Search results for: Microstrip antenna
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 219

Search results for: Microstrip antenna

189 Proposed Geometric Printed Patch Shapes for Microstrip Ultra-Wideband Antennas

Authors: Rashid A. Fayadh, F. Malek, Hilal A. Fadhil, Norshafinash Saudin

Abstract:

In this paper, a design of ultra wideband (UWB) printed microstrip antennas that fed by microstrip transmission line were presented and printed on a substrate Taconic TLY-5 material with relative dielectric constant of 2.2. The proposed antennas were designed to cover the frequency range of 3.5 to 12 GHz. The antennas of printed patch shapes are rectangular, triangle/rectangular, hexagonal, and circular with the same dimensions of feeder and ground plane. The proposed antennas were simulated using a package of CST microwave studio in the 2 to 12 GHz operating frequency range. Simulation results and comparison for return loss (S11), radiation patterns, and voltage standing wave ratio (VSWR) were presented and discussed over the UWB frequency.

Keywords: Microstrip patch antenna, ultra-wideband frequency, wireless communication systems, return loss and radiation patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
188 Compact Planar Antenna for UWB Applications

Authors: Rezaul Azim, Mohammad Tariqul Islam, Norbahiah Misran

Abstract:

In this paper, a planar antenna for UWB applications has been proposed. The antenna consists of a square patch, a partial ground plane and a slot on the ground plane. The proposed antenna is easy to be integrated with microwave circuitry for low manufacturing cost. The flat type antenna has a compact structure and the total size is 14.5×14.5mm2. The result shows that the impedance bandwidth (VSWR≤ 2) of the proposed antenna is 12.49 GHz (2.95 to 15.44 GHz), which is equivalent to 135.8%. Details of the proposed compact planar UWB antenna design is presented and discussed.

Keywords: Planar antenna, partial ground plane, ultrawideband(UWB) antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2733
187 Design of Multiband Microstrip Antenna Using Stepped Cut Method for WLAN/WiMAX and C/Ku-Band Applications

Authors: Ahmed Boutejdar, Bishoy I. Halim, Soumia El Hani, Larbi Bellarbi, Amal Afyf

Abstract:

In this paper, a planar monopole antenna for multi band applications is proposed. The antenna structure operates at three operating frequencies at 3.7, 6.2, and 13.5 GHz which cover different communication frequency ranges. The antenna consists of a quasi-modified rectangular radiating patch with a partial ground plane and two parasitic elements (open-loop-ring resonators) to serve as coupling-bridges. A stepped cut at lower corners of the radiating patch and the partial ground plane are used, to achieve the multiband features. The proposed antenna is manufactured on the FR4 substrate and is simulated and optimized using High Frequency Simulation System (HFSS). The antenna topology possesses an area of 30.5 x 30 x 1.6 mm3. The measured results demonstrate that the candidate antenna has impedance bandwidths for 10 dB return loss and operates from 3.80 – 3.90 GHz, 4.10 – 5.20 GHz, 11.2 – 11.5 GHz and from 12.5 – 14.0 GHz, which meet the requirements of the wireless local area network (WLAN), worldwide interoperability for microwave access (WiMAX), C- (Uplink) and Ku- (Uplink) band applications. Acceptable agreement is obtained between measurement and simulation results. Experimental results show that the antenna is successfully simulated and measured, and the tri-band antenna can be achieved by adjusting the lengths of the three elements and it gives good gains across all the operation bands.

Keywords: Planar monopole antenna, FR4 substrate, HFSS, WLAN, WiMAX, C & Ku.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
186 Design and Development of Ferroelectric Material for Microstrip Patch Array Antenna

Authors: F.H.Wee, F. Malek

Abstract:

This paper presents the utilizing of ferroelectric material on antenna application. There are two different ferroelectric had been used on the proposed antennas which include of Barium Strontium Titanate (BST) and Bismuth Titanate (BiT), suitable for Access Points operating in the WLAN IEEE 802.11 b/g and WiMAX IEEE 802.16 within the range of 2.3 GHz to 2.5 GHz application. BST, which had been tested to own a dielectric constant of εr = 15 while BiT has a dielectric constant that higher than BST which is εr = 21 and both materials are in rectangular shaped. The influence of various parameters on antenna characteristics were investigated extensively using commercial electromagnetic simulations software by Communication Simulation Technology (CST). From theoretical analysis and simulation results, it was demonstrated that ferroelectric material used have not only improved the directive emission but also enhanced the radiation efficiency.

Keywords: Ferroelectric material, WLAN, WiMAX, dielectric constant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
185 A New Microstrip Diplexer Using Coupled Stepped Impedance Resonators

Authors: A. Chinig, J. Zbitou, A. Errkik, L. Elabdellaoui, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This paper presents a new structure of microstrip band pass filter (BPF) based on coupled stepped impedance resonators. Each filter consists of two coupled stepped impedance resonators connected to microstrip feed lines. The coupled junction is utilized to connect the two BPFs to the antenna. This two band pass filters are designed and simulated to operate for the digital communication system (DCS) and Industrial Scientific and Medical (ISM) bands at 1.8 GHz and 2.45 GHz respectively. The proposed circuit presents good performances with an insertion loss lower than 2.3 dB and isolation between the two channels greater than 21 dB. The prototype of the optimized diplexer have been investigated numerically by using ADS Agilent and verified with CST microwave software.

Keywords: Band Pass Filter, coupled junction, coupled stepped impedance resonators, diplexer, insertion loss, isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3823
184 CAD Model of Cole Cole Representation for Analyzing Performance of Microstrip Moisture Sensing Applications

Authors: Settapong Malisuwan, Jesada Sivaraks, Wasan Jaiwong, Veerapat Sanpanich

Abstract:

In the past decade, the development of microstrip sensor application has evolved tremendously. Although cut and trial method was adopted to develop microstrip sensing applications in the past, Computer-Aided-Design (CAD) is a more effective as it ensures less time is consumed and cost saving is achieved in developing microstrip sensing applications. Therefore microstrip sensing applications has gained popularity as an effective tool adopted in continuous sensing of moisture content particularly in products that is administered mainly by liquid content. In this research, the Cole-Cole representation of reactive relaxation is applied to assess the performance of the microstrip sensor devices. The microstrip sensor application is an effective tool suitable for sensing the moisture content of dielectric material. Analogous to dielectric relaxation consideration of Cole-Cole diagrams as applied to dielectric materials, a “reactive relaxation concept” concept is introduced to represent the frequency-dependent and moisture content characteristics of microstrip sensor devices.

Keywords: Microstrip, Sensor, Cole-Cole Representation, Moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
183 An Electrically Small Silver Ink Printed FR4 Antenna for RF Transceiver Chip CC1101

Authors: F. Majeed, D. V. Thiel, M. Shahpari

Abstract:

An electrically small meander line antenna is designed for impedance matching with RF transceiver chip CC1101. The design provides the flexibility of tuning the reactance of the antenna over a wide range of values: highly capacitive to highly inductive. The antenna was printed with silver ink on FR4 substrate using the screen printing design process. The antenna impedance was perfectly matched to CC1101 at 433 MHz. The measured radiation efficiency of the antenna was 81.3% at resonance. The 3 dB and 10 dB fractional bandwidth of the antenna was 14.5% and 4.78%, respectively. The read range of the antenna was compared with a copper wire monopole antenna over a distance of five meters. The antenna, with a perfect impedance match with RF transceiver chip CC1101, shows improvement in the read range compared to a monopole antenna over the specified distance.

Keywords: Meander line antenna, RFID, Silver ink printing, Impedance matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
182 Design and Optimization of a Microstrip Patch Antenna for Increased Bandwidth

Authors: Ankit Jain, Archana Agrawal

Abstract:

With the ever-increasing need for wireless communication and the emergence of many systems, it is important to design broadband antennas to cover a wide frequency range. The aim of this paper is to design a broadband patch antenna, employing the three techniques of slotting, adding directly coupled parasitic elements, and fractal EBG structures. The bandwidth is improved from 9.32% to 23.77%. A wideband ranging from 4.15 GHz to 5.27 GHz is obtained. Also a comparative analysis of embedding EBG structures at different heights is also done. The composite effect of integrating these techniques in the design provides a simple and efficient method for obtaining low profile, broadband, high gain antenna. By the addition of parasitic elements the bandwidth was increased to only 18.04%. Later on by embedding EBG structures the bandwidth was increased up to 23.77%. The design is suitable for variety of wireless applications like WLAN and Radar Applications.

Keywords: Bandwidth, broadband, EBG structures, parasitic elements, Slotting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3392
181 Multiband CPW-Fed Slot Antenna with L-slot Bowtie Tuning Stub

Authors: Prapoch Jirasakulporn

Abstract:

This paper presents a multiband CPW-fed slot antenna with L-slot bowtie tuning stub. The proposed antenna has been designed for PCS 1900, UMTS, WLAN 802.11 a/b/g and bluetooth applications, with a cost-effective FR4 substrate. The proposed antenna still radiate as omni-directional in azimuth plane and sufficient bandwidth for all above mentions. The proposed antenna works as dual-wideband, bandwidth at low frequency band and high frequency are about 45.49 % and 22.39 % respectively. The experimental results of the constructed prototype are presented and also compared with simulation results using a commercial software tool.

Keywords: multiband antenna, slot antenna, CPW-fed, L-slotbowtie stub

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
180 On the Design of Wearable Fractal Antenna

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

This paper is aimed at proposing a rhombus shaped wearable fractal antenna for wireless communication systems. The geometrical descriptors of the antenna have been obtained using bacterial foraging optimization (BFO) for wide band operation. The method of moment based IE3D software has been used to simulate the antenna and observed that miniaturization of 13.08% has been achieved without degrading the resonating properties of the proposed antenna. An analysis with different substrates has also been done in order to evaluate the effectiveness of electrical permittivity on the presented structure. The proposed antenna has low profile, light weight and has successfully demonstrated wideband and multiband characteristics for wearable electronic applications.

Keywords: BFO, bandwidth, electrical permittivity, fractals, wearable antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843
179 Bandwidth Enhancement in CPW Fed Compact Rectangular Patch Antenna

Authors: Kirti Vyas, P. K. Singhal

Abstract:

This paper presents a novel CPW fed patch antenna supporting a wide band from 2.7 GHz – 6.5 GHz. The antenna is compact with size 32 x 30 x 1.6mm3, built over FR4-epoxy substrate (εr=4.4). Bandwidth enhancement has been achieved by using the concept of modified ground structure (MGS). For this purpose structural design has been optimized by parametric simulations in CST MWS. The proposed antenna can perform well in variety of wireless communication services including 5.15 GHz- 5.35 GHz and 5.725 GHz- 5.825 GHz WLAN IEEE 802.11 g/a, 5.2/ 5.5/ 5.8 GHz Wi-Fi, 3.5/5.5 GHz WiMax applications  and 3.7 - 4.2 GHz C band satellite communications bands. The measured experimental results show that bandwidth (S11 < -10 dB) of antenna is 3.8 GHz. The performance of antenna is studied in terms of reflection coefficient, radiation characteristics, current distribution and gain.

Keywords: Broad band antenna, Compact, CPW fed, WLAN, Wi-Fi, Wi-Max, CST MWS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874
178 Multi Antenna Systems for 5G Mobile Phones

Authors: Muhammad N. Khan, Syed O. Gillani, Mohsin Jamil, Tarbia Iftikhar

Abstract:

With the increasing demand of bandwidth and data rate, there is a dire need to implement antenna systems in mobile phones which are able to fulfill user requirements. A monopole antenna system with multi-antennas configurations is proposed considering the feasibility and user demand. The multi-antenna structure is referred to as multi-input multi-output (MIMO) antenna system. The multi-antenna system comprises of 4 antennas operating below 6 GHz frequency bands for 4G/LTE and 4 antenna for 5G applications at 28 GHz and the dimension of board is 120 × 70 × 0.8mm3. The suggested designs is feasible with a structure of low-profile planar-antenna and is adaptable to smart cell phones and handheld devices. To the best of our knowledge, this is the first design compared to the literature by having integrated antenna system for two standards, i.e., 4G and 5G. All MIMO antenna systems are simulated on commercially available software, which is high frequency structures simulator (HFSS).

Keywords: High frequency structures simulator (HFSS), mutli-input multi-output (MIMO), monopole antenna, slot antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
177 A Low Profile Dual Polarized Slot Coupled Patch Antenna

Authors: Mingde Du, Dong Han

Abstract:

A low profile, dual polarized, slot coupled patch antenna is designed and developed in this paper. The antenna has a measured bandwidth of 17.2% for return loss > 15 dB and pair ports isolation >23 dB. The gain of the antenna is over 10 dBi and the half power beam widths (HPBW) of the antenna are 80±3o in the horizontal plane and 39±2o in the vertical plane. The cross polarization discrimination (XPD) is less than 20 dB in HPBW. Within the operating band, the performances of good impedance match, high ports isolation, low cross polarization, and stable radiation patterns are achieved.

Keywords: Dual polarized, patch antenna, slot coupled, base station antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
176 A Microwave Bandstop Filter Using Defected Microstrip Structure

Authors: H. Elftouh, N. T. Amar, M. Aghoutane, M. Boussouis

Abstract:

In this paper, two bandstop filters resonating at 5.25 GHz and 7.3 GHz using Defected Microstrip Structure (DMS) are discussed. These slots are incorporated in the feed lines of filters to perform a serious LC resonance property in certain frequency and suppress the spurious signals. Therefore, this method keeps the filter size unchanged and makes a resonance frequency that is due to the abrupt change of the current path of the filter. If the application requires elimination of this band of frequencies, additional filter elements are required, which can only be accomplished by adding this DMS element resonant at desired frequency band rejection. The filters are optimized and simulated with Computer Simulation Technology (CST) tool.

Keywords: Defected microstrip structure, microstrip filters, passive filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
175 High Gain Circularly Polarized Wire Antenna for DSRC Applications

Authors: Mohammad J. Almalkawi

Abstract:

In this communication, a low-cost circularly polarized wire antenna exhibiting improved gain performance for Dedicated Short Range Communications (DSRC), vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications is presented. The proposed antenna comprises a Y-shaped quarterwavelength monopole antenna surrounded by two iterations of eight conductive arched walls acting as parasitic elements to enhance the overall antenna gain and to shape the radiation pattern in the H-plane. A hemispherical radome shell is added to protect the antenna structure and its effect on the antenna performance is discussed. The designed antenna demonstrates antenna gain of 8.2 dB with omnidirectional far-field radiation pattern in the H-plane. The gain of the proposed antenna is also compared with the characteristic of the stand-alone Y-shaped monopole to highlight the advantages of the proposed approach.

Keywords: Circularly polarized, dedicated short-range communication, omnidirectional pattern, vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), Y-shaped wire monopole antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
174 Curved Rectangular Patch Array Antenna Using Flexible Copper Sheet for Small Missile Application

Authors: Jessada Monthasuwan, Charinsak Saetiaw, Chanchai Thongsopa

Abstract:

This paper presents the development and design of the curved rectangular patch arrays antenna for small missile application. This design uses a 0.1mm flexible copper sheet on the front layer and back layer, and a 1.8mm PVC substrate on a middle layer. The study used a small missile model with 122mm diameter size with speed 1.1 Mach and frequency range on ISM 2.4 GHz. The design of curved antenna can be installation on a cylindrical object like a missile. So, our proposed antenna design will have a small size, lightweight, low cost and simple structure. The antenna was design and analysis by a simulation result from CST microwave studio and confirmed with a measurement result from a prototype antenna. The proposed antenna has a bandwidth covering the frequency range 2.35-2.48 GHz, the return loss below -10 dB and antenna gain 6.5 dB. The proposed antenna can be applied with a small guided missile effectively.

Keywords: Rectangular path arrays, small missile antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931
173 Design of a Dual Polarized Resonator Antenna for Mobile Communication System

Authors: N. Fhafhiem, P. Krachodnok, R. Wongsan

Abstract:

This paper proposes the development and design of double layer metamaterials based on electromagnetic band gap (EBG) rods as a superstrate of a resonator antenna to enhance required antenna characteristics for the mobile base station. The metallic rod type metamaterial can partially reflect wave of a primary radiator. The antenna was designed and analyzed by a simulation result from CST Microwave Studio and designed technique could be confirmed by a measurement results from prototype antenna that agree with simulation results. The results indicate that the antenna can also generate a dual polarization by using a 45˚ oriented curved strip dipole located at the center of the reflector plane with double layer superstrate. It can be used to simplify the feed system of an antenna. The proposed antenna has a bandwidth covering the frequency range of 1920 – 2200 MHz, the gain of the antenna increases up to 14.06 dBi. In addition, an interesting sectoral 60˚ pattern is presented in horizontal plane.

Keywords: Metamaterial, electromagnetic band gap, dual polarization, resonator antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
172 PIN-Diode Based Slotted Reconfigurable Multiband Antenna Array for Vehicular Communication

Authors: Gaurav Upadhyay, Nand Kishore, Prashant Ranjan, Shivesh Tripathi, V. S. Tripathi

Abstract:

In this paper, a patch antenna array design is proposed for vehicular communication. The antenna consists of 2-element patch array. The antenna array is operating at multiple frequency bands. The multiband operation is achieved by use of slots at proper locations at the patch. The array is made reconfigurable by use of two PIN-diodes. The antenna is simulated and measured in four states of diodes i.e. ON-ON, ON-OFF, OFF-ON, and OFF-OFF. In ON-ON state of diodes, the resonant frequencies are 4.62-4.96, 6.50-6.75, 6.90-7.01, 7.34-8.22, 8.89-9.09 GHz. In ON-OFF state of diodes, the measured resonant frequencies are 4.63-4.93, 6.50-6.70 and 7.81-7.91 GHz. In OFF-ON states of diodes the resonant frequencies are 1.24-1.46, 3.40-3.75, 5.07-5.25 and 6.90-7.20 GHz and in the OFF-OFF state of diodes 4.49-4.75 and 5.61-5.98 GHz. The maximum bandwidth of the proposed antenna is 16.29%. The peak gain of the antenna is 3.4 dB at 5.9 GHz, which makes it suitable for vehicular communication.

Keywords: Antenna, array, reconfigurable, vehicular.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
171 Coaxial Helix Antenna for Microwave Coagulation Therapy in Liver Tissue Simulations

Authors: M. Chaichanyut, S. Tungjitkusolmun

Abstract:

This paper is concerned with microwave (MW) ablation for a liver cancer tissue by using helix antenna. The antenna structure supports the propagation of microwave energy at 2.45 GHz. A 1½ turn spiral catheter-based microwave antenna applicator has been developed. We utilize the three-dimensional finite element method (3D FEM) simulation to analyze where the tissue heat flux, lesion pattern and volume destruction during MW ablation. The configurations of helix antenna where Helix air-core antenna and Helix Dielectric-core antenna. The 3D FEMs solutions were based on Maxwell and bio-heat equations. The simulation protocol was power control (10 W, 300s). Our simulation result, both helix antennas have heat flux occurred around the helix antenna and that can be induced the temperature distribution similar (teardrop). The region where the temperature exceeds 50°C the microwave ablation was successful (i.e. complete destruction). The Helix air-core antenna and Helix Dielectric-core antenna, ablation zone or axial ratios (Widest/length) were respectively 0.82 and 0.85; the complete destructions were respectively 4.18 cm3 and 5.64 cm3

Keywords: Liver cancer, Helix antenna, Finite element, Microwave ablation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
170 Design of Compact Dual-Band Planar Antenna for WLAN Systems

Authors: Anil Kumar Pandey

Abstract:

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Keywords: CPW fed antenna, dual-band, electromagnetic simulation, wireless local area network, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
169 Design of a Compact Meshed Antennas for 5G Communication Systems

Authors: Chokri Baccouch, Chayma Bahhar, Hedi Sakli, Nizar Sakli, Taoufik Aguili

Abstract:

This paper presents a hybrid system solar cell antenna for 5G mobile communications networks. We propose here a solar cell antenna with either a front face collection grid or mesh patch. The solar cell antenna of our contribution combines both optical and radiofrequency signals. Thus, we propose two solar cell antenna structures in the frequency bands of future 5G standard respectively in both 2.6 and 3.5 GHz bands. Simulation using the Advanced Design System (ADS) software allows us to analyze and determine the antenna parameters proposed in this work such as the reflection coefficient (S11), gain, directivity and radiated power.

Keywords: Patch antenna, solar cell, DC, RF, 5G.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
168 Design of a Novel Fractal Multiband Planar Antenna with a CPW-Feed

Authors: T. Benyetho, L. El Abdellaoui, J. Terhzaz, H. Bennis, N. Ababssi, A. Tajmouati, A. Tribak, M. Latrach

Abstract:

This work presents a new planar multiband antenna based on fractal geometry. This structure is optimized and validated into simulation by using CST-MW Studio. To feed this antenna we have used a CPW line which makes it easy to be incorporated with integrated circuits. The simulation results presents a good matching input impedance and radiation pattern in the GSM band at 900 MHz and ISM band at 2.4 GHz. The final structure is a dual band fractal antenna with 70 x 70 mm² as a total area by using an FR4 substrate.

Keywords: Antenna, CPW, Fractal, GSM, Multiband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
167 ANN Models for Microstrip Line Synthesis and Analysis

Authors: Dr.K.Sri Rama Krishna, J.Lakshmi Narayana, Dr.L.Pratap Reddy

Abstract:

Microstrip lines, widely used for good reason, are broadband in frequency and provide circuits that are compact and light in weight. They are generally economical to produce since they are readily adaptable to hybrid and monolithic integrated circuit (IC) fabrication technologies at RF and microwave frequencies. Although, the existing EM simulation models used for the synthesis and analysis of microstrip lines are reasonably accurate, they are computationally intensive and time consuming. Neural networks recently gained attention as fast and flexible vehicles to microwave modeling, simulation and optimization. After learning and abstracting from microwave data, through a process called training, neural network models are used during microwave design to provide instant answers to the task learned.This paper presents simple and accurate ANN models for the synthesis and analysis of Microstrip lines to more accurately compute the characteristic parameters and the physical dimensions respectively for the required design specifications.

Keywords: Neural Models, Algorithms, Microstrip Lines, Analysis, Synthesis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
166 Artificial Neural Network based Parameter Estimation and Design Optimization of Loop Antenna

Authors: Kumaresh Sarmah, Kandarpa Kumar Sarma

Abstract:

Artificial Neural Network (ANN)s are best suited for prediction and optimization problems. Trained ANNs have found wide spread acceptance in several antenna design systems. Four parameters namely antenna radiation resistance, loss resistance, efficiency, and inductance can be used to design an antenna layout though there are several other parameters available. An ANN can be trained to provide the best and worst case precisions of an antenna design problem defined by these four parameters. This work describes the use of an ANN to generate the four mentioned parameters for a loop antenna for the specified frequency range. It also provides insights to the prediction of best and worst-case design problems observed in applications and thereby formulate a model for physical layout design of a loop antenna.

Keywords: MLP, ANN, parameter, prediction, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
165 Analysis of Design Structuring and Performance of CPW Fed UWB Antenna in Presence of Human Arm Model

Authors: Narbada Prasad Gupta, Mithilesh Kumar

Abstract:

A compact Ultra Wide Band (UWB) antenna with coplanar waveguide feed has been designed and results are verified in this paper. The antenna has been designed on FR4 substrate with dielectric constant (εr) of 4.4 and dimensions of 32mm x 26mm x 0.8mm. The presented antenna shows return loss characteristics in the band of 3.1 to 10.6 GHz as prescribed by FCC, USA. Parametric studies have been done and results thus obtained have been presented. Simulated results have been verified on Rohde & Swartz VNA. The measured results are in good agreement with simulated results which make the presented antenna suitable to be used for wearable applications. Performance analysis of antenna has also been shown in the presence of three layered Human Arm model. Results obtained in presence of Human Arm model has been compared with that in free space.

Keywords: CPW feed, Human Arm model, UWB, wearable antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
164 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
163 UWB Bowtie Slot Antenna for Breast Cancer Detection

Authors: N. Seladji-Hassaine, L. Merad, S.M. Meriah, F.T. Bendimerad

Abstract:

UWB is a very attractive technology for many applications. It provides many advantages such as fine resolution and high power efficiency. Our interest in the current study is the use of UWB radar technique in microwave medical imaging systems, especially for early breast cancer detection. The Federal Communications Commission FCC allowed frequency bandwidth of 3.1 to 10.6 GHz for this purpose. In this paper we suggest an UWB Bowtie slot antenna with enhanced bandwidth. Effects of varying the geometry of the antenna on its performance and bandwidth are studied. The proposed antenna is simulated in CST Microwave Studio. Details of antenna design and simulation results such as return loss and radiation patterns are discussed in this paper. The final antenna structure exhibits good UWB characteristics and has surpassed the bandwidth requirements.

Keywords: Ultra Wide Band (UWB), microwave imaging system, Bowtie antenna, return loss, impedance bandwidth enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3978
162 Design of a Novel CPW Fed Fractal Antenna for UWB

Authors: A. El Hamdouni, J. Zbitou, A. Tajmouati, L. El Abdellaoui, A. Errkik, A. Tribak, M. Latrach

Abstract:

This paper presents a novel fractal antenna structure proposed for UWB (Ultra – Wideband) applications. The frequency band 3.1-10.6GHz released by FCC (Federal Communication Commission) as the commercial operation of UWB has been chosen as frequency range for this antenna based on coplanar waveguide (CPW) feed and circular shapes fulfilled according to fractal geometry. The proposed antenna is validated and designed by using an FR4 substrate with overall area of 34x43 mm2. The simulated results performed by CST-Microwave Studio and compared by ADS (Advanced Design System) show good matching input impedance with return loss less than -10dB between 2.9 GHz and 11 GHz.

Keywords: Fractal antenna, Fractal Geometry, CPW Feed, UWB, FCC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
161 A Novel Antenna Design for Telemedicine Applications

Authors: Amar Partap Singh Pharwaha, Shweta Rani

Abstract:

To develop a reliable and cost effective communication platform for the telemedicine applications, novel antenna design has been presented using bacterial foraging optimization (BFO) technique. The proposed antenna geometry is achieved by etching a modified Koch curve fractal shape at the edges and a square shape slot at the center of the radiating element of a patch antenna. It has been found that the new antenna has achieved 43.79% size reduction and better resonating characteristic than the original patch. Representative results for both simulations and numerical validations are reported in order to assess the effectiveness of the developed methodology.

Keywords: BFO, electrical permittivity, fractals, Koch curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
160 A Compact Wearable Slot Antenna for LTE and WLAN Applications

Authors: Haider K. Raad

Abstract:

In this paper, a compact wide-band, ultra-thin and flexible slot antenna intended for wearable applications is presented. The presented antenna is designed to provide Wireless Local Area Network (WLAN) and Long Term Evolution (LTE) connectivity. The presented design exhibits a relatively wide bandwidth (1600-3500 MHz below -6 dB impedance bandwidth limit). The antenna is positioned on a 33 mm x 30 mm flexible substrate with a thickness of 50 µm. Antenna properties, such as the far-field radiation patterns, scattering parameter S11 are provided. The presented compact, thin and flexible design along with excellent radiation characteristics are deemed suitable for integration into flexible and wearable devices.

Keywords: Wearable Electronics, Slot Antenna, LTE, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193