Search results for: Composite plates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 902

Search results for: Composite plates

362 Producing and Mechanical Testing of Urea-Formaldehyde Resin Foams Reinforced by Waste Phosphogypsum

Authors: Krasimira Georgieva, Yordan Denev

Abstract:

Many of thermosetting resins have application only in filled state, reinforced with different mineral fillers. The co-filling of polymers with mineral filler and gases creates a possibility for production of polymer composites materials with low density. This processing leads to forming of new materials – gas-filled plastics (polymer foams). The properties of these materials are determined mainly by the shape and size of internal structural elements (pores). The interactions on the phase boundaries have influence on the materials properties too. In the present work, the gas-filled urea-formaldehyde resins were reinforced by waste phosphogypsum. The waste phosphogypsum (CaSO4.2H2O) is a solid by-product in wet phosphoric acid production processes. The values of the interactions polymer-filler were increased by using two modifying agents: polyvinyl acetate for polymer matrix and sodium metasilicate for filler. Technological methods for gas-filling and recipes of urea-formaldehyde based materials with apparent density 20-120 kg/m3 were developed. The heat conductivity of the samples is between 0.024 and 0.029 W/moK. Tensile analyses were carried out at 10 and 50% deformation and show values 0.01-0.14 MPa and 0.01-0.09 MPa, respectively. The apparent density of obtained materials is between 20 and 92 kg/m3. The changes in the tensile properties and density of these materials according to sodium metasilicate content were studied too. The mechanism of phosphogypsum adsorption modification was studied using methods of FT-IR spectroscopy. The structure of the gas-filled urea-formaldehyde resins was described by results of electron scanning microscopy at three different magnification ratios – x50, x150 and x 500. The aim of present work is to study the possibility of the usage of phosphogypsum as mineral filler for urea-formaldehyde resins and development of a technology for the production of gas-filled reinforced polymer composite materials. The structure and the properties of obtained composite materials are suitable for thermal and sound insulation applications.

Keywords: Gas-filled thermosets, mechanical properties, phosphogypsum, urea-formaldehyde resins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 676
361 Experimental Investigation and Hardness Analysis of Chromoly Steel Multipass Welds Using GMAW

Authors: Ramesh S., Sasiraaju A. S., Sidhaarth K., Sudhan Rajkumar N., Manivel Muralidaran V.

Abstract:

This work presents the result of investigations aimed at determining the hardness of the welded Chromoly (A 4130) steel plate of 2” thickness. Multi pass welding for the thick sections was carried out and analyzed for the Chromoly alloy steel plates. The study of hardness at the weld metal reveals that there is the presence of different micro structure products which yields diverse properties. The welding carried out using GMAW with ER70s-2 electrode. Single V groove design was selected for the butt joint configuration. The presence of hydrogen has been suppressed by selecting low hydrogen electrode. Preheating of the plate prior to welding reduces the cooling rate which also affects the weld metal microstructure. The shielding gas composition used in this analysis is 80% Ar-20% CO2. The experimental analysis gives the detailed study of the hardness of the material.

Keywords: Chromoly, Gas Metal Arc Weld (GMAW), Hardness, Multi pass weld, Shielding gas composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2965
360 FZP Design Considering Spherical Wave Incidence

Authors: Sergio Pérez-López, Daniel Tarrazó-Serrano, José M. Fuster, Pilar Candelas, Constanza Rubio

Abstract:

Fresnel Zone Plates (FZPs) are widely used in many areas, such as optics, microwaves or acoustics. On the design of FZPs, plane wave incidence is typically considered, but that is not usually the case in ultrasounds, especially in applications where a piston emitter is placed at a certain distance from the lens. In these cases, having control of the focal distance is very important, and with the usual Fresnel equation a focal displacement from the theoretical distance is observed due to the plane wave supposition. In this work, a comparison between FZP with plane wave incidence design and FZP with point source design in the case of piston emitter is presented. Influence of the main parameters of the piston in the final focalization profile has been studied. Numerical models and experimental results are shown, and they prove that when spherical wave incidence is considered for the piston case, it is possible to have a fine control of the focal distance in comparison with the classical design method.

Keywords: Focusing, Fresnel zone plate, ultrasound, spherical wave incidence, piston emitter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
359 Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods

Authors: H. J. Wattimanela, U. S. Passaribu, N. T. Puspito, S. W. Indratno

Abstract:

Molluca Collision Zone is located at the junction of the Eurasian, Australian, Pacific and the Philippines plates. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. In this research, we used data of shallow earthquakes type and its magnitudes ≥4 SR (period 1964-2013). From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management.

Keywords: Molluca Collision Zone, partition regions, conventional statistical methods, Earthquakes, classifications, disaster management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
358 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads

Authors: Behzad Mohammadzadeh, Huyk Chun Noh

Abstract:

Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.

Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
357 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann

Abstract:

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Keywords: Composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
356 Antioxydant and Antibacterial Activity of Alkaloids and Terpenes Extracts from Euphorbia granulata

Authors: Bousselessela H., Yahia M., Mahboubi A., Benbia S., Yahia Massinissa

Abstract:

In order to enhance the knowledge of certain phytochemical Algerian plants that are widely used in traditional medicine and to exploit their therapeutic potential in modern medicine, we have done a specific extraction of terpenes and alkaloids from the leaves of Euphorbia granulata to evaluate the antioxidant and antibacterial activity of this extracts. After the extraction it was found that the terpene extract gave the highest yield 59.72% compared with alkaloids extracts. The disc diffusion method was used to determine the antibacterial activity against different bacterial strains: Escherichia coli (ATCC25922), Pseudomonas aeruginosa (ATCC27853) and Staphylococcus aureus (ATCC25923). All extracts have shown inhibition of growth bacteria. The different zones of inhibition have varied from (7 -10 mm) according to the concentrations of extract used. Testing the antiradical activity on DPPH-TLC plates indicated the presence of substances that have potent anti-free radical. As against, the BC-TLC revealed that only terpenes extract which was reacted positively. These results can validate the importance of Euphorbia granulata in traditional medicine.

Keywords: Euphorbia granulata, Euphorbiaceae, alkaloids, terpenoids, antioxidant activity, antibacterial activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3047
355 Determination of Surface Roughness by Ball Burnishing Process Using Factorial Techniques

Authors: P. S. Dabeer, G. K. Purohit

Abstract:

Burnishing is a method of finishing and hardening machined parts by plastic deformation of the surface. Experimental work based on central composite second order rotatable design has been carried out on a lathe machine to establish the effects of ball burnishing parameters on the surface roughness of brass material. Analysis of the results by the analysis of variance technique and the F-test show that the parameters considered, have significant effects on the surface roughness.

Keywords: Ball burnishing, Response surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
354 Retrofitting of Beam-Column Joint Using CFRP and Steel Plate

Authors: N. H. Hamid, N. D. Hadi, K. D. Ghani

Abstract:

This paper presents the retrofitting of beam-column joint using CFRP (Carbon Fiber Reinforced Polymer) and steel plate. This specimen was tested until failure up to 1.0% drift. This joint suffered severe damages and diagonal cracks at upper crack at upper column before retrofitted. CFRP were wrapped at corbel, bottom and top of the column. Steel plates with bonding were attached to the two beams and the jointing system. This retrofitted specimen is tested again under lateral cyclic loading up 1.75% drift. Visual observations show that the cracks started at joint when 0.5% drift applied at top of column. Damage of retrofitted beam-column joint occurred inside the CFRP and it cannot be seen from outside. Analysis of elastic stiffness, lateral strength, ductility, hysteresis loops and equivalent viscous damping shows that these values are higher than before retrofitting. Therefore, it is recommended to use this type of retrofitting method for beam-column joint with corbel which suffers severe damage after the earthquake.

Keywords: Beam-Column joint, ductility, stiffness, retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5932
353 Development of Analytical Model of Bending Force during 3-Roller Conical Bending Process and Its Experimental Verification

Authors: Mahesh Chudasama, Harit Raval

Abstract:

Conical sections and shells made from metal plates are widely used in various industrial applications. 3-roller conical bending process is preferably used to produce such conical sections and shells. Bending mechanics involved in the process is complex and little work is done in this area. In the present paper an analytical model is developed to predict bending force which will be acting during 3-roller conical bending process. To verify the developed model, conical bending experiments are performed. Analytical results and experimental results were compared. Force predicted by analytical model is in close proximity of the experimental results. The error in the prediction is ±10%. Hence the model gives quite satisfactory results. Present model is also compared with the previously published bending force prediction model and it is found that the present model gives better results. The developed model can be used to estimate the bending force during 3-roller bending process and can be useful to the designers for designing the 3-roller conical bending machine.

Keywords: Bending-force, Experimental-verification, Internal-moment, Roll-bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3983
352 A Study on Mode of Collapse of Metallic Shells Having Combined Tube-Frusta Geometry Subjected to Axial Compression

Authors: P. K. Gupta

Abstract:

The present paper deals with the experimental and computational study of axial collapse of the aluminum metallic shells having combined tube-frusta geometry between two parallel plates. Shells were having bottom two third lengths as frusta and remaining top one third lengths as tube. Shells were compressed to recognize their modes of collapse and associated energy absorption capability. An axisymmetric Finite Element computational model of collapse process is presented and analysed, using a non-linear FE code FORGE2. Six noded isoparametric triangular elements were used to discretize the deforming shell. The material of the shells was idealized as rigid visco-plastic. To validate the computational model experimental and computed results of the deformed shapes and their corresponding load-compression and energy-compression curves were compared. With the help of the obtained results progress of the axisymmetric mode of collapse has been presented, analysed and discussed.

Keywords: Axial compression, crashworthiness, energy absorption, FORGE2, metallic shells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
351 Experimental Investigation on Cold-formed Steel Wall Plate System

Authors: A. L. Y. Ng, W. H. Hii

Abstract:

A series of tests on cold-formed steel (CFS) wall plate system subjected to uplift force at the mid span of the wall plate is presented. The aim of the study was to study the behaviour and identify the modes of failure of CFS wall plate system. Two parameters were considered in these studies: 1) different dimension of U-bracket at the supports and 2) different sizes of lipped C-channel. The lipped C-channels used were C07508, C07512 and C10012. The dimensions of the leg of U-bracket were 50x35 mm and 50x60 mm respectively, where 25 mm clearance was provided to the connections for specimens with clearance. Results show that specimens with and without clearance experienced the same mode of failure. Failure began with the yielding of the connectors followed by distortional buckling of the wall plate. However, when C075 sections were used as wall plate, the system behaved differently. There was a large deformation in the wall plate and failure began in the distortional buckling of the wall plate followed by bearing of the connecting plates at the supports (U-bracket). The ultimate strength of the system also decreased dramatically when C075 sections were used.

Keywords: Cold-formed steel, wall plate system, distortional buckling, full scale laboratory test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2115
350 Comparative Parametric Analysis on the Dynamic Response of Fibre Composite Beams with Debonding

Authors: Indunil Jayatilake, Warna Karunasena

Abstract:

Fiber Reinforced Polymer (FRP) composites enjoy an array of applications ranging from aerospace, marine and military to automobile, recreational and civil industry due to their outstanding properties. A structural glass fiber reinforced polymer (GFRP) composite sandwich panel made from E-glass fiber skin and a modified phenolic core has been manufactured in Australia for civil engineering applications. One of the major mechanisms of damage in FRP composites is skin-core debonding. The presence of debonding is of great concern not only because it severely affects the strength but also it modifies the dynamic characteristics of the structure, including natural frequency and vibration modes. This paper deals with the investigation of the dynamic characteristics of a GFRP beam with single and multiple debonding by finite element based numerical simulations and analyses using the STRAND7 finite element (FE) software package. Three-dimensional computer models have been developed and numerical simulations were done to assess the dynamic behavior. The FE model developed has been validated with published experimental, analytical and numerical results for fully bonded as well as debonded beams. A comparative analysis is carried out based on a comprehensive parametric investigation. It is observed that the reduction in natural frequency is more affected by single debonding than the equally sized multiple debonding regions located symmetrically to the single debonding position. Thus it is revealed that a large single debonding area leads to more damage in terms of natural frequency reduction than isolated small debonding zones of equivalent area, appearing in the GFRP beam. Furthermore, the extents of natural frequency shifts seem mode-dependent and do not seem to have a monotonous trend of increasing with the mode numbers.

Keywords: Debonding, dynamic response, finite element modelling, FRP beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
349 Thermal Hydraulic Analysis of the IAEA 10MW Benchmark Reactor under Normal Operating Condition

Authors: Hamed Djalal

Abstract:

The aim of this paper is to perform a thermal-hydraulic analysis of the IAEA 10 MW benchmark reactor solving analytically and numerically, by mean of the finite volume method, respectively the steady state and transient forced convection in rectangular narrow channel between two parallel MTR-type fuel plates, imposed under a cosine shape heat flux. A comparison between both solutions is presented to determine the minimal coolant velocity which can ensure a safe reactor core cooling, where the cladding temperature should not reach a specific safety limit 90 °C. For this purpose, a computer program is developed to determine the principal parameter related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the inlet coolant velocity. Finally, a good agreement is noticed between the both analytical and numerical solutions, where the obtained results are displayed graphically.

Keywords: Forced convection, friction factor pressure drop thermal hydraulic analysis, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
348 Axisymmetric Vibrations of Layered Cylindrical Shells with Cracks

Authors: Larissa Roots

Abstract:

Vibrations of circular cylindrical shells made of layered composite materials are considered. The shells are weakened by circumferential cracks. The influence of circumferential cracks with constant depth on the vibration of the shell is prescribed with the aid of a matrix of local flexibility coupled with the coefficient of the stress intensity known in the linear elastic fracture mechanics. Numerical results are presented for the case of the shell with one circular crack.

Keywords: Layered shell, axisymmetric vibration, crack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
347 Numerical Study of Base Drag Reduction Using Locked Vortex Flow Management Technique for Lower Subsonic Regime

Authors: Kailas S. Jagtap, Karthik Sundarraj, Nirmal Kumar, S. Rajnarasimha, Prakash S. Kulkarni

Abstract:

The issue of turbulence base streams and the drag related to it have been of important attention for rockets, missiles, and aircraft. Different techniques are used for base drag reduction. This paper presents the numerical study of numerous drag reduction technique. The base drag or afterbody drag of bluff bodies can be reduced easily using locked vortex drag reduction technique. For bluff bodies having a cylindrical shape, the base drag is much larger compared to streamlined bodies. For such bodies using splitter plates, the vortex can be trapped between the base and the plate, which results in smooth flow. Splitter plate with round and curved corner shapes has influence in drag reduction. In this paper, the comparison is done between single splitter plate as different positions and with the bluff body. Base drag for the speed of 30m/s can be reduced about 20% to 30% by using single splitter plate as compared to the bluff body.

Keywords: Base drag, bluff body, splitter plate, vortex flow, ANSYS, Fluent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
346 Contribution of the SidePlate Beam-Column Connections to the Seismic Responses of Special Moment Frames

Authors: Gökhan Yüksel, Serdar Akça, İlker Kalkan

Abstract:

The present study is an attempt to demonstrate the significant levels of contribution of the moment-resisting beam-column connections with side plates to the earthquake behavior of special steel moment frames. To this end, the moment-curvature relationships of a regular beam-column connection and its SidePlate counterpart were determined with the help of finite element analyses. The connection stiffness and deformability values from these finite element analyses were used in the linear time-history analyses of an example structural steel frame under three different seismic excitations. The top-story lateral drift, base shear, and overturning moment values in two orthogonal directions were obtained from these time-history analyses and compared to each other. The results revealed the improvements in the system response with the use of SidePlate connections. The paper ends with crucial recommendations for the plan and design of further studies on this very topic.

Keywords: Seismic detailing, special moment frame, steel structures, beam-column connection, earthquake-resistant design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 467
345 Gas-Liquid Flow on Smooth and Textured Inclined Planes

Authors: J.J. Cooke, S. Gu, L.M. Armstrong, K.H. Luo

Abstract:

Carbon Capture & Storage (CCS) is one of the various methods that can be used to reduce the carbon footprint of the energy sector. This paper focuses on the absorption of CO2 from flue gas using packed columns, whose efficiency is highly dependent on the structure of the liquid films within the column. To study the characteristics of liquid films a CFD solver, OpenFOAM is utilised to solve two-phase, isothermal film flow using the volume-of-fluid (VOF) method. The model was validated using existing experimental data and the Nusselt theory. It was found that smaller plate inclination angles, with respect to the horizontal plane, resulted in larger wetted areas on smooth plates. However, only a slight improvement in the wetted area was observed. Simulations were also performed using a ridged plate and it was observed that these surface textures significantly increase the wetted area of the plate. This was mainly attributed to the channelling effect of the ridges, which helped to oppose the surface tension forces trying to minimise the surface area. Rivulet formations on the ridged plate were also flattened out and spread across a larger proportion of the plate width.

Keywords: CCS, liquid film flow, packed columns, wetted area

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
344 Experimental and Analytical Study of Scrap Tire Rubber Pad for Seismic Isolation

Authors: Huma Kanta Mishra, Akira Igarashi

Abstract:

A seismic isolation pad produced by utilizing the scrap tire rubber which contains interleaved steel reinforcing cords has been proposed. The steel cords are expected to function similar to the steel plates used in conventional laminated rubber bearings. The scrap tire rubber pad (STRP) isolator is intended to be used in low rise residential buildings of highly seismic areas of the developing countries. Experimental investigation was conducted on unbonded STRP isolators, and test results provided useful information including stiffness, damping values and an eventual instability of the isolation unit. Finite element analysis (FE analysis) of STRP isolator was carried out on properly bonded samples. These types of isolators provide positive incremental force resisting capacity up to shear strain level of 155%. This paper briefly discusses the force deformation behavior of bonded STRP isolators including stability of the isolation unit.

Keywords: base isolation, buckling load, finite element analysis, STRP isolators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2913
343 Numerical Investigation for External Strengthening of Dapped-End Beams

Authors: A. Abdel-Moniem, H. Madkour, K. Farah, A. Abdullah

Abstract:

The reduction in dapped end beams depth nearby the supports tends to produce stress concentration and hence results in shear cracks, if it does not have an adequate reinforcement detailing. This study investigates numerically the efficiency of applying different external strengthening techniques to the dapped end of such beams. A two-dimensional finite element model was built to predict the structural behavior of dapped ends strengthened with different techniques. The techniques included external bonding of the steel angle at the re-entrant corner, un-bounded bolt anchoring, external steel plate jacketing, exterior carbon fiber wrapping and/or stripping and external inclined steel plates. The FE analysis results are then presented in terms of the ultimate load capacities, load-deflection and crack pattern at failure. The results showed that the FE model, at various stages, was found to be comparable to the available test data. Moreover, it enabled the capture of the failure progress, with acceptable accuracy, which is very difficult in a laboratory test.

Keywords: Dapped-end beams, finite element, shear failure, strengthening techniques, reinforced concrete, numerical investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
342 Mixed Convection in a 2D-channel with a Co- Flowing Fluid Injection: Influence of the Jet Position

Authors: Ameni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot

Abstract:

Numerical study of a plane jet occurring in a vertical heated channel is carried out. The aim is to explore the influence of the forced flow, issued from a flat nozzle located in the entry section of a channel, on the up-going fluid along the channel walls. The Reynolds number based on the nozzle width and the jet velocity ranges between 3 103 and 2.104; whereas, the Grashof number based on the channel length and the wall temperature difference is 2.57 1010. Computations are established for a symmetrically heated channel and various nozzle positions. The system of governing equations is solved with a finite volumes method. The obtained results show that the jet-wall interactions activate the heat transfer, the position variation modifies the heat transfer especially for low Reynolds numbers: the heat transfer is enhanced for the adjacent wall; however it is decreased for the opposite one. The numerical velocity and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and the Nusselt number along the plates.

Keywords: Channel, Heat flux, Jet, Mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
341 Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material

Authors: Malek Ali

Abstract:

Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation properties were characterized and the result indicates that Mechanical and degradation of 80%PVA/5%Chitosan/15%HNTs higher than the others PVA/CS/HNTs composites.

Keywords: PVA/Chitosan, Composites, PVA/CS/HNTs, HNTs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
340 Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites

Authors: Pasquale Verde, Giuseppe Lamanna

Abstract:

A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.

Keywords: Fatigue life, strength, composites, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
339 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels

Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra

Abstract:

In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.

Keywords: Alternative energy, solar tracker, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
338 Finite Element Analysis of Thin Steel Plate Shear Walls

Authors: M. Lashgari

Abstract:

Steel plate shear walls (SPSWs) in buildings are known to be an effective means for resisting lateral forces. By using un-stiffened walls and allowing them to buckle, their energy absorption capacity will increase significantly due to the postbuckling capacity. The post-buckling tension field action of SPSWs can provide substantial strength, stiffness and ductility. This paper presents the Finite Element Analysis of low yield point (LYP) steel shear walls. In this shear wall system, the LYP steel plate is used for the steel panel and conventional structural steel is used for boundary frames. A series of nonlinear cyclic analyses were carried out to obtain the stiffness, strength, deformation capacity, and energy dissipation capacity of the LYP steel shear wall. The effect of widthto- thickness ratio of steel plate on buckling behavior, and energy dissipation capacities were studied. Good energy dissipation and deformation capacities were obtained for all models.

Keywords: low yield point steel, steel plate shear wall, thin plates, elastic buckling, inelastic buckling, post-buckling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3166
337 Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis

Authors: Djamal Hamadi, Sifeddine Abderrahmani, Toufik Maalem, Oussama Temami

Abstract:

In recent years many finite elements have been developed for plate bending analysis. The formulated elements are based on the strain based approach. This approach leads to the representation of the displacements by higher order polynomial terms without the need for the introduction of additional internal and unnecessary degrees of freedom. Good convergence can also be obtained when the results are compared with those obtained from the corresponding displacement based elements, having the same total number of degrees of freedom. Furthermore, the plate bending elements are free from any shear locking since they converge to the Kirchhoff solution for thin plates contrarily for the corresponding displacement based elements. In this paper the efficiency of the strain based approach compared to well known displacement formulation is presented. The results obtained by a new formulated plate bending element based on the strain approach and Kirchhoff theory are compared with some others elements. The good convergence of the new formulated element is confirmed.

Keywords: Displacement fields, finite elements, plate bending, Kirchhoff theory, strain based approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2149
336 Ligandless Extraction and Determination of Trace Amounts of Lead in Pomegranate, Zucchini and Lettuce Samples after Dispersive Liquid-Liquid Microextraction with Ultrasonic Bath and Optimization of Extraction Condition with RSM Design

Authors: Fariba Tadayon, Elmira Hassanlou, Hasan Bagheri, Mostafa Jafarian

Abstract:

Heavy metals are released into water, plants, soil, and food by natural and human activities. Lead has toxic roles in the human body and may cause serious problems even in low concentrations, since it may have several adverse effects on human. Therefore, determination of lead in different samples is an important procedure in the studies of environmental pollution. In this work, an ultrasonic assisted-ionic liquid based-liquid-liquid microextraction (UA-IL-DLLME) procedure for the determination of lead in zucchini, pomegranate, and lettuce has been established and developed by using flame atomic absorption spectrometer (FAAS). For UA-IL-DLLME procedure, 10 mL of the sample solution containing Pb2+ was adjusted to pH=5 in a glass test tube with a conical bottom; then, 120 μL of 1-Hexyl-3-methylimidazolium hexafluoro phosphate (CMIM)(PF6) was rapidly injected into the sample solution with a microsyringe. After that, the resulting cloudy mixture was treated by ultrasonic for 5 min, then the separation of two phases was obtained by centrifugation for 5 min at 3000 rpm and IL-phase diluted with 1 cc ethanol, and the analytes were determined by FAAS. The effect of different experimental parameters in the extraction step including: ionic liquid volume, sonication time and pH was studied and optimized simultaneously by using Response Surface Methodology (RSM) employing a central composite design (CCD). The optimal conditions were determined to be an ionic liquid volume of 120 μL, sonication time of 5 min, and pH=5. The linear ranges of the calibration curve for the determination by FAAS of lead were 0.1-4 ppm with R2=0.992. Under optimized conditions, the limit of detection (LOD) for lead was 0.062 μg.mL-1, the enrichment factor (EF) was 93, and the relative standard deviation (RSD) for lead was calculated as 2.29%. The levels of lead for pomegranate, zucchini, and lettuce were calculated as 2.88 μg.g-1, 1.54 μg.g-1, 2.18 μg.g-1, respectively. Therefore, this method has been successfully applied for the analysis of the content of lead in different food samples by FAAS.

Keywords: Dispersive liquid-liquid microextraction, Central composite design, Food samples, Flame atomic absorption spectrometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
335 Antiinflammatory and Wound Healing Activity of Sedum Essential Oils Growing in Kazakhstan

Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina

Abstract:

The article represents the results of clinical researches of composite herbal medicinal product based on essential oils of Sedum plants growing in Kazakhstan in commercial reserves at the territory of Kazakhstan. The results of comparative analysis are represented in obstetric-gynecologic practice during combined therapy for postnatal complications, inflammatory infiltrates in the area of surgical wounds including wounds after caesarean section.

Keywords: Anti-inflammatory, bioactive substances, essential oils, isolation, Sedum L., wound healing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
334 Effects of Using Gusset Plate Stiffeners on the Seismic Performance of Concentrically Braced Frame

Authors: B. Mohebi, N. Asadi, F. Kazemi

Abstract:

Inelastic deformation of the brace in Special Concentrically Braced Frame (SCBF) creates inelastic damages on gusset plate connections such as buckling at edges. In this study, to improve the seismic performance of SCBFs connections, an analytical study was undertaken. To improve the gusset plate connection, this study proposes using ‎edge’s stiffeners in both sides of gusset plate.‎ For this purpose, in order to examine edge’s stiffeners effect on gusset plate connections, two groups of modeling with and without considering edge’s stiffener and different types of braces were modeled using ABAQUS software. The results show that considering the edge’s stiffener reduces the equivalent plastic strain values at a connection region of gusset plate with beam and column, which can improve the seismic performance of gusset plate. Furthermore, considering the edge’s stiffeners significantly decreases the strain concentration at regions where gusset plates have been connected to beam and column. Moreover, considering 2tpl distance causes reduction in the plastic strain.

Keywords: Special concentrically braced frame, gusset plate, edge’s stiffener, seismic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
333 Composite Relevance Feedback for Image Retrieval

Authors: Pushpa B. Patil, Manesh B. Kokare

Abstract:

This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.

Keywords: Image retrieval, relevance feedback, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963