Search results for: verbal intelligent
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 574

Search results for: verbal intelligent

34 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: Deep learning, artificial neural networks, energy price forecasting, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
33 Exploring Influence Range of Tainan City Using Electronic Toll Collection Big Data

Authors: Chen Chou, Feng-Tyan Lin

Abstract:

Big Data has been attracted a lot of attentions in many fields for analyzing research issues based on a large number of maternal data. Electronic Toll Collection (ETC) is one of Intelligent Transportation System (ITS) applications in Taiwan, used to record starting point, end point, distance and travel time of vehicle on the national freeway. This study, taking advantage of ETC big data, combined with urban planning theory, attempts to explore various phenomena of inter-city transportation activities. ETC, one of government's open data, is numerous, complete and quick-update. One may recall that living area has been delimited with location, population, area and subjective consciousness. However, these factors cannot appropriately reflect what people’s movement path is in daily life. In this study, the concept of "Living Area" is replaced by "Influence Range" to show dynamic and variation with time and purposes of activities. This study uses data mining with Python and Excel, and visualizes the number of trips with GIS to explore influence range of Tainan city and the purpose of trips, and discuss living area delimited in current. It dialogues between the concepts of "Central Place Theory" and "Living Area", presents the new point of view, integrates the application of big data, urban planning and transportation. The finding will be valuable for resource allocation and land apportionment of spatial planning.

Keywords: Big Data, ITS, influence range, living area, central place theory, visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
32 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu

Abstract:

This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.

Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 552
31 An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System

Authors: Vikram Jeganathan, A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj

Abstract:

Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Keywords: Adaptive fuzzy controller, Hydronic heating system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
30 Modeling and FOS Feedback Based Control of SISO Intelligent Structures with Embedded Shear Sensors and Actuators

Authors: T. C. Manjunath, B. Bandyopadhyay

Abstract:

Active vibration control is an important problem in structures. The objective of active vibration control is to reduce the vibrations of a system by automatic modification of the system-s structural response. In this paper, the modeling and design of a fast output sampling feedback controller for a smart flexible beam system embedded with shear sensors and actuators for SISO system using Timoshenko beam theory is proposed. FEM theory, Timoshenko beam theory and the state space techniques are used to model the aluminum cantilever beam. For the SISO case, the beam is divided into 5 finite elements and the control actuator is placed at finite element position 1, whereas the sensor is varied from position 2 to 5, i.e., from the nearby fixed end to the free end. Controllers are designed using FOS method and the performance of the designed FOS controller is evaluated for vibration control for 4 SISO models of the same plant. The effect of placing the sensor at different locations on the beam is observed and the performance of the controller is evaluated for vibration control. Some of the limitations of the Euler-Bernoulli theory such as the neglection of shear and axial displacement are being considered here, thus giving rise to an accurate beam model. Embedded shear sensors and actuators have been considered in this paper instead of the surface mounted sensors and actuators for vibration suppression because of lot of advantages. In controlling the vibration modes, the first three dominant modes of vibration of the system are considered.

Keywords: Smart structure, Timoshenko beam theory, Fast output sampling feedback control, Finite Element Method, State space model, SISO, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
29 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: Path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897
28 Influence of Sports Participation on Academic Performance among Afe Babalola University Student-Athletes

Authors: B. O. Diyaolu

Abstract:

The web created by sport in academics has made it difficult for it to be separated from adolescent educational development. The enthusiasm expressed towards sport by students in higher institutions is quite enormous. Primarily, academic performance should be the pride of all students but whether sports affect the academic performance of student-athletes remain an unknown fact. This study investigated the influence of sports participation on academic performance among Afe Babalola University student-athletes. Ex post facto research design was used. Two groups of students were used for the study; Student-athlete (SA) and Regular Students (RS). Purposive sampling technique was used to select 224 student-athletes, only those that are regular in the university sports team training were considered and their records (i.e. name, department, level, matriculation number, and phone number) were collected through the assistance of their coaches. For the regular students, purposive sampling technique was used to select 224 participants, only those that have no interest in sports were considered and their records were retrieved from the college registration officer. The first and second semester examination results of the two groups were compared in 10 general study courses without their knowledge, using descriptive statistics of frequency counts, mean, and standard deviation. Out of the 10 compared courses, 7 courses result showed no significant difference between students-athlete and regular students while student-athletes perform better in 3 practically oriented courses. Sports role in academics is quite significant. Exposure to sports can help build the confidence that athletes need especially when it comes to practical courses. Student-athletes can perform better in academics if the environment is friendly and not intimidating. Lecturers and coaches need to work together in order to build a well cultured and intelligent graduate.

Keywords: Academic performance, regular students, sports participation, student-athlete, university sports team.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
27 MAGNI Dynamics: A Vision-Based Kinematic and Dynamic Upper-Limb Model for Intelligent Robotic Rehabilitation

Authors: Alexandros Lioulemes, Michail Theofanidis, Varun Kanal, Konstantinos Tsiakas, Maher Abujelala, Chris Collander, William B. Townsend, Angie Boisselle, Fillia Makedon

Abstract:

This paper presents a home-based robot-rehabilitation instrument, called ”MAGNI Dynamics”, that utilized a vision-based kinematic/dynamic module and an adaptive haptic feedback controller. The system is expected to provide personalized rehabilitation by adjusting its resistive and supportive behavior according to a fuzzy intelligence controller that acts as an inference system, which correlates the user’s performance to different stiffness factors. The vision module uses the Kinect’s skeletal tracking to monitor the user’s effort in an unobtrusive and safe way, by estimating the torque that affects the user’s arm. The system’s torque estimations are justified by capturing electromyographic data from primitive hand motions (Shoulder Abduction and Shoulder Forward Flexion). Moreover, we present and analyze how the Barrett WAM generates a force-field with a haptic controller to support or challenge the users. Experiments show that by shifting the proportional value, that corresponds to different stiffness factors of the haptic path, can potentially help the user to improve his/her motor skills. Finally, potential areas for future research are discussed, that address how a rehabilitation robotic framework may include multisensing data, to improve the user’s recovery process.

Keywords: Human-robot interaction, kinect, kinematics, dynamics, haptic control, rehabilitation robotics, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
26 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network

Authors: Z. Abdollahi Biron, P. Pisu

Abstract:

Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.

Keywords: Fault diagnostics, communication network, connected vehicles, packet drop out, platoon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
25 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.

Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 707
24 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: Big data, bus headway prediction, machine learning, public transportation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
23 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain

Authors: M. Pushparani, A. Sagaya

Abstract:

Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.

Keywords: Embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
22 Decision Algorithm for Smart Airbag Deployment Safety Issues

Authors: Aini Hussain, M A Hannan, Azah Mohamed, Hilmi Sanusi, Burhanuddin Yeop Majlis

Abstract:

Airbag deployment has been known to be responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decisions. Therefore, the authorities and industries have been looking for more innovative and intelligent products to be realized for future enhancements in the vehicle safety systems (VSSs). Although the VSSs technologies have advanced considerably, they still face challenges such as how to avoid unnecessary and untimely airbag deployments that can be hazardous and fatal. Currently, most of the existing airbag systems deploy without regard to occupant size and position. As such, this paper will focus on the occupant and crash sensing performances due to frontal collisions for the new breed of so called smart airbag systems. It intends to provide a thorough discussion relating to the occupancy detection, occupant size classification, occupant off-position detection to determine safe distance zone for airbag deployment, crash-severity analysis and airbag decision algorithms via a computer modeling. The proposed system model consists of three main modules namely, occupant sensing, crash severity analysis and decision fusion. The occupant sensing system module utilizes the weight sensor to determine occupancy, classify the occupant size, and determine occupant off-position condition to compute safe distance for airbag deployment. The crash severity analysis module is used to generate relevant information pertinent to airbag deployment decision. Outputs from these two modules are fused to the decision module for correct and efficient airbag deployment action. Computer modeling work is carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes.

Keywords: Crash severity analysis, occupant size classification, smart airbag, vehicle safety system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4116
21 A Cross-Cultural Approach for Communication with Biological and Non-Biological Intelligences

Authors: Thomas Schalow

Abstract:

This paper posits the need to take a cross-cultural approach to communication with non-human cultures and intelligences in order to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with a discussion of how intelligence emerges. It disputes some common assumptions we maintain about consciousness, intention, and language. The paper next explores cross-cultural communication among humans, including non-sapiens species. The next argument made is that we need to become much more serious about communicating with the non-human, intelligent life forms that already exist around us here on Earth. There is an urgent need to broaden our definition of communication and reach out to the other sentient life forms that inhabit our world. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it has proven useful, even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised and based on the cross-cultural approach to communication proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences using a cross-cultural communication approach. This will present a serious challenge for humanity, as we have never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other human cultures can provide us with a framework for this communication. The basic assumptions behind intercultural communication can be applied to the many types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will prepare us to face the challenges posed by a future dominated by artificial intelligence.

Keywords: Artificial intelligence, CETI, communication, culture, language.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
20 A Probabilistic Reinforcement-Based Approach to Conceptualization

Authors: Hadi Firouzi, Majid Nili Ahmadabadi, Babak N. Araabi

Abstract:

Conceptualization strengthens intelligent systems in generalization skill, effective knowledge representation, real-time inference, and managing uncertain and indefinite situations in addition to facilitating knowledge communication for learning agents situated in real world. Concept learning introduces a way of abstraction by which the continuous state is formed as entities called concepts which are connected to the action space and thus, they illustrate somehow the complex action space. Of computational concept learning approaches, action-based conceptualization is favored because of its simplicity and mirror neuron foundations in neuroscience. In this paper, a new biologically inspired concept learning approach based on the probabilistic framework is proposed. This approach exploits and extends the mirror neuron-s role in conceptualization for a reinforcement learning agent in nondeterministic environments. In the proposed method, instead of building a huge numerical knowledge, the concepts are learnt gradually from rewards through interaction with the environment. Moreover the probabilistic formation of the concepts is employed to deal with uncertain and dynamic nature of real problems in addition to the ability of generalization. These characteristics as a whole distinguish the proposed learning algorithm from both a pure classification algorithm and typical reinforcement learning. Simulation results show advantages of the proposed framework in terms of convergence speed as well as generalization and asymptotic behavior because of utilizing both success and failures attempts through received rewards. Experimental results, on the other hand, show the applicability and effectiveness of the proposed method in continuous and noisy environments for a real robotic task such as maze as well as the benefits of implementing an incremental learning scenario in artificial agents.

Keywords: Concept learning, probabilistic decision making, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
19 Save Lives: The Application of Geolocation-Awareness Service in Iranian Pre-Hospital EMS Information Management System

Authors: Somayeh Abedian, Pirhossein Kolivand, Hamid Reza Lornejad, Amin Karampour, Ebrahim Keshavarz Safari

Abstract:

For emergency and relief service providers such as pre-hospital emergencies, quick arrival at the scene of an accident or any EMS mission is one of the most important requirements of effective service delivery. EMS Response time (the interval between the time of the call and the time of arrival on scene) is a critical factor in determining the quality of pre-hospital Emergency Medical Services (EMS). This is especially important for heart attack, stroke, or accident patients that seconds are vital in saving their lives. Location-based e-services can be broadly defined as any service that provides information pertinent to the current location of an active mobile handset or precise address of landline phone call at a specific time window, regardless of the underlying delivery technology used to convey the information. According to research, one of the effective methods of meeting this goal is determining the location of the caller via the cooperation of landline and mobile phone operators in the country. The follow-up of the Communications Regulatory Authority (CRA) organization has resulted in the receipt of two separate secured electronic web services. Thus, to ensure human privacy, a secure technical architecture was required for launching the services in the pre-hospital EMS information management system. In addition, to quicken medics’ arrival at the patient's bedside, rescue vehicles should make use of an intelligent transportation system to estimate road traffic using a GPS-based mobile navigation system independent of the Internet. This paper seeks to illustrate the architecture of the practical national model used by the Iranian EMS organization.

Keywords: response time, geographic location inquiry service, location-based services, emergency medical services information system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 477
18 Questions Categorization in E-Learning Environment Using Data Mining Technique

Authors: Vilas P. Mahatme, K. K. Bhoyar

Abstract:

Nowadays, education cannot be imagined without digital technologies. It broadens the horizons of teaching learning processes. Several universities are offering online courses. For evaluation purpose, e-examination systems are being widely adopted in academic environments. Multiple-choice tests are extremely popular. Moving away from traditional examinations to e-examination, Moodle as Learning Management Systems (LMS) is being used. Moodle logs every click that students make for attempting and navigational purposes in e-examination. Data mining has been applied in various domains including retail sales, bioinformatics. In recent years, there has been increasing interest in the use of data mining in e-learning environment. It has been applied to discover, extract, and evaluate parameters related to student’s learning performance. The combination of data mining and e-learning is still in its babyhood. Log data generated by the students during online examination can be used to discover knowledge with the help of data mining techniques. In web based applications, number of right and wrong answers of the test result is not sufficient to assess and evaluate the student’s performance. So, assessment techniques must be intelligent enough. If student cannot answer the question asked by the instructor then some easier question can be asked. Otherwise, more difficult question can be post on similar topic. To do so, it is necessary to identify difficulty level of the questions. Proposed work concentrate on the same issue. Data mining techniques in specific clustering is used in this work. This method decide difficulty levels of the question and categories them as tough, easy or moderate and later this will be served to the desire students based on their performance. Proposed experiment categories the question set and also group the students based on their performance in examination. This will help the instructor to guide the students more specifically. In short mined knowledge helps to support, guide, facilitate and enhance learning as a whole.

Keywords: Data mining, e-examination, e-learning, moodle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
17 RF Permeability Test in SOC Structure for Establishing USN(Ubiquitous Sensor Network)

Authors: Byung – wan Jo, Jung – hoon Park, Jang - wook Kim

Abstract:

Recently, as information industry and mobile communication technology are developing, this study is conducted on the new concept of intelligent structures and maintenance techniques that applied wireless sensor network, USN (Ubiquitous Sensor Network), to social infrastructures such as civil and architectural structures on the basis of the concept of Ubiquitous Computing that invisibly provides human life with computing, along with mutually cooperating, compromising and connecting networks each other by having computers within all objects around us. Therefore, the purpose of this study is to investigate the capability of wireless communication of sensor node embedded in reinforced concrete structure with a basic experiment on an electric wave permeability of sensor node by fabricating molding with variables of concrete thickness and steel bars that are mostly used in constructing structures to determine the feasibility of application to constructing structures with USN. At this time, with putting the pitches of steel bars, the thickness of concrete placed, and the intensity of RF signal of a transmitter-receiver as variables and when wireless communication module was installed inside, the possible communication distance of plain concrete and the possible communication distance by the pitches of steel bars was measured in the horizontal and vertical direction respectively. Besides, for the precise measurement of diminution of an electric wave, the magnitude of an electric wave in the range of used frequencies was measured by using Spectrum Analyzer. The phenomenon of diminution of an electric wave was numerically analyzed and the effect of the length of wavelength of frequencies was analyzed by the properties of a frequency band area. As a result of studying the feasibility of an application to constructing structures with wireless sensor, in case of plain concrete, it shows 45cm for the depth of permeability and in case of reinforced concrete with the pitches of 5cm, it shows 37cm and 45cm for the pitches of 15cm.

Keywords: Ubiquitous, Concrete, Permeability, Wireless, Sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
16 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation

Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton

Abstract:

Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.

Keywords: Connected vehicles, GLOSA, intelligent transportation systems, infrastructure-to-vehicle communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
15 An Intelligent Combined Method Based on Power Spectral Density, Decision Trees and Fuzzy Logic for Hydraulic Pumps Fault Diagnosis

Authors: Kaveh Mollazade, Hojat Ahmadi, Mahmoud Omid, Reza Alimardani

Abstract:

Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. The aim of this work is to investigate the effectiveness of a new fault diagnosis method based on power spectral density (PSD) of vibration signals in combination with decision trees and fuzzy inference system (FIS). To this end, a series of studies was conducted on an external gear hydraulic pump. After a test under normal condition, a number of different machine defect conditions were introduced for three working levels of pump speed (1000, 1500, and 2000 rpm), corresponding to (i) Journal-bearing with inner face wear (BIFW), (ii) Gear with tooth face wear (GTFW), and (iii) Journal-bearing with inner face wear plus Gear with tooth face wear (B&GW). The features of PSD values of vibration signal were extracted using descriptive statistical parameters. J48 algorithm is used as a feature selection procedure to select pertinent features from data set. The output of J48 algorithm was employed to produce the crisp if-then rule and membership function sets. The structure of FIS classifier was then defined based on the crisp sets. In order to evaluate the proposed PSD-J48-FIS model, the data sets obtained from vibration signals of the pump were used. Results showed that the total classification accuracy for 1000, 1500, and 2000 rpm conditions were 96.42%, 100%, and 96.42% respectively. The results indicate that the combined PSD-J48-FIS model has the potential for fault diagnosis of hydraulic pumps.

Keywords: Power Spectral Density, Machine ConditionMonitoring, Hydraulic Pump, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2709
14 Supervisory Control for Induction Machine with a Modified Star/Delta Switch in Fluid Transportation

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper proposes an intelligent, supervisory, hysteresis liquid-level control with three-state energy saving mode (ESM) for induction motor (IM) in fluid transportation system (FTS) including storage tank. The IM pump drive comprises a modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to the computer’s ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. Considering the motor’s thermal capacity used (TCU) and grid-compatible tariff structure, a logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction. Fuzzy-logic (FL) based availability assessment is designed and deployed on cloud, in order to provide mobilized service for the star/delta switch and highly reliable contactors. Moreover, an artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and computer simulations are performed to demonstrate the validity and effectiveness of the proposed control system in terms of reliability, power quality and operational cost reduction with a motivation of power factor correction.

Keywords: Artificial Neural Network, ANN, Contactor Health Assessment, Energy Saving Mode, Induction Machine, IM, Supervisory Control, Fluid Transportation, Fuzzy Logic, FL, cloud computing, pumped storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 444
13 A Study on Use of User Demand Evaluation in Interactive Interface – Using Virtual Fitting-Room as an Example

Authors: Chang, Wei-Chen

Abstract:

The purpose of this study is to research on thoughts transmitted from virtual fitting-room and to deduce discussion in an auxiliary narrative way. The research structure is based on 3D virtual fitting-room as the research subject. Initially, we will discuss the principles of narrate study, User Demand and so on by using a narrative design pattern to transmit their objective indications of “people-situation-reason-object", etc, and then to analyze the virtual fitting-room examples that are able to provide a new thinking for designers who engaged in clothing related industry – which comes in “story telling" and “user-centered design" forms. Clothing designs are not just to cover up the body to keep warm but to draw closer to people-s demand physiologically and psychologically through interactive designs so as to achieve cognition between people and environment. In the “outside" goal of clothing-s functional designs, we use tribal group-s behavior characteristics to “transform" the existing personal cultural stories, and “reform" them to design appropriate interactive products. Synthesizing the above matters, apart from being able to regard “narrate" as a kind of functional thinking process, we are also able to regard it as a kind of choice, arrangement and an activity of story expression, allowing interactive design-s spirit, product characteristics and experience ideas be transmitted to target tribal group in a visual image performance method. It is a far more confident and innovative attempt, and meanwhile, able to achieve entertainment, joyful and so forth fundamental interactive transmissions. Therefore, this study takes “user-centered design" thinking as a basis to establish a set of clothing designs with interactive experience patterns and to assist designers to examine the five sensual feeling of interactive demands in order to initiate a new value in textile industry.

Keywords: Virtual Fitting-room, Interactive Design, User Demand Evaluation, Intelligent Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
12 Curriculum Development of Successful Intelligence Promoting for Nursing Students

Authors: Saranya Chularee, Tawa Chularee

Abstract:

Successful intelligence (SI) is the integrated set of the ability needed to attain success in life, within individual-s sociocultural context. People are successfully intelligent by recognizing their strengths and weaknesses. They will find ways to strengthen their weakness and maintain their strength or even improve it. SI people can shape, select, and adapt to the environments by using balance of higher-ordered thinking abilities including; critical, creative, and applicative. Aims: The purposes of this study were to; 1) develop curriculum that promotes SI for nursing students, and 2) study the effectiveness of the curriculum development. Method: Research and Development was a method used for this study. The design was divided into two phases; 1) the curriculum development which composed of three steps (needs assessment, curriculum development and curriculum field trail), and 2) the curriculum implementation. In this phase, a pre-experimental research design (one group pretest-posttest design) was conducted. The sample composed of 49 sophomore nursing students of Boromarajonani College of Nursing, Surin, Thailand who enrolled in Nursing care of Health problem course I in 2011 academic year. Data were carefully collected using 4 instruments; 1) Modified essay questions test (MEQ) 2) Nursing Care Plan evaluation form 3) Group processing observation form (α = 0.74) and 4) Satisfied evaluation form of learning (α = 0.82). Data were analyzed using descriptive statistics and content analysis. Results: The results revealed that the sample had post-test average score of SI higher than pre-test average score (mean difference was 5.03, S.D. = 2.84). Fifty seven percentages of the sample passed the MEQ posttest at the criteria of 60 percentages. Students demonstrated the strategies of how to develop nursing care plan. Overall, students- satisfaction on teaching performance was at high level (mean = 4.35, S.D. = 0.46). Conclusion: This curriculum can promote the attribute of characteristic of SI person and was highly required to be continued.

Keywords: Curriculum Development, Nursing Education, Successful Intelligence, Thinking ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
11 An Efficient Motion Recognition System Based on LMA Technique and a Discrete Hidden Markov Model

Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier

Abstract:

Human motion recognition has been extensively increased in recent years due to its importance in a wide range of applications, such as human-computer interaction, intelligent surveillance, augmented reality, content-based video compression and retrieval, etc. However, it is still regarded as a challenging task especially in realistic scenarios. It can be seen as a general machine learning problem which requires an effective human motion representation and an efficient learning method. In this work, we introduce a descriptor based on Laban Movement Analysis technique, a formal and universal language for human movement, to capture both quantitative and qualitative aspects of movement. We use Discrete Hidden Markov Model (DHMM) for training and classification motions. We improve the classification algorithm by proposing two DHMMs for each motion class to process the motion sequence in two different directions, forward and backward. Such modification allows avoiding the misclassification that can happen when recognizing similar motions. Two experiments are conducted. In the first one, we evaluate our method on a public dataset, the Microsoft Research Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely used dataset for evaluating action/gesture recognition methods. In the second experiment, we build a dataset composed of 10 gestures(Introduce yourself, waving, Dance, move, turn left, turn right, stop, sit down, increase velocity, decrease velocity) performed by 20 persons. The evaluation of the system includes testing the efficiency of our descriptor vector based on LMA with basic DHMM method and comparing the recognition results of the modified DHMM with the original one. Experiment results demonstrate that our method outperforms most of existing methods that used the MSRC-12 dataset, and a near perfect classification rate in our dataset.

Keywords: Human Motion Recognition, Motion representation, Laban Movement Analysis, Discrete Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
10 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Mobile ad hoc network, MANET, intrusion detection system, back propagation algorithm, neural networks, traffic table, multilayer perceptron, feed-forward back-propagation, network simulator 2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
9 Smart Help at theWorkplace for Persons with Disabilities (SHW-PWD)

Authors: Ghassan Kbar, Shady Aly, Ibraheem Elsharawy, Akshay Bhatia, Nur Alhasan, Ronaldo Enriquez

Abstract:

The Smart Help for persons with disability (PWD) is a part of the project SMARTDISABLE which aims to develop relevant solution for PWD that target to provide an adequate workplace environment for them. It would support PWD needs smartly through smart help to allow them access to relevant information and communicate with other effectively and flexibly, and smart editor that assist them in their daily work. It will assist PWD in knowledge processing and creation as well as being able to be productive at the work place. The technical work of the project involves design of a technological scenario for the Ambient Intelligence (AmI) - based assistive technologies at the workplace consisting of an integrated universal smart solution that suits many different impairment conditions and will be designed to empower the Physically disabled persons (PDP) with the capability to access and effectively utilize the ICTs in order to execute knowledge rich working tasks with minimum efforts and with sufficient comfort level. The proposed technology solution for PWD will support voice recognition along with normal keyboard and mouse to control the smart help and smart editor with dynamic auto display interface that satisfies the requirements for different PWD group. In addition, a smart help will provide intelligent intervention based on the behavior of PWD to guide them and warn them about possible misbehavior. PWD can communicate with others using Voice over IP controlled by voice recognition. Moreover, Auto Emergency Help Response would be supported to assist PWD in case of emergency. This proposed technology solution intended to make PWD very effective at the work environment and flexible using voice to conduct their tasks at the work environment. The proposed solution aims to provide favorable outcomes that assist PWD at the work place, with the opportunity to participate in PWD assistive technology innovation market which is still small and rapidly growing as well as upgrading their quality of life to become similar to the normal people at the workplace. Finally, the proposed smart help solution is applicable in all workplace setting, including offices, manufacturing, hospital, etc.

Keywords: Ambient Intelligence, ICT, Persons with disability PWD, Smart application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
8 Introduction of an Approach of Complex Virtual Devices to Achieve Device Interoperability in Smart Building Systems

Authors: Thomas Meier

Abstract:

One of the major challenges for sustainable smart building systems is to support device interoperability, i.e. connecting sensor or actuator devices from different vendors, and present their functionality to the external applications. Furthermore, smart building systems are supposed to connect with devices that are not available yet, i.e. devices that become available on the market sometime later. It is of vital importance that a sustainable smart building platform provides an appropriate external interface that can be leveraged by external applications and smart services. An external platform interface must be stable and independent of specific devices and should support flexible and scalable usage scenarios. A typical approach applied in smart home systems is based on a generic device interface used within the smart building platform. Device functions, even of rather complex devices, are mapped to that generic base type interface by means of specific device drivers. Our new approach, presented in this work, extends that approach by using the smart building system’s rule engine to create complex virtual devices that can represent the most diverse properties of real devices. We examined and evaluated both approaches by means of a practical case study using a smart building system that we have developed. We show that the solution we present allows the highest degree of flexibility without affecting external application interface stability and scalability. In contrast to other systems our approach supports complex virtual device configuration on application layer (e.g. by administration users) instead of device configuration at platform layer (e.g. platform operators). Based on our work, we can show that our approach supports almost arbitrarily flexible use case scenarios without affecting the external application interface stability. However, the cost of this approach is additional appropriate configuration overhead and additional resource consumption at the IoT platform level that must be considered by platform operators. We conclude that the concept of complex virtual devices presented in this work can be applied to improve the usability and device interoperability of sustainable intelligent building systems significantly.

Keywords: Complex virtual devices, device integration, device interoperability, Internet of Things, smart building platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
7 The Use of Artificial Intelligence in Digital Forensics and Incident Response in a Constrained Environment

Authors: Dipo Dunsin, Mohamed C. Ghanem, Karim Ouazzane

Abstract:

Digital investigators often have a hard time spotting evidence in digital information. It has become hard to determine which source of proof relates to a specific investigation. A growing concern is that the various processes, technology, and specific procedures used in the digital investigation are not keeping up with criminal developments. Therefore, criminals are taking advantage of these weaknesses to commit further crimes. In digital forensics investigations, artificial intelligence (AI) is invaluable in identifying crime. Providing objective data and conducting an assessment is the goal of digital forensics and digital investigation, which will assist in developing a plausible theory that can be presented as evidence in court. This research paper aims at developing a multiagent framework for digital investigations using specific intelligent software agents (ISAs). The agents communicate to address particular tasks jointly and keep the same objectives in mind during each task. The rules and knowledge contained within each agent are dependent on the investigation type. A criminal investigation is classified quickly and efficiently using the case-based reasoning (CBR) technique. The proposed framework development is implemented using the Java Agent Development Framework, Eclipse, Postgres repository, and a rule engine for agent reasoning. The proposed framework was tested using the Lone Wolf image files and datasets. Experiments were conducted using various sets of ISAs and VMs. There was a significant reduction in the time taken for the Hash Set Agent to execute. As a result of loading the agents, 5% of the time was lost, as the File Path Agent prescribed deleting 1,510, while the Timeline Agent found multiple executable files. In comparison, the integrity check carried out on the Lone Wolf image file using a digital forensic tool kit took approximately 48 minutes (2,880 ms), whereas the MADIK framework accomplished this in 16 minutes (960 ms). The framework is integrated with Python, allowing for further integration of other digital forensic tools, such as AccessData Forensic Toolkit (FTK), Wireshark, Volatility, and Scapy.

Keywords: Artificial intelligence, computer science, criminal investigation, digital forensics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
6 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: Affective computing, emotion recognition, humanoid robot, Human-Robot-Interaction (HRI), social robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
5 Extremism among College and High School Students in Moscow: Diagnostics Features

Authors: Puzanova Zhanna Vasilyevna, Larina Tatiana Igorevna, Tertyshnikova Anastasia Gennadyevna

Abstract:

In this day and age, extremism in various forms of its manifestation is a real threat to the world community, the national security of a state and its territorial integrity, as well as to the constitutional rights and freedoms of citizens. Extremism, as it is known, in general terms described as a commitment to extreme views and actions, radically denying the existing social norms and rules. Supporters of extremism in the ideological and political struggles often adopt methods and means of psychological warfare, appeal not to reason and logical arguments, but to emotions and instincts of the people, to prejudices, biases, and a variety of mythological designs. They are dissatisfied with the established order and aim at increasing this dissatisfaction among the masses. Youth extremism holds a specific place among the existing forms and types of extremism. In this context in 2015, we conducted a survey among Moscow college and high school students. The aim of this study was to determine how great or small is the difference in understanding and attitudes towards extremism manifestations, inclination and readiness to take part in extremist activities and what causes this predisposition, if it exists. We performed multivariate analysis and found the Russian college and high school students' opinion about the extremism and terrorism situation in our country and also their cognition on these topics. Among other things, we showed, that the level of aggressiveness of young people were not above the average for the whole population. The survey was conducted using the questionnaire method. The sample included college and high school students in Moscow (642 and 382, respectively) by method of random selection. The questionnaire was developed by specialists of RUDN University Sociological Laboratory and included both original questions (projective questions, the technique of incomplete sentences), and the standard test Dayhoff S. to determine the level of internal aggressiveness. It is also used as an experiment, the technique of study option using of FACS and SPAFF to determine the psychotypes and determination of non-verbal manifestations of emotions. The study confirmed the hypothesis that in respondents’ opinion, the level of aggression is higher today than a few years ago. Differences were found in the understanding of and respect for such social phenomena as extremism, terrorism, and their danger and appeal for the two age groups of young people. Theory of psychotypes, SPAFF (specific affect cording system) and FACS (facial action cording system) are considered as additional techniques for the diagnosis of a tendency to extreme views. Thus, it is established that diagnostics of acceptance of extreme views among young people is possible thanks to simultaneous use of knowledge from the different fields of socio-humanistic sciences. The results of the research can be used in a comparative context with other countries and as a starting point for further research in the field, taking into account its extreme relevance.

Keywords: Extremism, youth extremism, diagnostics of extremist manifestations, forecast of behavior, Sociological polls, theory of psychotypes, FACS, SPAFF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816