Search results for: Trend based segmentation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16401

Search results for: Trend based segmentation method

15861 An Improved Sub-Nyquist Sampling Jamming Method for Deceiving Inverse Synthetic Aperture Radar

Authors: Yanli Qi, Ning Lv, Jing Li

Abstract:

Sub-Nyquist sampling jamming method (SNSJ) is a well known deception jamming method for inverse synthetic aperture radar (ISAR). However, the anti-decoy of the SNSJ method performs easier since the amplitude of the false-target images are weaker than the real-target image; the false-target images always lag behind the real-target image, and all targets are located in the same cross-range. In order to overcome the drawbacks mentioned above, a simple modulation based on SNSJ (M-SNSJ) is presented in this paper. The method first uses amplitude modulation factor to make the amplitude of the false-target images consistent with the real-target image, then uses the down-range modulation factor and cross-range modulation factor to make the false-target images move freely in down-range and cross-range, respectively, thus the capacity of deception is improved. Finally, the simulation results on the six available combinations of three modulation factors are given to illustrate our conclusion.

Keywords: Inverse synthetic aperture radar, ISAR, deceptive jamming, Sub-Nyquist sampling jamming method, SNSJ, modulation based on Sub-Nyquist sampling jamming method, M-SNSJ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
15860 A Combined Cipher Text Policy Attribute-Based Encryption and Timed-Release Encryption Method for Securing Medical Data in Cloud

Authors: G. Shruthi, Purohit Shrinivasacharya

Abstract:

The biggest problem in cloud is securing an outsourcing data. A cloud environment cannot be considered to be trusted. It becomes more challenging when outsourced data sources are managed by multiple outsourcers with different access rights. Several methods have been proposed to protect data confidentiality against the cloud service provider to support fine-grained data access control. We propose a method with combined Cipher Text Policy Attribute-based Encryption (CP-ABE) and Timed-release encryption (TRE) secure method to control medical data storage in public cloud.

Keywords: Attribute, encryption, security, trapdoor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759
15859 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
15858 Blind Channel Estimation for Frequency Hopping System Using Subspace Based Method

Authors: M. M. Qasaymeh, M. A. Khodeir

Abstract:

Subspace channel estimation methods have been studied widely, where the subspace of the covariance matrix is decomposed to separate the signal subspace from noise subspace. The decomposition is normally done by using either the eigenvalue decomposition (EVD) or the singular value decomposition (SVD) of the auto-correlation matrix (ACM). However, the subspace decomposition process is computationally expensive. This paper considers the estimation of the multipath slow frequency hopping (FH) channel using noise space based method. In particular, an efficient method is proposed to estimate the multipath time delays by applying multiple signal classification (MUSIC) algorithm which is based on the null space extracted by the rank revealing LU (RRLU) factorization. As a result, precise information is provided by the RRLU about the numerical null space and the rank, (i.e., important tool in linear algebra). The simulation results demonstrate the effectiveness of the proposed novel method by approximately decreasing the computational complexity to the half as compared with RRQR methods keeping the same performance.

Keywords: Time Delay Estimation, RRLU, RRQR, MUSIC, LS-ESPRIT, LS-ESPRIT, Frequency Hopping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
15857 Study of Solid Waste Landfill Suitability using Regional Screening Method and AHP in Rasht City

Authors: S. M. Monavari, P. Hoasami, S. Tajziehchi, N. Khorramichokami.

Abstract:

The practice of burying the solid waste under the ground is one of the waste disposal methods and dumping is known as an ultimate method in the fastest-growing cities like Rasht city in Iran. Some municipalities select the solid waste landfills without feasibility studies, programming, design and management plans. Therefore, several social and environmental impacts are created by these sites. In this study, the suitability of solid waste landfill in Rasht city, capital of Gilan Province is reviewed using Regional Screening Method (RSM), Geographic Information System (GIS) and Analytical Hierarchy Process (AHP). The results indicated that according to the suitability maps, the value of study site is midsuitable to suitable based on RSM and mid-suitable based on AHP.

Keywords: Analytical Hierarchy Process (AHP), Geographic Information System (GIS), Rasht City, Regional Screening Method (RSM), Solid Waste Landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2413
15856 Hippocratic Database: A Privacy-Aware Database

Authors: Norjihan Abdul Ghani, Zailani Mohd Sidek

Abstract:

Nowadays, organizations and business has several motivating factors to protect an individual-s privacy. Confidentiality refers to type of sharing information to third parties. This is always referring to private information, especially for personal information that usually needs to keep as a private. Because of the important of privacy concerns today, we need to design a database system that suits with privacy. Agrawal et. al. has introduced Hippocratic Database also we refer here as a privacy-aware database. This paper will explain how HD can be a future trend for web-based application to enhance their privacy level of trustworthiness among internet users.

Keywords: Hippocratic database, privacy, privacy-aware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
15855 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 660
15854 Lane Detection Using Labeling Based RANSAC Algorithm

Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung

Abstract:

In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.

Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1203
15853 A Complexity-Based Approach in Image Compression using Neural Networks

Authors: Hadi Veisi, Mansour Jamzad

Abstract:

In this paper we present an adaptive method for image compression that is based on complexity level of the image. The basic compressor/de-compressor structure of this method is a multilayer perceptron artificial neural network. In adaptive approach different Back-Propagation artificial neural networks are used as compressor and de-compressor and this is done by dividing the image into blocks, computing the complexity of each block and then selecting one network for each block according to its complexity value. Three complexity measure methods, called Entropy, Activity and Pattern-based are used to determine the level of complexity in image blocks and their ability in complexity estimation are evaluated and compared. In training and evaluation, each image block is assigned to a network based on its complexity value. Best-SNR is another alternative in selecting compressor network for image blocks in evolution phase which chooses one of the trained networks such that results best SNR in compressing the input image block. In our evaluations, best results are obtained when overlapping the blocks is allowed and choosing the networks in compressor is based on the Best-SNR. In this case, the results demonstrate superiority of this method comparing with previous similar works and JPEG standard coding.

Keywords: Adaptive image compression, Image complexity, Multi-layer perceptron neural network, JPEG Standard, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2222
15852 Rating and Generating Sudoku Puzzles Based On Constraint Satisfaction Problems

Authors: Bahare Fatemi, Seyed Mehran Kazemi, Nazanin Mehrasa

Abstract:

Sudoku is a logic-based combinatorial puzzle game which people in different ages enjoy playing it. The challenging and addictive nature of this game has made it a ubiquitous game. Most magazines, newspapers, puzzle books, etc. publish lots of Sudoku puzzles every day. These puzzles often come in different levels of difficulty so that all people, from beginner to expert, can play the game and enjoy it. Generating puzzles with different levels of difficulty is a major concern of Sudoku designers. There are several works in the literature which propose ways of generating puzzles having a desirable level of difficulty. In this paper, we propose a method based on constraint satisfaction problems to evaluate the difficulty of the Sudoku puzzles. Then we propose a hill climbing method to generate puzzles with different levels of difficulty. Whereas other methods are usually capable of generating puzzles with only few number of difficulty levels, our method can be used to generate puzzles with arbitrary number of different difficulty levels. We test our method by generating puzzles with different levels of difficulty and having a group of 15 people solve all the puzzles and recording the time they spend for each puzzle.

Keywords: Constraint satisfaction problem, generating Sudoku puzzles, hill climbing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3202
15851 Block Homotopy Perturbation Method for Solving Fuzzy Linear Systems

Authors: Shu-Xin Miao

Abstract:

In this paper, we present an efficient numerical algorithm, namely block homotopy perturbation method, for solving fuzzy linear systems based on homotopy perturbation method. Some numerical examples are given to show the efficiency of the algorithm.

Keywords: Homotopy perturbation method, fuzzy linear systems, block linear system, fuzzy solution, embedding parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
15850 Research on Applying the Continuity Care Document to Generate a Medical Record with Entry Level

Authors: Hsing-Yi Kao, Der-Ming Liou

Abstract:

Transferring patient information between medical care sites is necessary to deliver better patient care and to reduce medical cost. So developing of electronic medical records is an important trend for the world.The Continuity of Care Document (CCD) is product of collaboration between CDA and CCR standards. In this study, we will develop a system to generate medical records with entry level based on CCD template module.

Keywords: Continuity Care Document, medical record, entrylevel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
15849 A Probability based Pair Extension Method in Protein 2-DE Gel Image Analysis

Authors: Yanhua Jin, Won Suk Lee

Abstract:

The two-dimensional gel electrophoresis method (2-DE) is widely used in Proteomics to separate thousands of proteins in a sample. By comparing the protein expression levels of proteins in a normal sample with those in a diseased one, it is possible to identify a meaningful set of marker proteins for the targeted disease. The major shortcomings of this approach involve inherent noises and irregular geometric distortions of spots observed in 2-DE images. Various experimental conditions can be the major causes of these problems. In the protein analysis of samples, these problems eventually lead to incorrect conclusions. In order to minimize the influence of these problems, this paper proposes a partition based pair extension method that performs spot-matching on a set of gel images multiple times and segregates more reliable mapping results which can improve the accuracy of gel image analysis. The improved accuracy of the proposed method is analyzed through various experiments on real 2-DE images of human liver tissues.

Keywords: Proteomics, spot-matching, two-dimensionalelectrophoresis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
15848 Feature Point Detection by Combining Advantages of Intensity-based Approach and Edge-based Approach

Authors: Sungho Kim, Chaehoon Park, Yukyung Choi, Soon Kwon, In So Kweon

Abstract:

In this paper, a novel corner detection method is presented to stably extract geometrically important corners. Intensity-based corner detectors such as the Harris corner can detect corners in noisy environments but has inaccurate corner position and misses the corners of obtuse angles. Edge-based corner detectors such as Curvature Scale Space can detect structural corners but show unstable corner detection due to incomplete edge detection in noisy environments. The proposed image-based direct curvature estimation can overcome limitations in both inaccurate structural corner detection of the Harris corner detector (intensity-based) and the unstable corner detection of Curvature Scale Space caused by incomplete edge detection. Various experimental results validate the robustness of the proposed method.

Keywords: Feature, intensity, contour, hybrid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
15847 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: Empirical mode decomposition (EMD), events detection, Gabor transform, optical time domain reflectometer (OTDR), wavelet threshold denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 802
15846 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method

Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić

Abstract:

This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.

Keywords: Finite-discrete element method, dry stone masonry structures, static load, dynamic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
15845 A Novel Estimation Method for Integer Frequency Offset in Wireless OFDM Systems

Authors: Taeung Yoon, Youngpo Lee, Chonghan Song, Na Young Ha, Seokho Yoon

Abstract:

Ren et al. presented an efficient carrier frequency offset (CFO) estimation method for orthogonal frequency division multiplexing (OFDM), which has an estimation range as large as the bandwidth of the OFDM signal and achieves high accuracy without any constraint on the structure of the training sequence. However, its detection probability of the integer frequency offset (IFO) rapidly varies according to the fractional frequency offset (FFO) change. In this paper, we first analyze the Ren-s method and define two criteria suitable for detection of IFO. Then, we propose a novel method for the IFO estimation based on the maximum-likelihood (ML) principle and the detection criteria defined in this paper. The simulation results demonstrate that the proposed method outperforms the Ren-s method in terms of the IFO detection probability irrespective of a value of the FFO.

Keywords: Orthogonal frequency division multiplexing, integer frequency offset, estimation, training symbol

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
15844 A Video-Based Observation and Analysis Method to Assess Human Movement and Behaviour in Crowded Areas

Authors: Shahrol Mohamaddan, Keith Case, Ana Sakura Zainal Abidin

Abstract:

Human movement in the real world provides important information for developing human behaviour models and simulations. However, it is difficult to assess ‘real’ human behaviour since there is no established method available. As part of the AUNTSUE (Accessibility and User Needs in Transport – Sustainable Urban Environments) project, this research aimed to propose a method to assess human movement and behaviour in crowded areas. The method is based on the three major steps of video recording, conceptual behavior modelling and video analysis. The focus is on individual human movement and behaviour in normal situations (panic situations are not considered) and the interactions between individuals in localized areas. Emphasis is placed on gaining knowledge of characteristics of human movement and behaviour in the real world that can be modelled in the virtual environment.

Keywords: Video observation, Human movement, Behaviour, Crowds, Ergonomics, AUNT-SUE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
15843 A Comparative Study on Seismic Provisions Made in UBC-1997 and Saudi Building Code for RC Buildings

Authors: S. Nazar, M. A. Ismaeil

Abstract:

This paper presents a comparative study of static analysis procedure for seismic performance based on UBC-1997 and SBC-301-2007(Saudi Arabia). These building codes define different ductility classes and corresponding response reduction factors based on material, configuration and detailing of reinforcements. Codes differ significantly in specifying the procedures to estimate base shear, drift and effective stiffness of structural members. One of the major improvements made in new SBC (based on IBC-2003) is ground motion parameters used for seismic design. In old SBC (based on UBC) maps have been based on seismic zones. However new SBC provide contour maps giving spectral response quantities. In this approach, a case study of RC frame building located in two different cities and with different ductility classes has been performed. Moreover, equivalent static method based on SBC-301 and UBC-1997 is used to explore the variation in results based on two codes, particularly design base shear, lateral loads and story drifts.

Keywords: Ductility Classes, Equivalent Static method, RC Frames, SBC-301-2007, Story drifts, UBC-1997.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4196
15842 A Sequential Pattern Mining Method Based On Sequential Interestingness

Authors: Shigeaki Sakurai, Youichi Kitahara, Ryohei Orihara

Abstract:

Sequential mining methods efficiently discover all frequent sequential patterns included in sequential data. These methods use the support, which is the previous criterion that satisfies the Apriori property, to evaluate the frequency. However, the discovered patterns do not always correspond to the interests of analysts, because the patterns are common and the analysts cannot get new knowledge from the patterns. The paper proposes a new criterion, namely, the sequential interestingness, to discover sequential patterns that are more attractive for the analysts. The paper shows that the criterion satisfies the Apriori property and how the criterion is related to the support. Also, the paper proposes an efficient sequential mining method based on the proposed criterion. Lastly, the paper shows the effectiveness of the proposed method by applying the method to two kinds of sequential data.

Keywords: Sequential mining, Support, Confidence, Apriori property

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
15841 NSGA Based Optimal Volt / Var Control in Distribution System with Dispersed Generation

Authors: P. N. Hrisheekesha, Jaydev Sharma

Abstract:

In this paper, a method based on Non-Dominated Sorting Genetic Algorithm (NSGA) has been presented for the Volt / Var control in power distribution systems with dispersed generation (DG). Genetic algorithm approach is used due to its broad applicability, ease of use and high accuracy. The proposed method is better suited for volt/var control problems. A multi-objective optimization problem has been formulated for the volt/var control of the distribution system. The non-dominated sorting genetic algorithm based method proposed in this paper, alleviates the problem of tuning the weighting factors required in solving the multi-objective volt/var control optimization problems. Based on the simulation studies carried out on the distribution system, the proposed scheme has been found to be simple, accurate and easy to apply to solve the multiobjective volt/var control optimization problem of the distribution system with dispersed generation.

Keywords: Dispersed Generation, Distribution System, Non-Dominated Sorting Genetic Algorithm, Voltage / Reactive powercontrol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
15840 Numerical Algorithms for Solving a Type of Nonlinear Integro-Differential Equations

Authors: Shishen Xie

Abstract:

In this article two algorithms, one based on variation iteration method and the other on Adomian's decomposition method, are developed to find the numerical solution of an initial value problem involving the non linear integro differantial equation where R is a nonlinear operator that contains partial derivatives with respect to x. Special cases of the integro-differential equation are solved using the algorithms. The numerical solutions are compared with analytical solutions. The results show that these two methods are efficient and accurate with only two or three iterations

Keywords: variation iteration method, decomposition method, nonlinear integro-differential equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
15839 A Review on Building Information Modelling in Nigeria and Its Potentials

Authors: Mansur Hamma-Adama, Tahar Kouider

Abstract:

Construction Industry has been evolving since the development of Building Information Modelling (BIM). This technological process is unstoppable; it is out to the market with remarkable case studies of solving the long industry’s history of fragmentation. This industry has been changing over time; United States has recorded the most significant development in construction digitalization, Australia, United Kingdom and some other developed nations are also amongst promoters of BIM process and its development. Recently, a developing country like China and Malaysia are keying into the industry’s digital shift, while very little move is seen in South Africa whose development is considered higher and perhaps leader in the digital transition amongst the African countries. To authors’ best knowledge, Nigerian construction industry has never engaged in BIM discussions hence has no attention at national level. Consequently, Nigeria has no “Noteworthy BIM publications.” Decision makers and key stakeholders need to be informed on the current trend of the industry’s development (BIM in specific) and the opportunities of adopting this digitalization trend in relation to the identified challenges. BIM concept can be traced mostly in Architectural practices than engineering practices in Nigeria. A superficial BIM practice is found to be at organisational level only and operating a model based - “BIM stage 1.” Research to adopting this innovation has received very little attention. This piece of work is literature review based, aimed at exploring BIM in Nigeria and its prospects. The exploration reveals limitations in the literature availability as to extensive research in the development of BIM in the country. Numerous challenges were noticed including building collapse, inefficiencies, cost overrun and late project delivery. BIM has potentials to overcome the above challenges and even beyond. Low level of BIM adoption with reasonable level of awareness is noticed. However, lack of policy and guideline as well as serious lack of experts in the field are amongst the major barriers to BIM adoption. The industry needs to embrace BIM to possibly compete with its global counterpart.

Keywords: Adoption, BIM, CAD, construction industry, Nigeria, opportunities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
15838 Discovery of Time Series Event Patterns based on Time Constraints from Textual Data

Authors: Shigeaki Sakurai, Ken Ueno, Ryohei Orihara

Abstract:

This paper proposes a method that discovers time series event patterns from textual data with time information. The patterns are composed of sequences of events and each event is extracted from the textual data, where an event is characteristic content included in the textual data such as a company name, an action, and an impression of a customer. The method introduces 7 types of time constraints based on the analysis of the textual data. The method also evaluates these constraints when the frequency of a time series event pattern is calculated. We can flexibly define the time constraints for interesting combinations of events and can discover valid time series event patterns which satisfy these conditions. The paper applies the method to daily business reports collected by a sales force automation system and verifies its effectiveness through numerical experiments.

Keywords: Text mining, sequential mining, time constraints, daily business reports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
15837 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design

Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai

Abstract:

Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.

Keywords: Knowledge based engineering, biologically inspired design, knowledge cell, knowledge clustering, knowledge acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
15836 Regularization of the Trajectories of Dynamical Systems by Adjusting Parameters

Authors: Helle Hein, Ülo Lepik

Abstract:

A gradient learning method to regulate the trajectories of some nonlinear chaotic systems is proposed. The method is motivated by the gradient descent learning algorithms for neural networks. It is based on two systems: dynamic optimization system and system for finding sensitivities. Numerical results of several examples are presented, which convincingly illustrate the efficiency of the method.

Keywords: Chaos, Dynamical Systems, Learning, Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
15835 Human Body Configuration using Bayesian Model

Authors: Rui. Zhang, Yiming. Pi

Abstract:

In this paper we present a novel approach for human Body configuration based on the Silhouette. We propose to address this problem under the Bayesian framework. We use an effective Model based MCMC (Markov Chain Monte Carlo) method to solve the configuration problem, in which the best configuration could be defined as MAP (maximize a posteriori probability) in Bayesian model. This model based MCMC utilizes the human body model to drive the MCMC sampling from the solution space. It converses the original high dimension space into a restricted sub-space constructed by the human model and uses a hybrid sampling algorithm. We choose an explicit human model and carefully select the likelihood functions to represent the best configuration solution. The experiments show that this method could get an accurate configuration and timesaving for different human from multi-views.

Keywords: Bayesian framework, MCMC, model based, human body configuration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
15834 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
15833 A PSO-based End-Member Selection Method for Spectral Unmixing of Multispectral Satellite Images

Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman

Abstract:

An end-member selection method for spectral unmixing that is based on Particle Swarm Optimization (PSO) is developed in this paper. The algorithm uses the K-means clustering algorithm and a method of dynamic selection of end-members subsets to find the appropriate set of end-members for a given set of multispectral images. The proposed algorithm has been successfully applied to test image sets from various platforms such as LANDSAT 5 MSS and NOAA's AVHRR. The experimental results of the proposed algorithm are encouraging. The influence of different values of the algorithm control parameters on performance is studied. Furthermore, the performance of different versions of PSO is also investigated.

Keywords: End-members selection, multispectral satellite imagery, particle swarm optimization, spectral unmixing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
15832 Determination of Cd, Zn, K, pH, TNV, Organic Material and Electrical Conductivity (EC) Distribution in Agricultural Soils using Geostatistics and GIS (Case Study: South- Western of Natanz- Iran)

Authors: Abbas Hani, Seyed Ali Hoseini Abari

Abstract:

Soil chemical and physical properties have important roles in compartment of the environment and agricultural sustainability and human health. The objectives of this research is determination of spatial distribution patterns of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) in agricultural soils of Natanz region in Esfehan province. In this study geostatistic and non-geostatistic methods were used for prediction of spatial distribution of these parameters. 64 composite soils samples were taken at 0-20 cm depth. The study area is located in south of NATANZ agricultural lands with area of 21660 hectares. Spatial distribution of Cd, Zn, K, pH, TNV, organic material and electrical conductivity (EC) was determined using geostatistic and geographic information system. Results showed that Cd, pH, TNV and K data has normal distribution and Zn, OC and EC data had not normal distribution. Kriging, Inverse Distance Weighting (IDW), Local Polynomial Interpolation (LPI) and Redial Basis functions (RBF) methods were used to interpolation. Trend analysis showed that organic carbon in north-south and east to west did not have trend while K and TNV had second degree trend. We used some error measurements include, mean absolute error(MAE), mean squared error (MSE) and mean biased error(MBE). Ordinary kriging(exponential model), LPI(Local polynomial interpolation), RBF(radial basis functions) and IDW methods have been chosen as the best methods to interpolating of the soil parameters. Prediction maps by disjunctive kriging was shown that in whole study area was intensive shortage of organic matter and more than 63.4 percent of study area had shortage of K amount.

Keywords: Electrical conductivity, Geostatistics, Geographical Information System, TNV

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700