Search results for: Coronal Hole Area Feed-Forward neural network models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7386

Search results for: Coronal Hole Area Feed-Forward neural network models

7356 Person Re-Identification Using Siamese Convolutional Neural Network

Authors: Sello Mokwena, Monyepao Thabang

Abstract:

In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis of benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.

Keywords: Camera network, convolutional neural network topology, person tracking, person re-identification, Siamese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81
7355 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
7354 Binary Mixture of Copper-Cobalt Ions Uptake by Zeolite using Neural Network

Authors: John Kabuba, Antoine Mulaba-Bafubiandi, Kim Battle

Abstract:

In this study a neural network (NN) was proposed to predict the sorption of binary mixture of copper-cobalt ions into clinoptilolite as ion-exchanger. The configuration of the backpropagation neural network giving the smallest mean square error was three-layer NN with tangent sigmoid transfer function at hidden layer with 10 neurons, linear transfer function at output layer and Levenberg-Marquardt backpropagation training algorithm. Experiments have been carried out in the batch reactor to obtain equilibrium data of the individual sorption and the mixture of coppercobalt ions. The obtained modeling results have shown that the used of neural network has better adjusted the equilibrium data of the binary system when compared with the conventional sorption isotherm models.

Keywords: Adsorption isotherm, binary system, neural network; sorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
7353 Using Artificial Neural Network to Predict Collisions on Horizontal Tangents of 3D Two-Lane Highways

Authors: Omer F. Cansiz, Said M. Easa

Abstract:

The purpose of this study is mainly to predict collision frequency on the horizontal tangents combined with vertical curves using artificial neural network methods. The proposed ANN models are compared with existing regression models. First, the variables that affect collision frequency were investigated. It was found that only the annual average daily traffic, section length, access density, the rate of vertical curvature, smaller curve radius before and after the tangent were statistically significant according to related combinations. Second, three statistical models (negative binomial, zero inflated Poisson and zero inflated negative binomial) were developed using the significant variables for three alignment combinations. Third, ANN models are developed by applying the same variables for each combination. The results clearly show that the ANN models have the lowest mean square error value than those of the statistical models. Similarly, the AIC values of the ANN models are smaller to those of the regression models for all the combinations. Consequently, the ANN models have better statistical performances than statistical models for estimating collision frequency. The ANN models presented in this paper are recommended for evaluating the safety impacts 3D alignment elements on horizontal tangents.

Keywords: Collision frequency, horizontal tangent, 3D two-lane highway, negative binomial, zero inflated Poisson, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
7352 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network

Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing

Abstract:

Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.

Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 654
7351 A Literature Survey of Neural Network Applications for Shunt Active Power Filters

Authors: S. Janpong, K-L. Areerak, K-N. Areerak

Abstract:

This paper aims to present the reviews of the application of neural network in shunt active power filter (SAPF). From the review, three out of four components of SAPF structure, which are harmonic detection component, compensating current control, and DC bus voltage control, have been adopted some of neural network architecture as part of its component or even substitution. The objectives of most papers in using neural network in SAPF are to increase the efficiency, stability, accuracy, robustness, tracking ability of the systems of each component. Moreover, minimizing unneeded signal due to the distortion is the ultimate goal in applying neural network to the SAPF. The most famous architecture of neural network in SAPF applications are ADALINE and Backpropagation (BP).

Keywords: Active power filter, neural network, harmonic distortion, harmonic detection and compensation, non-linear load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065
7350 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
7349 Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy

Authors: Hui-Min Ting, Tsair-Fwu Lee, Ming-Yuan Cho, Pei-Ju Chao, Chun-Ming Chang, Long-Chang Chen, Fu-Min Fang

Abstract:

To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.

Keywords: NPC, ANN, logistic regression, xerostomia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
7348 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh

Authors: S. M. Anowarul Haque, Md. Asiful Islam

Abstract:

Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.

Keywords: Load forecasting, artificial neural network, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686
7347 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax

Authors: Svitov David, Alyamkin Sergey

Abstract:

The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.

Keywords: ArcFace, distillation, face recognition, margin-based softmax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629
7346 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
7345 Spin One Hawking Radiation from Dirty Black Holes

Authors: Petarpa Boonserm, Tritos Ngampitipan, Matt Visser

Abstract:

A “clean” black hole is a black hole in vacuum such as the Schwarzschild black hole. However in real physical systems, there are matter fields around a black hole. Such a black hole is called a “dirty black hole”. In this paper, the effect of matter fields on the black hole and the greybody factor is investigated. The results show that matter fields make a black hole smaller. They can increase the potential energy to a black hole to obstruct Hawking radiation to propagate. This causes the greybody factor of a dirty black hole to be less than that of a clean black hole.

Keywords: A dirty black hole, Greybody factor, Hawking radiation, Matter fields.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
7344 Definition of Foot Size Model using Kohonen Network

Authors: Khawla Ben Abderrahim

Abstract:

In order to define a new model of Tunisian foot sizes and for building the most comfortable shoes, Tunisian industrialists must be able to offer for their customers products able to put on and adjust the majority of the target population concerned. Moreover, the use of models of shoes, mainly from others country, causes a mismatch between the foot and comfort of the Tunisian shoes. But every foot is unique; these models become uncomfortable for the Tunisian foot. We have a set of measures produced from a 3D scan of the feet of a diverse population (women, men ...) and we try to analyze this data to define a model of foot specific to the Tunisian footwear design. In this paper we propose tow new approaches to modeling a new foot sizes model. We used, indeed, the neural networks, and specially the Kohonen network. Next, we combine neural networks with the concept of half-foot size to improve the models already found. Finally, it was necessary to compare the results obtained by applying each approach and we decide what-s the best approach that give us the most model of foot improving more comfortable shoes.

Keywords: Morphology of the foot, foot size, half foot size, neural network, Kohonen network, model of foot size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
7343 Application of Fuzzy Neural Network for Image Tumor Description

Authors: Nahla Ibraheem Jabbar, Monica Mehrotra

Abstract:

This paper used a fuzzy kohonen neural network for medical image segmentation. Image segmentation plays a important role in the many of medical imaging applications by automating or facilitating the diagnostic. The paper analyses the tumor by extraction of the features of (area, entropy, means and standard deviation).These measurements gives a description for a tumor.

Keywords: FCM, features extraction, medical image processing, neural network, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
7342 Spline Basis Neural Network Algorithm for Numerical Integration

Authors: Lina Yan, Jingjing Di, Ke Wang

Abstract:

A new basis function neural network algorithm is proposed for numerical integration. The main idea is to construct neural network model based on spline basis functions, which is used to approximate the integrand by training neural network weights. The convergence theorem of the neural network algorithm, the theorem for numerical integration and one corollary are presented and proved. The numerical examples, compared with other methods, show that the algorithm is effective and has the characteristics such as high precision and the integrand not required known. Thus, the algorithm presented in this paper can be widely applied in many engineering fields.

Keywords: Numerical integration, Spline basis function, Neural network algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2928
7341 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing

Authors: Fengxia Zheng, Shouming Zhong

Abstract:

ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.

Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3686
7340 Using Self Organizing Feature Maps for Classification in RGB Images

Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami

Abstract:

Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.

Keywords: Classification, SOFM, neural network, RGB images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317
7339 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, backpropagation neural network, and high distributed file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
7338 Investigation of Artificial Neural Networks Performance to Predict Net Heating Value of Crude Oil by Its Properties

Authors: Mousavian, M. Moghimi Mofrad, M. H. Vakili, D. Ashouri, R. Alizadeh

Abstract:

The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected and prediction of this network has been good agreement with experimental data.

Keywords: Neural Network, Net Heating Value, Crude Oil, Experimental, Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
7337 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.

Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
7336 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia

Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi

Abstract:

Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.

Keywords: Artificial neural networks, short-term load forecasting, back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
7335 Word Recognition and Learning based on Associative Memories and Hidden Markov Models

Authors: Zöhre Kara Kayikci, Günther Palm

Abstract:

A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".

Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
7334 A New Pattern for Handwritten Persian/Arabic Digit Recognition

Authors: A. Harifi, A. Aghagolzadeh

Abstract:

The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.

Keywords: Pattern recognition, Persian digits, NeuralNetwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
7333 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
7332 Fast Adjustable Threshold for Uniform Neural Network Quantization

Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev

Abstract:

The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.

Keywords: Distillation, machine learning, neural networks, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
7331 Neuro-Hybrid Models for Automotive System Identification

Authors: Ventura Assuncao

Abstract:

In automotive systems almost all steps concerning the calibration of several control systems, e.g., low idle governor or boost pressure governor, are made with the vehicle because the timeto- production and cost requirements on the projects do not allow for the vehicle analysis necessary to build reliable models. Here is presented a procedure using parametric and NN (neural network) models that enables the generation of vehicle system models based on normal ECU engine control unit) vehicle measurements. These models are locally valid and permit pre and follow-up calibrations so that, only the final calibrations have to be done with the vehicle.

Keywords: Automotive systems, neuro-hybrid models, demodulator, nonlinear systems, identification, and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
7330 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
7329 Some Remarkable Properties of a Hopfield Neural Network with Time Delay

Authors: Kelvin Rozier, Vladimir E. Bondarenko

Abstract:

It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections. The neural network under the study consists of 10 identical neurons. For symmetric (fully connected) networks all interneuron connections aij = +1; the interneuron connections for asymmetric networks form an upper triangular matrix with non-zero entries aij = +1. The behavior of the network is described by 10 differential equations, which are solved numerically. The results of simulations demonstrate some remarkable properties of a Hopfield neural network, such as linear growth of outputs, dependence of synchronization properties on the connection type, huge amplification of oscillation by the external uniform noise, and the capability of the neural network to transform one type of noise to another.

Keywords: Chaos, Hopfield neural network, noise, synchronization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
7328 Development of Gas Chromatography Model: Propylene Concentration Using Neural Network

Authors: Areej Babiker Idris Babiker, Rosdiazli Ibrahim

Abstract:

Gas chromatography (GC) is the most widely used technique in analytical chemistry. However, GC has high initial cost and requires frequent maintenance. This paper examines the feasibility and potential of using a neural network model as an alternative whenever GC is unvailable. It can also be part of system verification on the performance of GC for preventive maintenance activities. It shows the performance of MultiLayer Perceptron (MLP) with Backpropagation structure. Results demonstrate that neural network model when trained using this structure provides an adequate result and is suitable for this purpose. cm.

Keywords: Analyzer, Levenberg-Marquardt, Gas chromatography, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
7327 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima

Abstract:

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.

Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931