths of the soil with the usage of model experimental containers filled with soil from topsoil and podsoil horizons that were taken from the precise area. Tufted hairgrass (Deschampsia caespitosa) has been chosen as a model plant. The water source protection zone Brezova nad Svitavou has been a research area where significant underground reservoirs of drinking water of the highest quality are located. From the second half of the last century local sources of drinking water show nitrogenous compounds increase that get here almost only from arable lands. Therefore, an attention of the following text focuses on the fate of mineral nitrogen in the complex plant-soil. Research results show that the fertigation application with Corg in a combination with mineral fertilizer can reduce the amount of Nmin leached from topsoil horizon of agricultural soils. In addition, some plants biomass production reduces may occur.Keywords: Fertigation, fertilizers, mineral nitrogen, soil microorganisms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196334 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.
Keywords: Deep learning, data mining, gender predication, MOOCs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136233 A Study of Shear Stress Intensity Factor of PP and HDPE by a Modified Experimental Method together with FEM
Authors: Md. Shafiqul Islam, Abdullah Khan, Sharon Kao-Walter, Li Jian
Abstract:
Shear testing is one of the most complex testing areas where available methods and specimen geometries are different from each other. Therefore, a modified shear test specimen (MSTS) combining the simple uniaxial test with a zone of interest (ZOI) is tested which gives almost the pure shear. In this study, material parameters of polypropylene (PP) and high density polyethylene (HDPE) are first measured by tensile tests with a dogbone shaped specimen. These parameters are then used as an input for the finite element analysis. Secondly, a specially designed specimen (MSTS) is used to perform the shear stress tests in a tensile testing machine to get the results in terms of forces and extension, crack initiation etc. Scanning Electron Microscopy (SEM) is also performed on the shear fracture surface to find material behavior. These experiments are then simulated by finite element method and compared with the experimental results in order to confirm the simulation model. Shear stress state is inspected to find the usability of the proposed shear specimen. Finally, a geometry correction factor can be established for these two materials in this specific loading and geometry with notch using Linear Elastic Fracture Mechanics (LEFM). By these results, strain energy of shear failure and stress intensity factor (SIF) of shear of these two polymers are discussed in the special application of the screw cap opening of the medical or food packages with a temper evidence safety solution.
Keywords: Shear test specimen, Stress intensity factor, Finite Element simulation, Scanning electron microscopy, Screw cap opening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292432 Speaker Identification by Joint Statistical Characterization in the Log Gabor Wavelet Domain
Authors: Suman Senapati, Goutam Saha
Abstract:
Real world Speaker Identification (SI) application differs from ideal or laboratory conditions causing perturbations that leads to a mismatch between the training and testing environment and degrade the performance drastically. Many strategies have been adopted to cope with acoustical degradation; wavelet based Bayesian marginal model is one of them. But Bayesian marginal models cannot model the inter-scale statistical dependencies of different wavelet scales. Simple nonlinear estimators for wavelet based denoising assume that the wavelet coefficients in different scales are independent in nature. However wavelet coefficients have significant inter-scale dependency. This paper enhances this inter-scale dependency property by a Circularly Symmetric Probability Density Function (CS-PDF) related to the family of Spherically Invariant Random Processes (SIRPs) in Log Gabor Wavelet (LGW) domain and corresponding joint shrinkage estimator is derived by Maximum a Posteriori (MAP) estimator. A framework is proposed based on these to denoise speech signal for automatic speaker identification problems. The robustness of the proposed framework is tested for Text Independent Speaker Identification application on 100 speakers of POLYCOST and 100 speakers of YOHO speech database in three different noise environments. Experimental results show that the proposed estimator yields a higher improvement in identification accuracy compared to other estimators on popular Gaussian Mixture Model (GMM) based speaker model and Mel-Frequency Cepstral Coefficient (MFCC) features.Keywords: Speaker Identification, Log Gabor Wavelet, Bayesian Bivariate Estimator, Circularly Symmetric Probability Density Function, SIRP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165131 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: B. Golchin, N. Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66530 Analyzing Environmental Emotive Triggers in Terrorist Propaganda
Authors: Travis Morris
Abstract:
The purpose of this study is to measure the intersection of environmental security entities in terrorist propaganda. To the best of author’s knowledge, this is the first study of its kind to examine this intersection within terrorist propaganda. Rosoka, natural language processing software and frame analysis are used to advance our understanding of how environmental frames function as emotive triggers. Violent jihadi demagogues use frames to suggest violent and non-violent solutions to their grievances. Emotive triggers are framed in a way to leverage individual and collective attitudes in psychological warfare. A comparative research design is used because of the differences and similarities that exist between two variants of violent jihadi propaganda that target western audiences. Analysis is based on salience and network text analysis, which generates violent jihadi semantic networks. Findings indicate that environmental frames are used as emotive triggers across both data sets, but also as tactical and information data points. A significant finding is that certain core environmental emotive triggers like “water,” “soil,” and “trees” are significantly salient at the aggregate level across both data sets. All environmental entities can be classified into two categories, symbolic and literal. Importantly, this research illustrates how demagogues use environmental emotive triggers in cyber space from a subcultural perspective to mobilize target audiences to their ideology and praxis. Understanding the anatomy of propaganda construction is necessary in order to generate effective counter narratives in information operations. This research advances an additional method to inform practitioners and policy makers of how environmental security and propaganda intersect.
Keywords: Emotive triggers, environmental security, natural language processing, propaganda analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95329 Enhance Construction Visual As-Built Schedule Management Using BIM Technology
Authors: Shu-Hui Jan, Hui-Ping Tserng, Shih-Ping Ho
Abstract:
Construction project control attempts to obtain real-time as-built schedule information and to eliminate project delays by effectively enhancing dynamic schedule control and management. Suitable platforms for enhancing an as-built schedule visually during the construction phase are necessary and important for general contractors. As the application of building information modeling (BIM) becomes more common, schedule management integrated with the BIM approach becomes essential to enhance visual construction management implementation for the general contractor during the construction phase. To enhance visualization of the updated as-built schedule for the general contractor, this study presents a novel system called the Construction BIM-assisted Schedule Management (ConBIM-SM) system for general contractors in
Keywords: BIM, Building information modeling, construction schedule management, as-built schedule management, BIM schedule updating mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 340928 Online Multilingual Dictionary Using Hamburg Notation for Avatar-Based Indian Sign Language Generation System
Authors: Sugandhi, Parteek Kumar, Sanmeet Kaur
Abstract:
Sign Language (SL) is used by deaf and other people who cannot speak but can hear or have a problem with spoken languages due to some disability. It is a visual gesture language that makes use of either one hand or both hands, arms, face, body to convey meanings and thoughts. SL automation system is an effective way which provides an interface to communicate with normal people using a computer. In this paper, an avatar based dictionary has been proposed for text to Indian Sign Language (ISL) generation system. This research work will also depict a literature review on SL corpus available for various SL s over the years. For ISL generation system, a written form of SL is required and there are certain techniques available for writing the SL. The system uses Hamburg sign language Notation System (HamNoSys) and Signing Gesture Mark-up Language (SiGML) for ISL generation. It is developed in PHP using Web Graphics Library (WebGL) technology for 3D avatar animation. A multilingual ISL dictionary is developed using HamNoSys for both English and Hindi Language. This dictionary will be used as a database to associate signs with words or phrases of a spoken language. It provides an interface for admin panel to manage the dictionary, i.e., modification, addition, or deletion of a word. Through this interface, HamNoSys can be developed and stored in a database and these notations can be converted into its corresponding SiGML file manually. The system takes natural language input sentence in English and Hindi language and generate 3D sign animation using an avatar. SL generation systems have potential applications in many domains such as healthcare sector, media, educational institutes, commercial sectors, transportation services etc. This research work will help the researchers to understand various techniques used for writing SL and generation of Sign Language systems.
Keywords: Avatar, dictionary, HamNoSys, hearing-impaired, Indian Sign Language, sign language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135327 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models
Authors: Danielle Shackley, Yetunde Folajimi
Abstract:
As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.
Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48726 Job in Modern Arabic Poetry: A Semantic and Comparative Approach to Two Poems Referring to the Poet Al-Sayyab
Authors: Jeries Khoury
Abstract:
The use of legendary, folkloric and religious symbols is one of the most important phenomena in modern Arabic poetry. Interestingly enough, most of the modern Arabic poetry’s pioneers were so fascinated by the biblical symbols and they managed to use many modern techniques to make these symbols adequate for their personal life from one side and fit to their Islamic beliefs from the other. One of the most famous poets to do so was al-Sayya:b. The way he employed one of these symbols ‘job’, the new features he adds to this character and the link between this character and his personal life will be discussed in this study. Besides, the study will examine the influence of al-Sayya:b on another modern poet Saadi Yusuf, who, following al-Sayya:b, used the character of Job in a special way, by mixing its features with al-Sayya:b’s personal features and in this way creating a new mixed character. A semantic, cultural and comparative analysis of the poems written by al-Sayya:b himself and the other poets who evoked the mixed image of al-Sayya:b-Job, can reveal the changes Arab poets made to the original biblical figure of Job to bring it closer to Islamic culture. The paper will make an intensive use of intertextuality idioms in order to shed light on the network of relations between three kinds of texts (indeed three ‘palimpsests’: 1- biblical- the primary text; 2- poetic- al-Syya:b’s secondary version; 3- re-poetic- Sa’di Yusuf’s tertiary version). The bottom line in this paper is that that al-Sayya:b was directly influenced by the dramatic biblical story of Job more than the brief Quranic version of the story. In fact, the ‘new’ character of Job designed by al-Sayya:b himself differs from the original one in many aspects that we can safely say it is the Sayyabian-Job that cannot be found in the poems of any other poets, unless they are evoking the own tragedy of al-Sayya:b himself, like what Saadi Yusuf did.
Keywords: Arabic poetry, intertextuality, job, meter, modernism, symbolism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65525 Socio-Cultural Representations through Lived Religions in Dalrymple’s Nine Lives
Authors: Suman
Abstract:
In the continuous interaction between the past and the present that historiography is, each time when history gets re/written, a new representation emerges. This new representation is a reflection of the earlier archives and their interpretations, fragmented remembrances of the past, as well as the reactions to the present. Memory, or lack thereof, and stereotyping generally play a major role in this representation. William Dalrymple’s Nine Lives: In Search of the Sacred in Modern India (2009) is one such written account that sets out to narrate the representations of religion and culture of India and contemporary reactions to it. Dalrymple’s nine saints belong to different castes, sects, religions, and regions. By dealing with their religions and expressions of those religions, and through the lived mysticism of these nine individuals, the book engages with some important issues like class, caste and gender in the contexts provided by historical as well as present India. The paper studies the development of religion and accompanied feeling of religiosity in modern as well as historical contexts through a study of these elements in the book. Since, the language used in creation of texts and the literary texts thus produced create a new reality that questions the stereotypes of the past, and in turn often end up creating new stereotypes or stereotypical representations at times, the paper seeks to actively engage with the text in order to identify and study such stereotypes, along with their changing representations. Through a detailed examination of the book, the paper seeks to unravel whether some socio-cultural stereotypes existed earlier, and whether there is development of new stereotypes from Dalrymple’s point of view as an outsider writing on issues that are deeply rooted in the cultural milieu of the country. For this analysis, the paper takes help from the psycho-literary theories of stereotyping and representation.Keywords: Religion, Representation, Stereotyping, William Dalrymple.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109624 Usability and Affordances: Examinations of Object-Naming and Object-Task Performance in Haptic Interfaces
Authors: Mia Sorensen
Abstract:
The introduction of haptic elements in a graphic user interfaces are becoming more widespread. Since haptics are being introduced rapidly into computational tools, investigating how these models affect Human-Computer Interaction would help define how to integrate and model new modes of interaction. The interest of this paper is to discuss and investigate the issues surrounding Haptic and Graphic User Interface designs (GUI) as separate systems, as well as understand how these work in tandem. The development of these systems is explored from a psychological perspective, based on how usability is addressed through learning and affordances, defined by J.J. Gibson. Haptic design can be a powerful tool, aiding in intuitive learning. The problems discussed within the text is how can haptic interfaces be integrated within a GUI without the sense of frivolity. Juxtaposing haptics and Graphic user interfaces has issues of motivation; GUI tends to have a performatory process, while Haptic Interfaces use affordances to learn tool use. In a deeper view, it is noted that two modes of perception, foveal and ambient, dictate perception. These two modes were once thought to work in tandem, however it has been discovered that these processes work independently from each other. Foveal modes interpret orientation is space which provide for posture, locomotion, and motor skills with variations of the sensory information, which instructs perceptions of object-task performance. It is contended, here, that object-task performance is a key element in the use of Haptic Interfaces because exploratory learning uses affordances in order to use an object, without meditating an experience cognitively. It is a direct experience that, through iteration, can lead to skill-sets. It is also indicated that object-task performance will not work as efficiently without the use of exploratory or kinesthetic learning practices. Therefore, object-task performance is not as congruently explored in GUI than it is practiced in Haptic interfaces.
Keywords: Affordances, Graphic User Interface, HapticInterfaces, Tool-Use, Object-Naming, Object-Task Performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175123 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75022 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment
Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng
Abstract:
Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 ℃, 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source.
Keywords: Aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 147921 Morphemic Analysis Awareness: A Boon or Bane on ESL Students’ Vocabulary Learning Strategy
Authors: Chandrakala Varatharajoo, Adelina Binti Asmawi, Nabeel Abdallah Mohammad Abedalaziz
Abstract:
This study investigated the impact of inflectional and derivational morphemic analysis awareness on ESL secondary school students’ vocabulary learning strategy. The quasi-experimental study was conducted with 106 low proficiency secondary school students in two experimental groups (inflectional and derivational) and one control group. The students’ vocabulary acquisition was assessed through two measures: Morphemic Analysis Test and Vocabulary- Morphemic Test in the pretest and posttest before and after an intervention programme. Results of ANCOVA revealed that both the experimental groups achieved a significant score in Morphemic Analysis Test and Vocabulary-Morphemic Test. However, the inflectional group obtained a fairly higher score than the derivational group. Thus, the results indicated that ESL low proficiency secondary school students performed better on inflectional morphemic awareness as compared to derivatives. The results also showed that the awareness of inflectional morphology contributed more on the vocabulary acquisition. Importantly, learning inflectional morphology can help ESL low proficiency secondary school students to develop both morphemic awareness and vocabulary gain. Theoretically, these findings show that not all morphemes are equally useful to students for their language development. Practically, these findings indicate that morphological instruction should at least be included in remediation and instructional efforts with struggling learners across all grade levels, allowing them to focus on meaning within the word before they attempt the text in large for better comprehension. Also, by methodologically, by conducting individualized intervention and assessment this study provided fresh empirical evidence to support the existing literature on morphemic analysis awareness and vocabulary learning strategy. Thus, a major pedagogical implication of the study is that morphemic analysis awareness strategy is a definite boon for ESL secondary school students in learning English vocabulary.
Keywords: ESL, instruction, morphemic analysis, vocabulary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290720 3D Modeling Approach for Cultural Heritage Structures: The Case of Virgin of Loreto Chapel in Cusco, Peru
Authors: Rony Reátegui, Cesar Chácara, Benjamin Castañeda, Rafael Aguilar
Abstract:
Nowadays, Heritage Building Information Modeling (HBIM) is considered an efficient tool to represent and manage information of Cultural Heritage (CH). The basis of this tool relies on a 3D model generally obtained from a Cloud-to-BIM procedure. There are different methods to create an HBIM model that goes from manual modeling based on the point cloud to the automatic detection of shapes and the creation of objects. The selection of these methods depends on the desired Level of Development (LOD), Level of Information (LOI), Grade of Generation (GOG) as well as on the availability of commercial software. This paper presents the 3D modeling of a stone masonry chapel using Recap Pro, Revit and Dynamo interface following a three-step methodology. The first step consists of the manual modeling of simple structural (e.g., regular walls, columns, floors, wall openings, etc.) and architectural (e.g., cornices, moldings and other minor details) elements using the point cloud as reference. Then, Dynamo is used for generative modeling of complex structural elements such as vaults, infills and domes. Finally, semantic information (e.g., materials, typology, state of conservation, etc.) and pathologies are added within the HBIM model as text parameters and generic models’ families respectively. The application of this methodology allows the documentation of CH following a relatively simple to apply process that ensures adequate LOD, LOI and GOG levels. In addition, the easy implementation of the method as well as the fact of using only one BIM software with its respective plugin for the scan-to-BIM modeling process means that this methodology can be adopted by a larger number of users with intermediate knowledge and limited resources, since the BIM software used has a free student license.
Keywords: Cloud-to-BIM, cultural heritage, generative modeling, HBIM, parametric modeling, Revit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92719 Indian Art Education and Career Opportunities: A Critical Analysis on Commercial Art
Authors: Pooja Jain
Abstract:
Art education is often ignored in syllabus of developing countries like India and in educational planning for development but now days Indian Art with a global recognition is becoming an integral part of the education at all levels. The term art, widely used in all parts of the modern world, carried varied significance in India as its meaning was continuously being extended, covering the many varieties of creative expression such as painting, sculpture, commercial art, design, poetry, music, dance, and architecture. Over the last 100 years Indian artists of all forms have evolved a wide variety of expressive styles. With the recommendations and initiatives by Government of India, Art Education has subsequently gained pace at the school level as a mandatory subject for all making a path way for students with a creative bend of mind. This paper investigates curriculum in various schools of the country at secondary and senior secondary levels along with some eminent institutions running the program. Findings depicted the role of art education and justified its importance primarily with commercial art being perceived to be essential for students learning skills for economic gain in their career ahead. With so many art colleges spread across India, emerging artists and designers are being trained and are creating art of infinite variety and style and have opened up many career avenues. Commercial Art being a plethora of artistic expressions has confidently come of age wherein a creative perception is mixed with an introspective imagination to bring out multi faceted career options with a significant future enveloped in art. Visual arts in education thus is an expanding field of result assured research.
Keywords: Modern art, commercial art, introspective imagination, career.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80618 Satisfaction of Distance Education University Students with the Use of Audio Media as a Medium of Instruction: The Case of Mountains of the Moon University in Uganda
Authors: Mark Kaahwa, Chang Zhu, Moses Muhumuza
Abstract:
This study investigates the satisfaction of distance education university students (DEUS) with the use of audio media as a medium of instruction. Studying students’ satisfaction is vital because it shows whether learners are comfortable with a certain instructional strategy or not. Although previous studies have investigated the use of audio media, the satisfaction of students with an instructional strategy that combines radio teaching and podcasts as an independent teaching strategy has not been fully investigated. In this study, all lectures were delivered through the radio and students had no direct contact with their instructors. No modules or any other material in form of text were given to the students. They instead, revised the taught content by listening to podcasts saved on their mobile electronic gadgets. Prior to data collection, DEUS received orientation through workshops on how to use audio media in distance education. To achieve objectives of the study, a survey, naturalistic observations and face-to-face interviews were used to collect data from a sample of 211 undergraduate and graduate students. Findings indicate that there was no statistically significant difference in the levels of satisfaction between male and female students. The results from post hoc analysis show that there is a statistically significant difference in the levels of satisfaction regarding the use of audio media between diploma and graduate students. Diploma students are more satisfied compared to their graduate counterparts. T-test results reveal that there was no statistically significant difference in the general satisfaction with audio media between rural and urban-based students. And ANOVA results indicate that there is no statistically significant difference in the levels of satisfaction with the use of audio media across age groups. Furthermore, results from observations and interviews reveal that DEUS found learning using audio media a pleasurable medium of instruction. This is an indication that audio media can be considered as an instructional strategy on its own merit.
Keywords: Audio media, distance education, distance education university students, medium of instruction, satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79817 GridNtru: High Performance PKCS
Authors: Narasimham Challa, Jayaram Pradhan
Abstract:
Cryptographic algorithms play a crucial role in the information society by providing protection from unauthorized access to sensitive data. It is clear that information technology will become increasingly pervasive, Hence we can expect the emergence of ubiquitous or pervasive computing, ambient intelligence. These new environments and applications will present new security challenges, and there is no doubt that cryptographic algorithms and protocols will form a part of the solution. The efficiency of a public key cryptosystem is mainly measured in computational overheads, key size and bandwidth. In particular the RSA algorithm is used in many applications for providing the security. Although the security of RSA is beyond doubt, the evolution in computing power has caused a growth in the necessary key length. The fact that most chips on smart cards can-t process key extending 1024 bit shows that there is need for alternative. NTRU is such an alternative and it is a collection of mathematical algorithm based on manipulating lists of very small integers and polynomials. This allows NTRU to high speeds with the use of minimal computing power. NTRU (Nth degree Truncated Polynomial Ring Unit) is the first secure public key cryptosystem not based on factorization or discrete logarithm problem. This means that given sufficient computational resources and time, an adversary, should not be able to break the key. The multi-party communication and requirement of optimal resource utilization necessitated the need for the present day demand of applications that need security enforcement technique .and can be enhanced with high-end computing. This has promoted us to develop high-performance NTRU schemes using approaches such as the use of high-end computing hardware. Peer-to-peer (P2P) or enterprise grids are proven as one of the approaches for developing high-end computing systems. By utilizing them one can improve the performance of NTRU through parallel execution. In this paper we propose and develop an application for NTRU using enterprise grid middleware called Alchemi. An analysis and comparison of its performance for various text files is presented.Keywords: Alchemi, GridNtru, Ntru, PKCS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169116 A Nutritional Wellness Program for Overweight Health Care Providers in Hospital Setting: A Randomized Controlled Trial Pilot Study
Authors: Kim H. K. Choy, Oliva H. K. Chu, W. Y. Keung, B. Lim, Winnie P. Y. Tang
Abstract:
Background: The prevalence of workplace obesity is rising worldwide; therefore, the workplace is an ideal venue to implement weight control intervention. This pilot randomized controlled trial aimed to develop, implement, and evaluate a nutritional wellness program for obese health care providers working in a hospital. Methods: This hospital-based nutritional wellness program was an 8-week pilot randomized controlled trial for obese health care providers. The primary outcomes were body weight and body mass index (BMI). The secondary outcomes were serum fasting glucose, fasting cholesterol, triglyceride, high-density (HDL) and low-density (LDL) lipoprotein, body fat percentage, and body mass. Participants were randomly assigned to the intervention (n = 20) or control (n = 22) group. Participants in both groups received individual nutrition counselling and nutrition pamphlets, whereas only participants in the intervention group were given mobile phone text messages. Results: 42 participants completed the study. In comparison with the control group, the intervention group showed approximately 0.98 kg weight reduction after two months. Participants in intervention group also demonstrated clinically significant improvement in BMI, serum cholesterol level, and HDL level. There was no improvement of body fat percentage and body mass for both intervention and control groups. Conclusion: The nutritional wellness program for obese health care providers was feasible in hospital settings. Health care providers demonstrated short-term weight loss, decrease in serum fasting cholesterol level, and HDL level after completing the program.Keywords: Health care provider, hospital, weight management, weight control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117215 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.
Keywords: Brain Computer Interface (BCI), Electroencephalogram (EEG), EEGLab, BCILab, Emotiv, Emotions, Interval features, Spectral features, Artificial Neural Network, Control applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529714 Contextual SenSe Model: Word Sense Disambiguation Using Sense and Sense Value of Context Surrounding the Target
Authors: Vishal Raj, Noorhan Abbas
Abstract:
Ambiguity in NLP (Natural Language Processing) refers to the ability of a word, phrase, sentence, or text to have multiple meanings. This results in various kinds of ambiguities such as lexical, syntactic, semantic, anaphoric and referential. This study is focused mainly on solving the issue of Lexical ambiguity. Word Sense Disambiguation (WSD) is an NLP technique that aims to resolve lexical ambiguity by determining the correct meaning of a word within a given context. Most WSD solutions rely on words for training and testing, but we have used lemma and Part of Speech (POS) tokens of words for training and testing. Lemma adds generality and POS adds properties of word into token. We have designed a method to create an affinity matrix to calculate the affinity between any pair of lemma_POS (a token where lemma and POS of word are joined by underscore) of given training set. Additionally, we have devised an algorithm to create the sense clusters of tokens using affinity matrix under hierarchy of POS of lemma. Furthermore, three different mechanisms to predict the sense of target word using the affinity/similarity value are devised. Each contextual token contributes to the sense of target word with some value and whichever sense gets higher value becomes the sense of target word. So, contextual tokens play a key role in creating sense clusters and predicting the sense of target word, hence, the model is named Contextual SenSe Model (CSM). CSM exhibits a noteworthy simplicity and explication lucidity in contrast to contemporary deep learning models characterized by intricacy, time-intensive processes, and challenging explication. CSM is trained on SemCor training data and evaluated on SemEval test dataset. The results indicate that despite the naivety of the method, it achieves promising results when compared to the Most Frequent Sense (MFS) model.
Keywords: Word Sense Disambiguation, WSD, Contextual SenSe Model, Most Frequent Sense, part of speech, POS, Natural Language Processing, NLP, OOV, out of vocabulary, ELMo, Embeddings from Language Model, BERT, Bidirectional Encoder Representations from Transformers, Word2Vec, lemma_POS, Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38313 Inflation and Unemployment Rates as Indicators of the Transition European Union Countries Monetary Policy Orientation
Authors: Elza Jurun, Damir Piplica, Tea Poklepović
Abstract:
Numerous studies carried out in the developed western democratic countries have shown that the ideological framework of the governing party has a significant influence on the monetary policy. The executive authority consisting of a left-wing party gives a higher weight to unemployment suppression and central bank implements a more expansionary monetary policy. On the other hand, right-wing governing party considers the monetary stability to be more important than unemployment suppression and in such a political framework the main macroeconomic objective becomes the inflation rate reduction. The political framework conditions in the transition countries which are new European Union (EU) members are still highly specific in relation to the other EU member countries. In the focus of this paper is the question whether the same monetary policy principles are valid in these transitional countries as well as they apply in developed western democratic EU member countries. The data base consists of inflation rate and unemployment rate for 11 transitional EU member countries covering the period from 2001 to 2012. The essential information for each of these 11 countries and for each year of the observed period is right or left political orientation of the ruling party. In this paper we use t-statistics to test our hypothesis that there are differences in inflation and unemployment between right and left political orientation of the governing party. To explore the influence of different countries, through years and different political orientations descriptive statistics is used. Inflation and unemployment should be strongly negatively correlated through time, which is tested using Pearson correlation coefficient. Regarding the fact whether the governing authority is consisted from left or right politically oriented parties, monetary authorities will adjust its policy setting the higher priority on lower inflation or unemployment reduction.
Keywords: Inflation rate, monetary policy orientation, transition EU countries, unemployment rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324