Search results for: Stock Market Forecasting.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1271

Search results for: Stock Market Forecasting.

1241 Collaborative Planning and Forecasting

Authors: Neha Asthana, Vishal Krishna Prasad

Abstract:

Collaborative Planning and Forecasting is an innovative and systematic approach towards productive integration and assimilation of data synergized into information. The changing and variable market dynamics have persuaded global business chains to incorporate Collaborative Planning and Forecasting as an imperative tool. Thus, it is essential for the supply chains to constantly improvise, update its nature, and mould as per changing global environment.

Keywords: Information transfer, Forecasting, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
1240 Dynamic Interrelationship among the Stock Markets of India, Pakistan and United States

Authors: A. Iqbal, N. Khalid, S. Rafiq

Abstract:

The interrelationship between international stock markets has been a key study area among the financial market researchers for international portfolio management and risk measurement. The characteristics of security returns and their dynamics play a vital role in the financial market theory. This study is an attempt to find out the dynamic linkages among the equity market of USA and emerging markets of Pakistan and India using daily data covering the period of January 2003–December 2009. The study utilizes Johansen (Journal of Economic Dynamics and Control, 12, 1988) and Johansen and Juselius (Oxford Bulletin of Economics and Statistics, 52, 1990) cointegration procedure for long run relationship and Granger-causality tests based on Toda and Yamamoto (Journal of Econometrics, 66, 1995) methodology. No cointegration was found among stock markets of USA, Pakistan and India, while Granger-causality test showed the evidence of unidirectional causality running from New York stock exchange to Bombay and Karachi stock exchanges.

Keywords: Causality, Cointegration, India, Pakistan, Stock Markets, US.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
1239 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
1238 Forecasting the Istanbul Stock Exchange National 100 Index Using an Artificial Neural Network

Authors: Birol Yildiz, Abdullah Yalama, Metin Coskun

Abstract:

Many studies have shown that Artificial Neural Networks (ANN) have been widely used for forecasting financial markets, because of many financial and economic variables are nonlinear, and an ANN can model flexible linear or non-linear relationship among variables. The purpose of the study was to employ an ANN models to predict the direction of the Istanbul Stock Exchange National 100 Indices (ISE National-100). As a result of this study, the model forecast the direction of the ISE National-100 to an accuracy of 74, 51%.

Keywords: Artificial Neural Networks, Istanbul StockExchange, Non-linear Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
1237 Multifunctional Barcode Inventory System for Retailing. Are You Ready for It?

Authors: Ling Shi Cai, Leau Yu Beng, Charlie Albert Lasuin, Tan Soo Fun, Chin Pei Yee

Abstract:

This paper explains the development of Multifunctional Barcode Inventory Management System (MBIMS) to manage inventory and stock ordering. Today, most of the retailing market is still manually record their stocks and its effectiveness is quite low. By providing MBIMS, it will bring effectiveness to retailing market in inventory management. MBIMS will not only save time in recording input, output and refilling the inventory stock, but also in calculating remaining stock and provide auto-ordering function. This system is developed through System Development Life Cycle (SDLC) and the flow and structure of the system is fully built based on requirements of a retailing market. Furthermore, this system has been developed from methodical research and study where each part of the system is vigilantly designed. Thus, MBIMS will offer a good solution to the retailing market in achieving effectiveness and efficiency in inventory management.

Keywords: Inventory, Retailing Market, Barcode, Automated Alerting and Ordering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1236 Valuing Patents on Market Reaction to Patent Infringement Litigations

Authors: Yu J. Chiu, Chia H. Yeh

Abstract:

Innovation is more important in any companies. However, it is not easy to measure the innovation performance correctly. Patent is one of measuring index nowadays. This paper wants to purpose an approach for valuing patents based on market reaction to patent infringement litigations. The interesting phenomenon is found from collection of patent infringement litigation events. That is if any patent litigation event occurs the stock value will follow changing. The plaintiffs- stock value raises some percentage. According to this interesting phenomenon, the relationship between patent litigation and stock value is tested and verified. And then, the stock value variation is used to deduce the infringed patents- value. The purpose of this study is providing another concept model to evaluate the infringed patents. This study can provide a decision assist system to help drafting patent litigation strategy and determine the technology value

Keywords: Patent valuation, infringement litigations, stock value, artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
1235 VaR Forecasting in Times of Increased Volatility

Authors: Ivo Jánský, Milan Rippel

Abstract:

The paper evaluates several hundred one-day-ahead VaR forecasting models in the time period between the years 2004 and 2009 on data from six world stock indices - DJI, GSPC, IXIC, FTSE, GDAXI and N225. The models model mean using the ARMA processes with up to two lags and variance with one of GARCH, EGARCH or TARCH processes with up to two lags. The models are estimated on the data from the in-sample period and their forecasting accuracy is evaluated on the out-of-sample data, which are more volatile. The main aim of the paper is to test whether a model estimated on data with lower volatility can be used in periods with higher volatility. The evaluation is based on the conditional coverage test and is performed on each stock index separately. The primary result of the paper is that the volatility is best modelled using a GARCH process and that an ARMA process pattern cannot be found in analyzed time series.

Keywords: VaR, risk analysis, conditional volatility, garch, egarch, tarch, moving average process, autoregressive process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
1234 Underpricing of IPOs during Hot and Cold Market Periods on the South African Stock Exchange (JSE)

Authors: Brownhilder N. Neneh, A. Van Aardt Smit

Abstract:

Underpricing is one anomaly in initial public offerings (IPO) literature that has been widely observed across different stock markets with different trends emerging over different time periods. This study seeks to determine how IPOs on the JSE performed on the first day, first week and first month over the period of 1996-2011. Underpricing trends are documented for both hot and cold market periods in terms of four main sectors (cyclical, defensive, growth stock and interest rate sensitive stocks). Using a sample of 360 listed companies on the JSE, the empirical findings established that IPOs on the JSE are significantly underpriced with an average market adjusted first day return of 62.9%. It is also established that hot market IPOs on the JSE are more underpriced than the cold market IPOs. Also observed is the fact that as the offer price per share increases above the median price for any given period, the level of underpricing decreases substantially. While significant differences exist in the level of underpricing of IPOs in the four different sectors in the hot and cold market periods, interest rates sensitive stocks showed a different trend from the other sectors and thus require further investigation to uncover this pattern.

Keywords: Underpricing, hot and cold markets, South Africa, JSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4200
1233 Forecasting of Grape Juice Flavor by Using Support Vector Regression

Authors: Ren-Jieh Kuo, Chun-Shou Huang

Abstract:

The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractive. Thus, this study intends to introducing the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN, and LR to forecast the flavor of grapes juice in real data shows that SVR is more suitable and effective at predicting performance.

Keywords: Flavor forecasting, artificial neural networks, support vector regression, grape juice flavor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
1232 Exchange Traded Products on the Warsaw Stock Exchange

Authors: Piotr Prewysz-Kwinto

Abstract:

A dynamic development of financial market is accompanied by the emergence of new products on stock exchanges which give absolutely new possibilities of investing money. Currently, the most innovative financial instruments offered to investors are exchange traded products (ETP). They can be defined as financial instruments whose price depends on the value of the underlying instrument. Thus, they offer investors a possibility of making a profit that results from the change in value of the underlying instrument without having to buy it. Currently, the Warsaw Stock Exchange offers many types of ETPs. They are investment products with full or partial capital protection, products without capital protection as well as leverage products, issued on such underlying instruments as indices, sector indices, commodity indices, prices of energy commodities, precious metals, agricultural produce or prices of shares of domestic and foreign companies. This paper presents the mechanism of functioning of ETP available on the Warsaw Stock Exchange and the results of the analysis of statistical data on these financial instruments.

Keywords: Exchange traded products, financial market, investment, stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
1231 The Ability of Forecasting the Term Structure of Interest Rates Based On Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector autoregressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is Neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel model, Neural networks, Svensson model, Vector autoregressive model, Yield curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
1230 Financial Instrument with High Investment Risk on the Warsaw Stock Exchange

Authors: Piotr Prewysz-Kwinto

Abstract:

The market of financial instruments with high risk is developing very dynamically in recent years and attracts more and more interest of investors. It consists essentially of two groups of instruments, i.e. derivatives and exchange traded product (ETP), and each year new types are introduced and offered to investors. The aim of this paper is to present the principles concerning financial instruments with high investment risk available on the Warsaw Stock Exchange (WSE), because they have quite complex constructions, and to evaluate the development of this market. In order to achieve this aim, statistical data from 2014-2016 was analyzed. The results confirm that the financial instruments with high investment risk available on the WSE constitute a diversified and the most numerous group of financial instruments and attract the most interest of investors. Responsible investing requires, however, a good knowledge of how they work and how they can generate profit to not expose oneself to unexpected losses.

Keywords: Derivatives, exchange traded products, financial instruments, financial market, risk, stock exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1008
1229 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error

Authors: Oscar Javier Herrera, Manuel Ángel Camacho

Abstract:

This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors.’ The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.

Keywords: Demand Forecasting, Empirical Distribution, Propagation of Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1228 Stock Market Prediction by Regression Model with Social Moods

Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome

Abstract:

This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.

Keywords: Regression model, social mood, stock market prediction, Twitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
1227 PredictionSCMS: The Implementation of an AI-Powered Supply Chain Management System

Authors: Ioannis Andrianakis, Vasileios Gkatas, Nikos Eleftheriadis, Alexios Ellinidis, Ermioni Avramidou

Abstract:

The paper discusses the main aspects involved in the development of a supply chain management system using the developed PredictionSCMS software as a basis for the discussion. The discussion is focused on three topics: the first is demand forecasting, where we present the predictive algorithms implemented and discuss related concepts such as the calculation of the safety stock, the effect of out-of-stock days etc. The second topic concerns the design of a supply chain, where the core parameters involved in the process are given, together with a methodology of incorporating these parameters in a meaningful order creation strategy. Finally, the paper discusses some critical events that can happen during the operation of a supply chain management system and how the developed software notifies the end user about their occurrence.

Keywords: Demand forecasting, machine learning, risk management, supply chain design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203
1226 Assessing Relationship between Type of Financial Market and Market Indices in Tehran Stock Exchange

Authors: Zahra Amirhosseini, Alireza Bashiri

Abstract:

The aim of this study was to examine and identify the type of Iranian financial market in terms of being symmetrical or asymmetrical and to measure relationship between type of market and the market's indices. In this study, daily information on the market-s Share Price Index, Industrial Index and Top Fifty Most Active Companies during the years 1999-2010 has been used. In addition, to determine type of the financial market, rate of return on Security is taken into account. In this research, by using logistic regression analysis methods, relationship of the market type with the above mentioned indices have been examined. The results showed that the type of the financial market has a positive significant association with market share price index and Industrial Index. Index of Top Fifty Most Active Companies is significantly associated with type of financial market, however this relationship is inverse.

Keywords: All Share Price Index, Asymmetrical Market, Industrial Index, Symmetrical Market, Top Fifty Most Active Companies Index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
1225 Stock Price Forecast by Using Neuro-Fuzzy Inference System

Authors: Ebrahim Abbasi, Amir Abouec

Abstract:

In this research, the researchers have managed to design a model to investigate the current trend of stock price of the "IRAN KHODRO corporation" at Tehran Stock Exchange by utilizing an Adaptive Neuro - Fuzzy Inference system. For the Longterm Period, a Neuro-Fuzzy with two Triangular membership functions and four independent Variables including trade volume, Dividend Per Share (DPS), Price to Earning Ratio (P/E), and also closing Price and Stock Price fluctuation as an dependent variable are selected as an optimal model. For the short-term Period, a neureo – fuzzy model with two triangular membership functions for the first quarter of a year, two trapezoidal membership functions for the Second quarter of a year, two Gaussian combination membership functions for the third quarter of a year and two trapezoidal membership functions for the fourth quarter of a year were selected as an optimal model for the stock price forecasting. In addition, three independent variables including trade volume, price to earning ratio, closing Stock Price and a dependent variable of stock price fluctuation were selected as an optimal model. The findings of the research demonstrate that the trend of stock price could be forecasted with the lower level of error.

Keywords: Stock Price forecast, membership functions, Adaptive Neuro-Fuzzy Inference System, trade volume, P/E, DPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2612
1224 Mathematical Analysis of Stock Prices Prediction in a Financial Market Using Geometric Brownian Motion Model

Authors: Edikan E. Akpanibah, Ogunmodimu Dupe Catherine

Abstract:

The relevance of geometric Brownian motion (GBM) in modelling the behaviour of stock market prices (SMP) cannot be over emphasized taking into consideration the volatility of the SMP. Consequently, there is need to investigate how GBM models are being estimated and used in financial market to predict SMP. To achieve this, the GBM estimation and its application to the SMP of some selected companies are studied. The normal and log-normal distributions were used to determine the expected value, variance and co-variance. Furthermore, the GBM model was used to predict the SMP of some selected companies over a period of time and the mean absolute percentage error (MAPE) were calculated and used to determine the accuracy of the GBM model in predicting the SMP of the four companies under consideration. It was observed that for all the four companies, their MAPE values were within the region of acceptance. Also, the MAPE values of our data were compared to an existing literature to test the accuracy of our prediction with respect to time of investment. Finally, some numerical simulations of the graphs of the SMP, expectations and variance of the four companies over a period of time were presented using MATLAB programming software.

Keywords: Stock Market, Geometric Brownian Motion, normal and log-normal distribution, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 266
1223 Impact of Regulation on Trading in Financial Derivatives in Europe

Authors: H. Florianová, J. Nešleha

Abstract:

Financial derivatives are considered to be risky investment instruments which could possibly bring another financial crisis. As prevention, European Union and its member states have released new legal acts adjusting this area of law in recent years. There have been several cases in history of capital markets worldwide where it was shown that legislature may affect behavior of subjects on capital markets. In our paper we analyze main events on selected European stock exchanges in order to apply them on three chosen markets - Czech capital market represented by Prague Stock Exchange, German capital market represented by Deutsche Börse and Polish capital market represented by Warsaw Stock Exchange. We follow time series of development of the sum of listed derivatives on these three stock exchanges in order to evaluate popularity of those exchanges. Afterwards we compare newly listed derivatives in relation to the speed of development of these exchanges. We also make a comparison between trends in derivatives and shares development. We explain how a legal regulation may affect situation on capital markets. If the regulation is too strict, potential investors or traders are not willing to undertake it and move to other markets. On the other hand, if the regulation is too vague, trading scandals occur and the market is not reliable from the prospect of potential investors or issuers. We see that making the regulation stricter usually discourages subjects to stay on the market immediately although making the regulation vaguer to interest more subjects is usually much slower process.

Keywords: Capital markets, financial derivatives, investors' behavior, regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 916
1222 A New Model for Production Forecasting in ERP

Authors: S. F. Wong, W. I. Ho, B. Lin, Q. Huang

Abstract:

ERP has been used in many enterprises for management, the accuracy of the production forecasting module is vital to the decision making of the enterprise, and the profit is affected directly. Therefore, enhancing the accuracy of the production forecasting module can also increase the efficiency and profitability. To deal with a lot of data, a suitable, reliable and accurate statistics model is necessary. LSSVM and Grey System are two main models to be studied in this paper, and a case study is used to demonstrate how the combination model is effective to the result of forecasting.

Keywords: ERP, Grey System, LSSVM, production forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1792
1221 Impact of Financial System’s Development on Economic Development: An Empirical Investigation

Authors: Vilma Deltuvaitė

Abstract:

Comparisons of financial development across countries are central to answering many of the questions on factors leading to economic development. For this reason this study analyzes the implications of financial system’s development on country’s economic development. The aim of the article: to analyze the impact of financial system’s development on economic development. The following research methods were used: systemic, logical and comparative analysis of scientific literature, analysis of statistical data, time series model (Autoregressive Distributed Lag (ARDL) Model). The empirical results suggest about positive short and long term effect of stock market development on GDP per capita.

Keywords: Banking sector, economic development, financial system’s development, stock market, private bond market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
1220 A Study of Islamic Stock Indices and Macroeconomic Variables

Authors: Mohammad Irfan

Abstract:

The purpose of this paper is to investigate the relationship among the key macroeconomic variables and Islamic stock market in India. This study is based on the time series data of financial years 2009-2015 to explore the consistency of relationship between macroeconomic variables and Shariah Indices. The ADF (Augmented Dickey–Fuller Test Statistic) and PP (Phillips–Perron Test Statistic) tests are employed to check stationarity of the data. The study depicts the long run relationship between Shariah indices and macroeconomic variables by using the Johansen Co-integration test. BSE Shariah and Nifty Shariah have uni-direct Granger causality. The outcome of VECM is significantly confirming the applicability of best fitted model. Thus, Islamic stock indices are proficiently working for the development of Indian economy. It suggests that by keeping eyes on Islamic stock market which will be more interactive in the future with other macroeconomic variables.

Keywords: Indian shariah indices, macroeconomic variables, co-integration, Granger causality, Vector error correction model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
1219 A New Quantile Based Fuzzy Time Series Forecasting Model

Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil

Abstract:

Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.

Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
1218 Levenberg-Marquardt Algorithm for Karachi Stock Exchange Share Rates Forecasting

Authors: Syed Muhammad Aqil Burney, Tahseen Ahmed Jilani, C. Ardil

Abstract:

Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data.

Keywords: Gradient descent method, jacobian matrix.Levenberg-Marquardt algorithm, quadratic error surfaces,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
1217 The Impact of Market-Related Variables on Forward-Looking Disclosure in the Annual Reports of Non-Financial Egyptian Companies

Authors: Bassam Baroma

Abstract:

The main objective of this study is to test the relationship between numbers of variables representing the firm characteristics (market-related variables) and the extent of voluntary disclosure levels (forward-looking disclosure) in the annual reports of Egyptian firms listed on the Egyptian Stock Exchange. The results show that audit firm size is significantly positively correlated (in all the three years) with the level of forward-looking disclosure. However, industry type variable (which divided to: industries, cement, construction, petrochemicals and services), is found being insignificantly association with the level of forward-looking information disclosed in the annual reports for all the three years.

Keywords: Forward-looking disclosure, market-related variables, annual reports, Egyptian Stock Exchange.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
1216 The Use of S Curves in Technology Forecasting and its Application On 3D TV Technology

Authors: Gizem Intepe, Tufan Koc

Abstract:

S-Curves are commonly used in technology forecasting. They show the paths of product performance in relation to time or investment in R&D. It is a useful tool to describe the inflection points and the limit of improvement of a technology. Companies use this information to base their innovation strategies. However inadequate use and some limitations of this technique lead to problems in decision making. In this paper first technology forecasting and its importance for company level strategies will be discussed. Secondly the S-Curve and its place among other forecasting techniques will be introduced. Thirdly its use in technology forecasting will be discussed based on its advantages, disadvantages and limitations. Finally an application of S-curve on 3D TV technology using patent data will also be presented and the results will be discussed.

Keywords: Patent analysis, Technological forecasting. S curves, 3D TV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7783
1215 Exploring the Effect of Accounting Information on Systematic Risk: An Empirical Evidence of Tehran Stock Exchange

Authors: Mojtaba Rezaei, Elham Heydari

Abstract:

This paper highlights the empirical results of analyzing the correlation between accounting information and systematic risk. This association is analyzed among financial ratios and systematic risk by considering the financial statement of 39 companies listed on the Tehran Stock Exchange (TSE) for five years (2014-2018). Financial ratios have been categorized into four groups and to describe the special features, as representative of accounting information we selected: Return on Asset (ROA), Debt Ratio (Total Debt to Total Asset), Current Ratio (current assets to current debt), Asset Turnover (Net sales to Total assets), and Total Assets. The hypotheses were tested through simple and multiple linear regression and T-student test. The findings illustrate that there is no significant relationship between accounting information and market risk. This indicates that in the selected sample, historical accounting information does not fully reflect the price of stocks.

Keywords: Accounting information, market risk, systematic risk, efficient market hypothesis, EMH, Tehran Stock Exchange, TSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689
1214 Artificial Neural Network Approach for Inventory Management Problem

Authors: Govind Shay Sharma, Randhir Singh Baghel

Abstract:

The stock management of raw materials and finished goods is a significant issue for industries in fulfilling customer demand. Optimization of inventory strategies is crucial to enhancing customer service, reducing lead times and costs, and meeting market demand. This paper suggests finding an approach to predict the optimum stock level by utilizing past stocks and forecasting the required quantities. In this paper, we utilized Artificial Neural Network (ANN) to determine the optimal value. The objective of this paper is to discuss the optimized ANN that can find the best solution for the inventory model. In the context of the paper, we mentioned that the k-means algorithm is employed to create homogeneous groups of items. These groups likely exhibit similar characteristics or attributes that make them suitable for being managed using uniform inventory control policies. The paper proposes a method that uses the neural fit algorithm to control the cost of inventory.

Keywords: Artificial Neural Network, inventory management, optimization, distributor center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169
1213 Applying Hybrid Graph Drawing and Clustering Methods on Stock Investment Analysis

Authors: Mouataz Zreika, Maria Estela Varua

Abstract:

Stock investment decisions are often made based on current events of the global economy and the analysis of historical data. Conversely, visual representation could assist investors’ gain deeper understanding and better insight on stock market trends more efficiently. The trend analysis is based on long-term data collection. The study adopts a hybrid method that combines the Clustering algorithm and Force-directed algorithm to overcome the scalability problem when visualizing large data. This method exemplifies the potential relationships between each stock, as well as determining the degree of strength and connectivity, which will provide investors another understanding of the stock relationship for reference. Information derived from visualization will also help them make an informed decision. The results of the experiments show that the proposed method is able to produced visualized data aesthetically by providing clearer views for connectivity and edge weights.

Keywords: Clustering, force-directed, graph drawing, stock investment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
1212 Hourly Electricity Load Forecasting: An Empirical Application to the Italian Railways

Authors: M. Centra

Abstract:

Due to the liberalization of countless electricity markets, load forecasting has become crucial to all public utilities for which electricity is a strategic variable. With the goal of contributing to the forecasting process inside public utilities, this paper addresses the issue of applying the Holt-Winters exponential smoothing technique and the time series analysis for forecasting the hourly electricity load curve of the Italian railways. The results of the analysis confirm the accuracy of the two models and therefore the relevance of forecasting inside public utilities.

Keywords: ARIMA models, Exponential smoothing, Electricity, Load forecasting, Rail transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2630