Search results for: Abrasive flow rate
4047 Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator
Authors: Kyoungjin Kim
Abstract:
Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.Keywords: Optical fiber manufacturing, Optical fiber coating, Capillary flow, Viscous heating, Flow simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31334046 Visualized Flow Patterns around and inside a Two-Sided Wind-Catcher in the Presence of Upstream Structures
Authors: M. Afshin, A. Sohankar, M. Dehghan Manshadi, M. R. Daneshgar, G. R. Dehghan Kamaragi
Abstract:
In this paper, the influence of upstream structures on the flow patternaround and inside the wind-catcher is experimentally investigated by smoke flow visualization techniques. Wind-catchers are an important part of natural ventilation in residential buildings or public places such as shopping centers, libraries, etc. Wind-catchers might be also used in places of high urban densities; hence their potential to provide natural ventilation is dependent on the presence of upstream structures. In this study, the two-sided wind-catcher model was based on a real wind-catcher observed in the city of Yazd, Iran. The present study focuses on the flow patterns around and inside the isolated two-sided wind-catcher, and on a two-sided wind-catcher in the presence of an upstream structure. The results show that the presence of an upstream structure influences the airflow pattern force and direction. Placing a high upstream structure reverses the airflow direction inside the wind-catcher.
Keywords: Natural Ventilation, Smoke Flow Visualization, Two-Sided Wind-Catcher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19894045 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic
Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin
Abstract:
Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.
Keywords: Matching, OpenFlow tables, POX controller, SDN, table-miss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12244044 Object Tracking using MACH filter and Optical Flow in Cluttered Scenes and Variable Lighting Conditions
Authors: Waqar Shahid Qureshi, Abu-Baqar Nisar Alvi
Abstract:
Vision based tracking problem is solved through a combination of optical flow, MACH filter and log r-θ mapping. Optical flow is used for detecting regions of movement in video frames acquired under variable lighting conditions. The region of movement is segmented and then searched for the target. A template is used for target recognition on the segmented regions for detecting the region of interest. The template is trained offline on a sequence of target images that are created using the MACH filter and log r-θ mapping. The template is applied on areas of movement in successive frames and strong correlation is seen for in-class targets. Correlation peaks above a certain threshold indicate the presence of target and the target is tracked over successive frames.Keywords: Correlation filters, optical flow, log r-θ mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21424043 Perfect Plastic Deformation of a Circular Thin Bronze Plate due to the Growth and Collapse of a Vapour Bubble
Authors: M.T. Shervani-Tabar, M. Rezaee, E. Madadi Kandjani
Abstract:
Dynamics of a vapour bubble generated due to a high local energy input near a circular thin bronze plate in the absence of the buoyancy forces is numerically investigated in this paper. The bubble is generated near a thin bronze plate and during the growth and collapse of the bubble, it deforms the nearby plate. The Boundary Integral Equation Method is employed for numerical simulation of the problem. The fluid is assumed to be incompressible, irrotational and inviscid and the surface tension on the bubble boundary is neglected. Therefore the fluid flow around the vapour bubble can be assumed as a potential flow. Furthermore, the thin bronze plate is assumed to have perfectly plastic behaviour. Results show that the displacement of the circular thin bronze plate has considerable effect on the dynamics of its nearby vapour bubble. It is found that by decreasing the thickness of the thin bronze plate, the growth and collapse rate of the bubble becomes higher and consequently the lifetime of the bubble becomes shorter.
Keywords: Vapour Bubble, Thin Bronze Plate, Boundary Integral Equation Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15264042 Development of a New Piezoelectrically Actuated Micropump for Liquid and Gas
Authors: Chiang-Ho Cheng, An-Shik Yang, Chih-Jer Lin, Chun-Ying Lee
Abstract:
This paper aims to present the design, fabrication and test of a novel piezoelectric actuated, check-valves embedded micropump having the advantages of miniature size, light weight and low power consumption. This device is designed to pump gases and liquids with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump, the displacement of the piezoelectric actuator and the deformation of the check valve, simultaneously. The micropump with check valve 0.4 mm in thickness obtained higher output performance under the sinusoidal waveform of 120 Vpp. The micropump achieved the maximum pumping rates of 42.2 ml/min and back pressure of 14.0 kPa at the corresponding frequency of 28 and 20 Hz. The presented micropump is able to pump gases with a pumping rate of 196 ml/min at operating frequencies of 280 Hz under the sinusoidal waveform of 120 Vpp.
Keywords: Actuator, Check-valve, Micropump, Piezoelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21894041 Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample
Authors: Suwimon Saneewong Na Ayuttaya
Abstract:
This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 oC, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger.Keywords: Electrohydrodynamics, swirling flow, convective heat transfer, solid sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10864040 Viscous Potential Flow Analysis of Electrohydrodynamic Capillary Instability through Porous Media
Authors: Mukesh Kumar Awasth, Mohammad Tamsir
Abstract:
The effect of porous medium on the capillary instability of a cylindrical interface in the presence of axial electric field has been investigated using viscous potential flow theory. In viscous potential flow, the viscous term in Navier-Stokes equation vanishes as vorticity is zero but viscosity is not zero. Viscosity enters through normal stress balance in the viscous potential flow theory and tangential stresses are not considered. A dispersion relation that accounts for the growth of axisymmetric waves is derived and stability is discussed theoretically as well as numerically. Stability criterion is given by critical value of applied electric field as well as critical wave number. Various graphs have been drawn to show the effect of various physical parameters such as electric field, viscosity ratio, permittivity ratio on the stability of the system. It has been observed that the axial electric field and porous medium both have stabilizing effect on the stability of the system.
Keywords: Capillary instability, Viscous potential flow, Porous media, Axial electric field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20794039 Temperature Distribution Simulation of Divergent Fluid Flow with Helical Arrangement
Authors: Ehan Sabah Shukri, Wirachman Wisnoe
Abstract:
Numerical study is performed to investigate the temperature distribution in an annular diffuser fitted with helical tape hub. Different pitches (Y = 20 mm, and Y = 30 mm) for the helical tape are studied with different heights (H = 20 mm, 22 mm, and 24 mm) to be compared. The geometry of the annular diffuser and the inlet condition for both hub arrangements are kept constant. The result obtains that using helical tape insert with different pitches and different heights will force the temperature to distribute in a helical direction; however the use of helical tape hub with height (H = 22 mm) for both pitches enhance the temperature distribution in a good manner.
Keywords: Helical tape, divergent fluid flow, temperature distribution, swirl flow, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17854038 Numerical Simulation of Multiple Arrays Arrangement of Micro Hydro Power Turbines
Authors: M. A. At-Tasneem, N. T. Rao, T. M. Y. S. Tuan Ya, M. S. Idris, M. Ammar
Abstract:
River flow over micro hydro power (MHP) turbines of multiple arrays arrangement is simulated with computational fluid dynamics (CFD) software to obtain the flow characteristics. In this paper, CFD software is used to simulate the water flow over MHP turbines as they are placed in a river. Multiple arrays arrangement of MHP turbines lead to generate large amount of power. In this study, a river model is created and simulated in CFD software to obtain the water flow characteristic. The process then continued by simulating different types of arrays arrangement in the river model. A MHP turbine model consists of a turbine outer body and static propeller blade in it. Five types of arrangements are used which are parallel, series, triangular, square and rhombus with different spacing sizes. The velocity profiles on each MHP turbines are identified at the mouth of each turbine bodies. This study is required to obtain the arrangement with increasing spacing sizes that can produce highest power density through the water flow variation.
Keywords: Micro hydro power, CFD, arrays arrangement, spacing sizes, velocity profile, power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21104037 Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber
Authors: Sergey I. Shtork, Aleksey P. Vinokurov, Sergey V. Alekseenko
Abstract:
The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.Keywords: Acoustic probes, detached eddy simulation (DES), laser-Doppler anemometry (LDA), precessing vortex core (PVC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22714036 An Improved Transmission Scheme in Cooperative Communication System
Authors: Seung-Jun Yu, Young-Min Ko, Hyoung-Kyu Song
Abstract:
Recently developed cooperative diversity scheme enables a terminal to get transmit diversity through the support of other terminals. However, most of the introduced cooperative schemes have a common fault of decreased transmission rate because the destination should receive the decodable compositions of symbols from the source and the relay. In order to achieve high data rate, we propose a cooperative scheme that employs hierarchical modulation. This scheme is free from the rate loss and allows seamless cooperative communication.Keywords: Cooperative communication, hierarchical modulation, high data rate, transmission scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18904035 MHD Natural Convection Flow of Tangent Hyperbolic Nanofluid Past a Vertical Permeable Cone
Authors: A. Mahdy
Abstract:
In this paper, a non-similraity analysis has been presented to exhibit the two-dimensional boundary layer flow of magnetohydrodynamic (MHD) natural convection of tangent hyperbolic nanofluid nearby a vertical permeable cone in the presence of variable wall temperature impact. The mutated boundary layer nonlinear governing equations are solved numerically by the an efficient implicit finite difference procedure. For both nanofluid effective viscosity and nanofluid thermal conductivity, a number of experimental relations have been recognized. For characterizing the nanofluid, the compatible nanoparticle volume fraction model has been used. Nusselt number and skin friction coefficient are calculated for some values of Weissenberg number W, surface temperature exponent n, magnetic field parameter Mg, power law index m and Prandtl number Pr as functions of suction parameter. The rate of heat transfer from a vertical permeable cone in a regular fluid is less than that in nanofluids. A best convection has been presented by Copper nanoparticle among all the used nanoparticles.Keywords: Tangent hyperbolic nanofluid, finite difference, non-similarity, isothermal cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7844034 Experimental Study on Gas-Viscous Liquid Mixture Flow Regimes and Transitions Criteria in Vertical Narrow Rectangular Channels
Authors: F. J. Sowiński, M. Dziubiński
Abstract:
In the study the influence of the physical-chemical properties of a liquid, the width of a channel gap and the superficial liquid and gas velocities on the patterns formed during two phase flows in vertical, narrow mini-channels was investigated. The research was performed in the channels of rectangular cross-section and of dimensions: 15 x 0.65 mm and 7.5 x 0.73 mm. The experimental data were compared with the published criteria of the transitions between the patterns of two-phase flows.
Keywords: Two-phase flow, flow regimes, mini-channel, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14284033 Experimental Studies on Multiphase Flow in Porous Media and Pore Wettability
Authors: Xingxun Li, Xianfeng Fan
Abstract:
Multiphase flow transport in porous medium is very common and significant in science and engineering applications. For example, in CO2 Storage and Enhanced Oil Recovery processes, CO2 has to be delivered to the pore spaces in reservoirs and aquifers. CO2 storage and enhance oil recovery are actually displacement processes, in which oil or water is displaced by CO2. This displacement is controlled by pore size, chemical and physical properties of pore surfaces and fluids, and also pore wettability. In this study, a technique was developed to measure the pressure profile for driving gas/liquid to displace water in pores. Through this pressure profile, the impact of pore size on the multiphase flow transport and displacement can be analyzed. The other rig developed can be used to measure the static and dynamic pore wettability and investigate the effects of pore size, surface tension, viscosity and chemical structure of liquids on pore wettability.
Keywords: Enhanced oil recovery, Multiphase flow, Pore size, Pore wettability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23274032 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances
Authors: Pakorn Uttayopas, Chawalit Kittichaikarn
Abstract:
This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.
Keywords: Downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9244031 Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles
Authors: Amir Mahmoudi
Abstract:
In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow ability of the samples and viscosity increased. With increasing of the micro silica particles to cement ratio from 2/1 to 2/2, the slump flow diameter increased. By adding silica and alumina nanoparticles up to 3% and 2% respectively, the compressive strength increased and after decreased. Samples containing silica nanoparticles and fibers had the highest compressive strength.
Keywords: Portland cement, Composite, Nanoparticles, Compressive Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19554030 Transmission Pricing based on Voltage Angle Decomposition
Authors: M. Oloomi-Buygi, M. Reza Salehizadeh
Abstract:
In this paper a new approach for transmission pricing is presented. The main idea is voltage angle allocation, i.e. determining the contribution of each contract on the voltage angle of each bus. DC power flow is used to compute a primary solution for angle decomposition. To consider the impacts of system non-linearity on angle decomposition, the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow. Then, the contribution of each contract on power flow of each transmission line is computed based on angle decomposition. Contract-related flows are used as a measure for “extent of use" of transmission network capacity and consequently transmission pricing. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system.Keywords: Deregulation, Power electric markets, Transmission pricing methodologies, decoupled Newton-Raphson power flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16624029 Experimental Study of Performance of a Counter Flow Ranque-Hilsch Vortex Tube with Inner Threaded Body
Authors: Gürol Önal, Kevser Dincer
Abstract:
In this experimental study, performance of a counter flow Ranque-Hilsch vortex tube (RHVT) with threads cut on its inner surface was investigated experimentally (pitch is 1 and 2 mm). The inner diameter of the vortex tube used was D=9 mm and the ratio of the tube’s length to diameter was L/D=12. The experimental system was a thermodynamic open system. Flow was controlled by a valve on the hot outlet side, where the valve was changed from a nearly closed position to its nearly open position. Fraction of cold flow (ξ) = 0.1-0.9, was determined under 300 and 350 kPa pressurized air. All experimental data were compared with each other, the maximum heating performance of the RHVT system was found to be 38.2 oC and the maximum cooling performance of the RHVT in this study was found to be -30.9 oC at pitch 1 mm.
Keywords: Ranque-Hilsch vortex tube, heating, cooling, temperature separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28714028 A Mesh Free Moving Node Method To Analyze Flow Through Spirals of Orbiting Scroll Pump
Authors: I.Banerjee, A.K.Mahendra, T.K.Bera, B.G.Chandresh
Abstract:
The scroll pump belongs to the category of positive displacement pump can be used for continuous pumping of gases at low pressure apart from general vacuum application. The shape of volume occupied by the gas moves and deforms continuously as the spiral orbits. To capture flow features in such domain where mesh deformation varies with time in a complicated manner, mesh less solver was found to be very useful. Least Squares Kinetic Upwind Method (LSKUM) is a kinetic theory based mesh free Euler solver working on arbitrary distribution of points. Here upwind is enforced in molecular level based on kinetic flux vector splitting scheme (KFVS). In the present study we extended the LSKUM to moving node viscous flow application. This new code LSKUM-NS-MN for moving node viscous flow is validated for standard airfoil pitching test case. Simulation performed for flow through scroll pump using LSKUM-NS-MN code agrees well with the experimental pumping speed data.Keywords: Least Squares, Moving node, Pitching, Spirals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19044027 Minimizing Makespan Subject to Budget Limitation in Parallel Flow Shop
Authors: Amin Sahraeian
Abstract:
One of the criteria in production scheduling is Make Span, minimizing this criteria causes more efficiently use of the resources specially machinery and manpower. By assigning some budget to some of the operations the operation time of these activities reduces and affects the total completion time of all the operations (Make Span). In this paper this issue is practiced in parallel flow shops. At first we convert parallel flow shop to a network model and by using a linear programming approach it is identified in order to minimize make span (the completion time of the network) which activities (operations) are better to absorb the predetermined and limited budget. Minimizing the total completion time of all the activities in the network is equivalent to minimizing make span in production scheduling.Keywords: parallel flow shop, make span, linear programming, budget
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17794026 Vortex-Shedding Suppression in Mixed Convective Flow past a Heated Square Cylinder
Abstract:
The present study investigates numerically the phenomenon of vortex-shedding and its suppression in twodimensional mixed convective flow past a square cylinder under the joint influence of buoyancy and free-stream orientation with respect to gravity. The numerical experiments have been conducted at a fixed Reynolds number (Re) of 100 and Prandtl number (Pr) of 0.71, while Richardson number (Ri) is varied from 0 to 1.6 and freestream orientation, α, is kept in the range 0o≤ α ≤ 90o, with 0o corresponding to an upward flow and 90o representing a cross-flow scenario, respectively. The continuity, momentum and energy equations, subject to Boussinesq approximation, are discretized using a finite difference method and are solved by a semi-explicit pressure correction scheme. The critical Richardson number, leading to the suppression of the vortex-shedding (Ric), is estimated by using Stuart-Landau theory at various free-stream orientations and the neutral curve is obtained in the Ri-α plane. The neutral curve exhibits an interesting non-monotonic behavior with Ric first increasing with increasing values of α upto 45o and then decreasing till 70o. Beyond 70o, the neutral curve again exhibits a sharp increasing asymptotic trend with Ric approaching very large values as α approaches 90o. The suppression of vortex shedding is not observed at α = 90o (cross-flow). In the unsteady flow regime, the Strouhal number (St) increases with the increase in Richardson number.Keywords: bluff body, buoyancy, free-stream orientation, vortex-shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22714025 Flow Characteristics and Heat Transfer Enhancement in 2D Corrugated Channels
Authors: Veli Ozbolat, Nehir Tokgoz, Besir Sahin
Abstract:
Present study numerically investigates the flow field and heat transfer of water in two dimensional sinusoidal and rectangular corrugated wall channels. Simulations are performed for fully developed flow conditions at inlet sections of the channels that have 12 waves. The temperature of the input fluid is taken to be less than that temperature of wavy walls. The governing continuity, momentum and energy equations are numerically solved using finite volume method based on SIMPLE technique. The investigation covers Reynolds number in the rage of 100-1000. The effects of the distance between upper and lower corrugated walls are studied by varying Hmin/Hmax ratio from 0.3 to 0.5 for keeping wave length and wave amplitude values fixed for both geometries. The effects of the wall geometry, Reynolds number and the distance between walls on the flow characteristics, the local Nusselt number and heat transfer are studied. It is found that heat transfer enhancement increases by usage of corrugated horizontal walls in an appropriate Reynolds number regime and channel height.
Keywords: Corrugated Channel, CFD, Flow Characteristics, Heat Transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33124024 Experimental Measurements of the Mean Flow Field in Wide-Angled Diffusers: A Data Bank Contribution
Authors: Karanja Kibicho, Anthony Sayers
Abstract:
Due to adverse pressure gradient along the diverging walls of wide-angled diffusers, the attached flow separates from one wall and remains attached permanently to the other wall in a process called stalling. Stalled diffusers render the whole fluid flow system, in which they are part of, very inefficient. There is then an engineering need to try to understand the whole process of diffuser stall if any meaningful attempts to improve on diffuser efficiency are to be made. In this regard, this paper provides a data bank contribution for the mean flow-field in wide-angled diffusers where the complete velocity and static pressure fields, and pressure recovery data for diffusers in the fully stalled flow regime are experimentally measured. The measurements were carried out at Reynolds numbers between 1.07×105 and 2.14×105 based on inlet hydraulic diameter and centreline velocity for diffusers whose divergence angles were between 30Ôùª and 50Ôùª. Variation of Reynolds number did not significantly affect the velocity and static pressure profiles. The wall static pressure recovery was found to be more sensitive to changes in the Reynolds number. By increasing the velocity from 10 m/s to 20 m/s, the wall static pressure recovery increased by 8.31%. However, as the divergence angle was increased, a similar increase in the Reynolds number resulted in a higher percentage increase in pressure recovery. Experimental results showed that regardless of the wall to which the flow was attached, both the velocity and pressure fields were replicated with discrepancies below 2%.Keywords: Two-dimensional, wide-angled, diffuser, stall, separated flows, subsonic flows, diffuser flow regimes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19114023 Bubble Growth in a Two Phase Upward Flow in a Miniature Tube
Authors: R. S. Hassani, S. Chikh, L. Tadrist, S. Radev
Abstract:
A bubbly flow in a vertical miniature tube is analyzed theoretically. The liquid and gas phase are co-current flowing upward. The gas phase is injected via a nozzle whose inner diameter is 0.11mm and it is placed on the axis of the tube. A force balance is applied on the bubble at its detachment. The set of governing equations are solved by use of Mathematica software. The bubble diameter and the bubble generation frequency are determined for various inlet phase velocities represented by the inlet mass quality. The results show different behavior of bubble growth and detachment depending on the tube size.
Keywords: Two phase flow, bubble growth, minichannel, generation frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18064022 Combined Sewer Overflow forecasting with Feed-forward Back-propagation Artificial Neural Network
Authors: Achela K. Fernando, Xiujuan Zhang, Peter F. Kinley
Abstract:
A feed-forward, back-propagation Artificial Neural Network (ANN) model has been used to forecast the occurrences of wastewater overflows in a combined sewerage reticulation system. This approach was tested to evaluate its applicability as a method alternative to the common practice of developing a complete conceptual, mathematical hydrological-hydraulic model for the sewerage system to enable such forecasts. The ANN approach obviates the need for a-priori understanding and representation of the underlying hydrological hydraulic phenomena in mathematical terms but enables learning the characteristics of a sewer overflow from the historical data. The performance of the standard feed-forward, back-propagation of error algorithm was enhanced by a modified data normalizing technique that enabled the ANN model to extrapolate into the territory that was unseen by the training data. The algorithm and the data normalizing method are presented along with the ANN model output results that indicate a good accuracy in the forecasted sewer overflow rates. However, it was revealed that the accurate forecasting of the overflow rates are heavily dependent on the availability of a real-time flow monitoring at the overflow structure to provide antecedent flow rate data. The ability of the ANN to forecast the overflow rates without the antecedent flow rates (as is the case with traditional conceptual reticulation models) was found to be quite poor.Keywords: Artificial Neural Networks, Back-propagationlearning, Combined sewer overflows, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15314021 Service Flow in Multilayer Networks: A Method for Evaluating the Layout of Urban Medical Resources
Authors: Guanglin Song
Abstract:
Situated within the context of China's tiered medical treatment system, this study aims to analyze spatial causes of urban healthcare access difficulties from the perspective of the configuration of healthcare facilities. A social network analysis approach is employed to construct a healthcare demand and supply flow network between major residential clusters and various tiers of hospitals in the city. The findings reveal that: 1) There exists overall maldistribution and over-concentration of healthcare resources in the study area, characterized by structural imbalance. 2) The low rate of primary care utilization in the study area is a key factor contributing to congestion at higher-tier hospitals, as excessive reliance on these institutions by neighboring communities exacerbates the problem. 3) Gradual optimization of the healthcare facility layout in the study area, encompassing holistic, local, and individual institutional levels, can enhance systemic efficiency and resource balance. This research proposes a method for evaluating urban healthcare resource distribution structures based on service flows within hierarchical networks. It offers spatially targeted optimization suggestions for promoting the implementation of the tiered healthcare system and alleviating challenges related to accessibility and congestion in seeking medical care. In addition, the study provides some new ideas for researchers and healthcare managers in countries, cities, and healthcare management around the world with similar challenges.
Keywords: Flow of public services, healthcare facilities, spatial planning, urban networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844020 Evaluation of Underground Water Flow into Tabriz Metro Tunnel First Line by Hydro-Mechanical Coupling Analysis
Authors: L. Nikakhtar, S. Zare
Abstract:
One of the main practical difficulties attended with tunnel construction is related to underground water. Uncontrolled water behavior may cause extra loads on the lining, mechanical instability, and unfavorable environmental problems. Estimating underground water inflow rate to the tunnels is a complex skill. The common calculation methods are: empirical methods, analytical solutions, numerical solutions based on the equivalent continuous porous media. In this research the rate of underground water inflow to the Tabriz metro first line tunnel has been investigated by numerical finite difference method using FLAC2D software. Comparing results of Heuer analytical method and numerical simulation showed good agreement with each other. Fully coupled and one-way coupled hydro mechanical states as well as water-free conditions in the soil around the tunnel are used in numerical models and these models have been applied to evaluate the loading value on the tunnel support system. Results showed that the fully coupled hydro mechanical analysis estimated more axial forces, moments and shear forces in linings, so this type of analysis is more conservative and reliable method for design of tunnel lining system. As sensitivity analysis, inflow water rates into the tunnel were evaluated in different soil permeability, underground water levels and depths of the tunnel. Result demonstrated that water level in constant depth of the tunnel is more sensitive factor for water inflow rate to the tunnel in comparison of other parameters investigated in the sensitivity analysis.
Keywords: Coupled hydro mechanical analysis, FLAC2D, Tabriz Metro, inflow rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10484019 Mixed Convection in a 2D-channel with a Co- Flowing Fluid Injection: Influence of the Jet Position
Authors: Ameni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot
Abstract:
Numerical study of a plane jet occurring in a vertical heated channel is carried out. The aim is to explore the influence of the forced flow, issued from a flat nozzle located in the entry section of a channel, on the up-going fluid along the channel walls. The Reynolds number based on the nozzle width and the jet velocity ranges between 3 103 and 2.104; whereas, the Grashof number based on the channel length and the wall temperature difference is 2.57 1010. Computations are established for a symmetrically heated channel and various nozzle positions. The system of governing equations is solved with a finite volumes method. The obtained results show that the jet-wall interactions activate the heat transfer, the position variation modifies the heat transfer especially for low Reynolds numbers: the heat transfer is enhanced for the adjacent wall; however it is decreased for the opposite one. The numerical velocity and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and the Nusselt number along the plates.Keywords: Channel, Heat flux, Jet, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17544018 Effects of Synthetic Jet in Suppressing Cavity Oscillations
Abstract:
The three-dimensional incompressible flow past a rectangular open cavity is investigated, where the aspect ratio of the cavity is considered as 4. The principle objective is to use large-eddy simulation to resolve and control the large-scale structures, which are largely responsible for flow oscillations in a cavity. The flow past an open cavity is very common in aerospace applications and can be a cause of acoustic source due to hydrodynamic instability of the shear layer and its interactions with the downstream edge. The unsteady Navier-stokes equations have been solved on a staggered mesh using a symmetry-preserving central difference scheme. Synthetic jet has been used as an active control to suppress the cavity oscillations in wake mode for a Reynolds number of ReD = 3360. The effect of synthetic jet has been studied by varying the jet amplitude and frequency, which is placed at the upstream wall of the cavity. The study indicates that there exits a frequency band, which is larger than a critical value, is effective in attenuating cavity oscillations when blowing ratio is more than 1.0.Keywords: Cavity oscillation, Large Eddy Simulation, Synthetic Jet, Flow Control, Turbulence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815