Search results for: Dynamic System ofSimultaneous Equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10439

Search results for: Dynamic System ofSimultaneous Equations

9899 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: Pronunciation variations, dynamic programming, machine learning, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
9898 Boundary-Element-Based Finite Element Methods for Helmholtz and Maxwell Equations on General Polyhedral Meshes

Authors: Dylan M. Copeland

Abstract:

We present new finite element methods for Helmholtz and Maxwell equations on general three-dimensional polyhedral meshes, based on domain decomposition with boundary elements on the surfaces of the polyhedral volume elements. The methods use the lowest-order polynomial spaces and produce sparse, symmetric linear systems despite the use of boundary elements. Moreover, piecewise constant coefficients are admissible. The resulting approximation on the element surfaces can be extended throughout the domain via representation formulas. Numerical experiments confirm that the convergence behavior on tetrahedral meshes is comparable to that of standard finite element methods, and equally good performance is attained on more general meshes.

Keywords: Boundary elements, finite elements, Helmholtz equation, Maxwell equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
9897 Finite Element Dynamic Analysis of Composite Structure Cracks

Authors: Omid A. Zargar

Abstract:

Material damages dynamic analysis is difficult to deal with different material geometry and mechanism. In addition, it is difficult to measure the dynamic behavior of cracks, debond and delamination inside the material. Different simulation methods are developed in recent years for different physical features of mechanical systems like vibration and acoustic. Nonlinear fractures are analyzed and identified for different locations in this paper. The main idea of this work is to perform dynamic analysis on different types of materials (from normal homogeneous material to complex composite laminates). Technical factors like cracks, voids, interfaces and the damages’ locations are evaluated. In this project the modal analysis is performed on different types of materials. The results could be helpful in finding modal frequencies, natural frequencies, Time domain and fast Fourier transform (FFT) in industrial applications.

Keywords: Finite element method, dynamic analysis, vibration and acoustic, composite, crack, delamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3654
9896 Modeling and Design of an Active Leg Orthosis for Tumble Protection

Authors: Eileen Chih-Ying Yang, Liang-Han Wu, Chieh-Min Chang

Abstract:

The design of an active leg orthosis for tumble protection is proposed in this paper. The orthosis would be applied to assist elders or invalids in rebalancing while they fall unexpectedly. We observe the regain balance motion of healthy and youthful people, and find the difference to elders or invalids. First, the physical model of leg would be established, and we consider the leg motions are achieve through four joints (phalanx stem, ankle, knee, and hip joint) and five links (phalanges, talus, tibia, femur, and hip bone). To formulate the dynamic equations, the coordinates which can clearly describe the position in 3D space are first defined accordance with the human movement of leg, and the kinematics and dynamics of the leg movement can be formulated based on the robotics. For the purpose, assisting elders and invalids in avoiding tumble, the posture variation of unbalance and regaining balance motion are recorded by the motion-capture image system, and the trajectory is taken as the desire one. Then we calculate the force and moment of each joint based on the leg motion model through programming MATLAB code. The results would be primary information of the active leg orthosis design for tumble protection.

Keywords: Active leg orthosis, Tumble protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
9895 Positive Solutions of Second-order Singular Differential Equations in Banach Space

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special set and utilizing fixed point index theory, we study the existence of solution for the boundary value problem of second-order singular differential equations in Banach space, which improved and generalize the result of related paper.

Keywords: Banach space, cone, fixed point index, singular equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
9894 A Two-Species Model for a Fishing System with Marine Protected Areas

Authors: Felicia Magpantay, Kenzu Abdella

Abstract:

A model of a system concerning one species of demersal (inshore) fish and one of pelagic (offshore) fish undergoing fishing restricted by marine protected areas is proposed in this paper. This setup was based on the FISH-BE model applied to the Tabina fishery in Zamboanga del Sur, Philippines. The components of the model equations have been adapted from widely-accepted mechanisms in population dynamics. The model employs Gompertz-s law of growth and interaction on each type of protected and unprotected subpopulation. Exchange coefficients between protected and unprotected areas were assumed to be proportional to the relative area of the entry region. Fishing harvests were assumed to be proportional to both the number of fishers and the number of unprotected fish. An extra term was included for the pelagic population to allow for the exchange between the unprotected area and the outside environment. The systems were found to be bounded for all parameter values. The equations for the steady state were unsolvable analytically but the existence and uniqueness of non-zero steady states can be proven. Plots also show that an MPA size yielding the maximum steady state of the unprotected population can be found. All steady states were found to be globally asymptotically stable for the entire range of parameter values.

Keywords: fisheries modelling, marine protected areas, sustainablefisheries, Gompertz Law

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
9893 Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations

Authors: Zanariah Abdul Majid, Mohamed Suleiman

Abstract:

The aim of this paper is to investigate the performance of the developed two point block method designed for two processors for solving directly non stiff large systems of higher order ordinary differential equations (ODEs). The method calculates the numerical solution at two points simultaneously and produces two new equally spaced solution values within a block and it is possible to assign the computational tasks at each time step to a single processor. The algorithm of the method was developed in C language and the parallel computation was done on a parallel shared memory environment. Numerical results are given to compare the efficiency of the developed method to the sequential timing. For large problems, the parallel implementation produced 1.95 speed-up and 98% efficiency for the two processors.

Keywords: Numerical methods, parallel method, block method, higher order ODEs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
9892 A Thermodynamic Solution for the Static and Dynamic Characteristics of a Two-Lobe Journal Bearing

Authors: B. Chetti, W. A. Crosby

Abstract:

The work described in this paper is an investigation of the static and dynamic characteristics of two-lobe journal bearings taking into consideration the thermal effects. A thermo-hydrodynamic solution of a finite two-lobe journal bearing is performed by solving the generalized form Reynolds equation with the energy equation, taking into consideration viscosity variation across the film thickness. The static and dynamic characteristics were numerically obtained. The results are evaluated for different values of viscosity-temperature coefficient and Peclet number. The results show that considering the thermal effects in the solution of the two-lobe journal bearing has a marked on the study of its stability.

Keywords: Two-lobe bearing, thermal effect, static and dynamic characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
9891 Footbridge Response on Single Pedestrian Induced Vibration Analysis

Authors: J. Kala, V. Salajka, P. Hradil

Abstract:

Many footbridges have natural frequencies that coincide with the dominant frequencies of the pedestrian-induced load and therefore they have a potential to suffer excessive vibrations under dynamic loads induced by pedestrians. Some of the design standards introduce load models for pedestrian loads applicable for simple structures. Load modeling for more complex structures, on the other hand, is most often left to the designer. The main focus of this paper is on the human induced forces transmitted to a footbridge and on the ways these loads can be modeled to be used in the dynamic design of footbridges. Also design criteria and load models proposed by widely used standards were introduced and a comparison was made. The dynamic analysis of the suspension bridge in Kolin in the Czech Republic was performed on detailed FEM model using the ANSYS program system. An attempt to model the load imposed by a single person and a crowd of pedestrians resulted in displacements and accelerations that are compared with serviceability criteria.

Keywords: Footbridge, Serviceability, Pedestrian action, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3128
9890 The Effects of System Change on Buildings Equipped with Structural Systems with the Sandwich Composite Wall with J-Hook Connectors and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The sandwich composite walls (SCSSC) have more ductility and energy dissipation than conventional reinforced concrete shear walls. SCSSCs have acceptable compressive, shear, in-plane bending, and out-of-plane bending capacities. The use of sandwich-composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. In this paper, incremental dynamic analyses for 10- and 15-story steel structures were performed under seven far-faults by OpenSees. The demand values of 10- and 15-story models are reduced by up to 32% and 45%, respectively, while the structural system change from shear walls (SW) to SCSSC.

Keywords: Sandwich composite wall, SCSSC, fling step, fragility curve, IDA, inter story drift ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285
9889 Modeling Approaches for Large-Scale Reconfigurable Engineering Systems

Authors: Kwa-Sur Tam

Abstract:

This paper reviews various approaches that have been used for the modeling and simulation of large-scale engineering systems and determines their appropriateness in the development of a RICS modeling and simulation tool. Bond graphs, linear graphs, block diagrams, differential and difference equations, modeling languages, cellular automata and agents are reviewed. This tool should be based on linear graph representation and supports symbolic programming, functional programming, the development of noncausal models and the incorporation of decentralized approaches.

Keywords: Interdisciplinary, dynamic, functional programming, object-oriented.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
9888 Averaging Model of a Three-Phase Controlled Rectifier Feeding an Uncontrolled Buck Converter

Authors: P. Ruttanee, K-N. Areerak, K-L. Areerak

Abstract:

Dynamic models of power converters are normally time-varying because of their switching actions. Several approaches are applied to analyze the power converters to achieve the timeinvariant models suitable for system analysis and design via the classical control theory. The paper presents how to derive dynamic models of the power system consisting of a three-phase controlled rectifier feeding an uncontrolled buck converter by using the combination between the well known techniques called the DQ and the generalized state-space averaging methods. The intensive timedomain simulations of the exact topology model are used to support the accuracies of the reported model. The results show that the proposed model can provide good accuracies in both transient and steady-state responses.

Keywords: DQ method, Generalized state-space averaging method, Three-phase controlled rectifier, Uncontrolled buck converter, Averaging model, Modeling, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3821
9887 Numerical Solution of Second-Order Ordinary Differential Equations by Improved Runge-Kutta Nystrom Method

Authors: Faranak Rabiei, Fudziah Ismail, S. Norazak, Saeid Emadi

Abstract:

In this paper we developed the Improved Runge-Kutta Nystrom (IRKN) method for solving second order ordinary differential equations. The methods are two step in nature and require lower number of function evaluations per step compared with the existing Runge-Kutta Nystrom (RKN) methods. Therefore, the methods are computationally more efficient at achieving the higher order of local accuracy. Algebraic order conditions of the method are obtained and the third and fourth order method are derived with two and three stages respectively. The numerical results are given to illustrate the efficiency of the proposed method compared to the existing RKN methods.

Keywords: Improved Runge-Kutta Nystrom method, Two step method, Second-order ordinary differential equations, Order conditions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6850
9886 Asymptotic Stabilization of an Active Magnetic Bearing System using LMI-based Sliding Mode Control

Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim

Abstract:

In this paper, stabilization of an Active Magnetic Bearing (AMB) system with varying rotor speed using Sliding Mode Control (SMC) technique is considered. The gyroscopic effect inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Also, transformation of the AMB dynamic model into a new class of uncertain system shows that this gyroscopic effect lies in the mismatched part of the system matrix. Moreover, the current gain parameter is allowed to be varied in a known bound as an uncertainty in the input matrix. SMC design method is proposed in which the sufficient condition that guarantees the global exponential stability of the reduced-order system is represented in Linear Matrix Inequality (LMI). Then, a new chattering-free control law is established such that the system states are driven to reach the switching surface and stay on it thereafter. The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

Keywords: Active Magnetic Bearing (AMB), Sliding ModeControl (SMC), Linear Matrix Inequality (LMI), mismatcheduncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
9885 Positive Solutions for Systems of Nonlinear Third-Order Differential Equations with p-Laplacian

Authors: Li Xiguang

Abstract:

In this paper, by constructing a special set and utilizing fixed point theory, we study the existence and multiplicity of the positive solutions for systems of nonlinear third-order differential equations with p-laplacian, which improve and generalize the result of related paper.

Keywords: p-Laplacian, cone, fixed point theorem, positive solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
9884 Reciprocating Equipment Piston Rod Dynamic Elastic-Plastic Deformation Analysis

Authors: Amin Almasi

Abstract:

Analysis of reciprocating equipment piston rod leads to nonlinear elastic-plastic deformation analysis of rod with initial imperfection under axial dynamic load. In this paper a new and effective model and analytical formulations are presented to evaluate dynamic deformation and elastic-plastic stresses of reciprocating machine piston rod. This new method has capability to account for geometric nonlinearity, elastic-plastic deformation and dynamic effects. Proposed method can be used for evaluation of piston rod performance for various reciprocating machines under different operation situations. Rod load curves and maximum allowable rod load are calculated with presented method for a refinery type reciprocating compressor. Useful recommendations and guidelines for rod load, rod load reversal and rod drop monitoring are also addressed.

Keywords: Deformation, Reciprocating Equipment, Rod.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236
9883 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays

Authors: Felix Che Shu

Abstract:

We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.

Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
9882 Agent/Group/Role Organizational Model to Simulate an Industrial Control System

Authors: Noureddine Seddari, Mohamed Belaoued, Salah Bougueroua

Abstract:

The modeling of complex systems is generally based on the decomposition of their components into sub-systems easier to handle. This division has to be made in a methodical way. In this paper, we introduce an industrial control system modeling and simulation based on the Multi-Agent System (MAS) methodology AALAADIN and more particularly the underlying conceptual model Agent/Group/Role (AGR). Indeed, in this division using AGR model, the overall system is decomposed into sub-systems in order to improve the understanding of regulation and control systems, and to simplify the implementation of the obtained agents and their groups, which are implemented using the Multi-Agents Development KIT (MAD-KIT) platform. This approach appears to us to be the most appropriate for modeling of this type of systems because, due to the use of MAS, it is possible to model real systems in which very complex behaviors emerge from relatively simple and local interactions between many different individuals, therefore a MAS is well adapted to describe a system from the standpoint of the activity of its components, that is to say when the behavior of the individuals is complex (difficult to describe with equations). The main aim of this approach is the take advantage of the performance, the scalability and the robustness that are intuitively provided by MAS.

Keywords: Complex systems, modeling and simulation, industrial control system, MAS, AALAADIN, AGR, MAD-KIT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
9881 Dynamic Features Selection for Heart Disease Classification

Authors: Walid MOUDANI

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
9880 Stable Robust Adaptive Controller and Observer Design for a Class of SISO Nonlinear Systems with Unknown Dead Zone

Authors: Ibrahim F. Jasim

Abstract:

This paper presents a new stable robust adaptive controller and observer design for a class of nonlinear systems that contain i. Coupling of unmeasured states and unknown parameters ii. Unknown dead zone at the system actuator. The system is firstly cast into a modified form in which the observer and parameter estimation become feasible. Then a stable robust adaptive controller, state observer, parameter update laws are derived that would provide global adaptive system stability and desirable performance. To validate the approach, simulation was performed to a single-link mechanical system with a dynamic friction model and unknown dead zone exists at the system actuation. Then a comparison is presented with the results when there is no dead zone at the system actuation.

Keywords: Dead Zone, Nonlinear Systems, Observer, Robust Adaptive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
9879 Molecular Dynamics Analysis onI mpact Behaviour of Carbon Nanotubes and Graphene Sheets

Authors: Sajjad Seifoori

Abstract:

Impact behavior of striker on graphene sheet and carbon nanotube is investigated based on molecular dynamics (MD) simulations. A MD simulation is conducted to obtain the maximum dynamic deflections of a square and rectangular single-layered graphene sheets (SLGSs) with various values of side-length and striker parameter. Effect of (i) chirality, (ii) graphene side-length and nanotube length, (iii) striker mass on the maximum dynamic deflections of graphene and nanotube are investigated. The effect of different types of boundary condition on the maximum dynamic deflections is studied for zigzag and armchair SWCNTs with various aspect ratios (Length/Diameter).

Keywords: Impact, molecular dynamic, graphene, nanotube.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1080
9878 Local Dynamic Mechanical Properties of Native Porcine Endplate

Authors: J. Sepitka, J. Lukes, J. Reznicek

Abstract:

Hysitron TriboIndenterTM TI 950 system has been used for studying the local viscoelastic properties of porcine intervertebral disc end plate by means of nanoscale mechanical dynamic analysis. The specimen of an endplate was cut from fresh porcine vertebra dissected from 16 month animal. The lumbar spine motion segments were dissected and 5 millimeter thick plates of vertebral body, endplate and annulus fibrosus were prepared for nanoindentation. The surface of the sample was kept in physiological solution during nanoindentation experiment. We obtained mechanical characteristics of different areas of native endplate (endplate middle and vertebra and annulus fibrosus boundary).

Keywords: nanoindentation, DMA, endplate, cartilage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
9877 Performance Prediction of a 5MW Wind Turbine Blade Considering Aeroelastic Effect

Authors: Dong-Hyun Kim, Yoo-Han Kim

Abstract:

In this study, aeroelastic response and performance analyses have been conducted for a 5MW-Class composite wind turbine blade model. Advanced coupled numerical method based on computational fluid dynamics (CFD) and computational flexible multi-body dynamics (CFMBD) has been developed in order to investigate aeroelastic responses and performance characteristics of the rotating composite blade. Reynolds-Averaged Navier-Stokes (RANS) equations with k-ω SST turbulence model were solved for unsteady flow problems on the rotating turbine blade model. Also, structural analyses considering rotating effect have been conducted using the general nonlinear finite element method. A fully implicit time marching scheme based on the Newmark direct integration method is applied to solve the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous velocity contour on the blade surfaces which considering flow-separation effects were presented to show the multi-physical phenomenon of the huge rotating wind- turbine blade model.

Keywords: Computational Fluid Dynamics (CFD), Computational Multi-Body Dynamics (CMBD), Reynolds-averageNavier-Stokes (RANS), Fluid Structure Interaction (FSI), FiniteElement Method (FEM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920
9876 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA

Authors: G. Parmar, R. Prasad, S. Mukherjee

Abstract:

The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.

Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3189
9875 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.

Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
9874 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System

Authors: Soltani Amir, Wang Xuan

Abstract:

The advantage of using non-linear passive damping  system in vibration control of two adjacent structures is investigated  under their base excitation. The base excitation is El Centro  earthquake record acceleration. The damping system is considered as  an optimum and effective non-linear viscous damper that is  connected between two adjacent structures. A MATLAB program is  developed to produce the stiffness and damping matrices and to  determine a time history analysis of the dynamic motion of the  system. One structure is assumed to be flexible while the other has a  rule as laterally supporting structure with rigid frames. The response  of the structure has been calculated and the non-linear damping  coefficient is determined using optimum LQR algorithm in an  optimum vibration control system. The non-linear parameter of  damping system is estimated and it has shown a significant advantage  of application of this system device for vibration control of two  adjacent tall building.

Keywords: Structural Control, Active and passive damping, Vibration control, Seismic isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
9873 Dynamics In Production Processes

Authors: Marco Kennemann, Steffen C. Eickemeyer, Peter Nyhuis

Abstract:

An increasingly dynamic and complex environment poses huge challenges to production enterprises, especially with regards to logistics. The Logistic Operating Curve Theory, developed at the Institute of Production Systems and Logistics (IFA) of the Leibniz University of Hanover, is a recognized approach to describing logistic interactions, nevertheless, it reaches its limits when it comes to the dynamic aspects. In order to facilitate a timely and optimal Logistic Positioning a method is developed for quickly and reliably identifying dynamic processing states.

Keywords: Dynamics, Logistic Operating Curves, Production Logistics, Production Planning and Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
9872 Nonlinear Seismic Dynamic Response of Continuous Curved Highway Viaducts with Different Bearing Supports

Authors: Rinna Tanaka, Carlos Mendez Galindo, Toshiro Hayashikawa

Abstract:

The results show that the bridge equipped with seismic isolation bearing system shows a high amount of energy dissipation. The purpose of the present study is to analyze the overall performance of continuous curved highway viaducts with different bearing supports, with an emphasis on the effectiveness of seismic isolation based on lead rubber bearing and hedge reaction force bearing system consisted of friction sliding bearing and rubber bearing. The bridge seismic performance has been evaluated on six different cases with six bearing models. The effects of the different arrangement of bearing on the deck superstructure displacements, the seismic damage at the bottom of the piers, movement track at the pier-s top and the total and strain energies absorbed by the structure are evaluated. In conclusion, the results provide sufficient evidence of the effectiveness on the use of seismic isolation on steel curved highway bridges.

Keywords: Curved highway viaducts, non-linear dynamic response, seismic damage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
9871 Numerical Solution of the Equations of Salt Diffusion into the Potato Tissues

Authors: Behrouz Mosayebi Dehkordi, Frazaneh Hashemi, Ramin Mostafazadeh

Abstract:

Fick's second law equations for unsteady state diffusion of salt into the potato tissues were solved numerically. The set of equations resulted from implicit modeling were solved using Thomas method to find the salt concentration profiles in solid phase. The needed effective diffusivity and equilibrium distribution coefficient were determined experimentally. Cylindrical samples of potato were infused with aqueous NaCl solutions of 1-3% concentrations, and variations in salt concentrations of brine were determined over time. Solute concentrations profiles of samples were determined by measuring salt uptake of potato slices. For the studied conditions, equilibrium distribution coefficients were found to be dependent on salt concentrations, whereas the effective diffusivity was slightly affected by brine concentration.

Keywords: Brine, Diffusion, Diffusivity, Modeling, Potato

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
9870 Application of H2 -based Sliding Mode Control for an Active Magnetic Bearing System

Authors: Abdul Rashid Husain, Mohamad Noh Ahmad, Abdul Halim Mohd. Yatim

Abstract:

In this paper, application of Sliding Mode Control (SMC) technique for an Active Magnetic Bearing (AMB) system with varying rotor speed is considered. The gyroscopic effect and mass imbalance inherited in the system is proportional to rotor speed in which this nonlinearity effect causes high system instability as the rotor speed increases. Transformation of the AMB dynamic model into regular system shows that these gyroscopic effect and imbalance lie in the mismatched part of the system. A H2-based sliding surface is designed which bound the mismatched parts. The solution of the surface parameter is obtained using Linear Matrix Inequality (LMI). The performance of the controller applied to the AMB model is demonstrated through simulation works under various system conditions.

Keywords: Active magnetic bearing, sliding mode control, linear matrix inequality, mismatched uncertainty and imbalance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605