Search results for: panel data analysis.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13622

Search results for: panel data analysis.

13112 An Empirical Investigation of Montesquieu’s Theories on Climate

Authors: Lisa J. Piergallini

Abstract:

This project uses panel regression analyses to investigate the relationships between geography, institutions, and economic development, as guided by the theories of the 18th century French philosopher Montesquieu. Contemporary scholars of political economy perpetually misinterpret Montesquieu’s theories on climate, and in doing so they miss what could be the key to resolving the geography vs. institutions debate. There is a conspicuous gap in this literature, in that it does not consider whether geography and institutors might have an interactive, dynamic effect on economic development. This project seeks to bridge that gap. Data are used for all available countries over the years 1980-2013. Two interaction terms between geographic and institutional variables are employed within the empirical analyses, and these offer a unique contribution to the ongoing geography vs. institutions debate within the political economy literature. This study finds that there is indeed an interactive effect between geography and institutions, and that this interaction has a statistically significant effect on economic development. Democracy (as measured by Polity score) and rule of law and property rights (as measured by the Fraser index) have positive effects on economic development (as measured by GDP per capita), yet the magnitude of these effects are stronger in contexts where a low percent of the national population lives in the geographical tropics. This has implications for promoting economic development, and it highlights the importance of understanding geographical context.

Keywords: Montesquieu, geography, institutions, economic development, political philosophy, political economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
13111 Using Data Clustering in Oral Medicine

Authors: Fahad Shahbaz Khan, Rao Muhammad Anwer, Olof Torgersson

Abstract:

The vast amount of information hidden in huge databases has created tremendous interests in the field of data mining. This paper examines the possibility of using data clustering techniques in oral medicine to identify functional relationships between different attributes and classification of similar patient examinations. Commonly used data clustering algorithms have been reviewed and as a result several interesting results have been gathered.

Keywords: Oral Medicine, Cluto, Data Clustering, Data Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
13110 An Approach for Data Analysis, Evaluation and Correction: A Case Study from Man-Made River Project in Libya

Authors: Nasser M. Amaitik, Nabil A. Alfagi

Abstract:

The world-s largest Pre-stressed Concrete Cylinder Pipe (PCCP) water supply project had a series of pipe failures which occurred between 1999 and 2001. This has led the Man-Made River Authority (MMRA), the authority in charge of the implementation and operation of the project, to setup a rehabilitation plan for the conveyance system while maintaining the uninterrupted flow of water to consumers. At the same time, MMRA recognized the need for a long term management tool that would facilitate repair and maintenance decisions and enable taking the appropriate preventive measures through continuous monitoring and estimation of the remaining life of each pipe. This management tool is known as the Pipe Risk Management System (PRMS) and now in operation at MMRA. Both the rehabilitation plan and the PRMS require the availability of complete and accurate pipe construction and manufacturing data This paper describes a systematic approach of data collection, analysis, evaluation and correction for the construction and manufacturing data files of phase I pipes which are the platform for the PRMS database and any other related decision support system.

Keywords: Asbuilt, History, IMD, MMRA, PDBMS & PRMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
13109 A Fully-Automated Disturbance Analysis Vision for the Smart Grid Based on Smart Switch Data

Authors: Bernardo Cedano, Ahmed H. Eltom, Bob Hay, Jim Glass, Raga Ahmed

Abstract:

The deployment of smart grid devices such as smart meters and smart switches (SS) supported by a reliable and fast communications system makes automated distribution possible, and thus, provides great benefits to electric power consumers and providers alike. However, more research is needed before the full utility of smart switch data is realized. This paper presents new automated switching techniques using SS within the electric power grid. A concise background of the SS is provided, and operational examples are shown. Organization and presentation of data obtained from SS are shown in the context of the future goal of total automation of the distribution network. The description of application techniques, the examples of success with SS, and the vision outlined in this paper serve to motivate future research pertinent to disturbance analysis automation.

Keywords: Disturbance automation, electric power grid, smart grid, smart switch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
13108 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175
13107 The Impact of the General Data Protection Regulation on Human Resources Management in Schools

Authors: Alexandra Aslanidou

Abstract:

The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.

Keywords: General data protection regulation, human resource management, educational system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
13106 Query Algebra for Semistuctured Data

Authors: Ei Ei Myat, Ni Lar Thein

Abstract:

With the tremendous growth of World Wide Web (WWW) data, there is an emerging need for effective information retrieval at the document level. Several query languages such as XML-QL, XPath, XQL, Quilt and XQuery are proposed in recent years to provide faster way of querying XML data, but they still lack of generality and efficiency. Our approach towards evolving a framework for querying semistructured documents is based on formal query algebra. Two elements are introduced in the proposed framework: first, a generic and flexible data model for logical representation of semistructured data and second, a set of operators for the manipulation of objects defined in the data model. In additional to accommodating several peculiarities of semistructured data, our model offers novel features such as bidirectional paths for navigational querying and partitions for data transformation that are not available in other proposals.

Keywords: Algebra, Semistructured data, Query Algebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
13105 Half Model Testing for Canard of a Hybrid Buoyant Aircraft

Authors: A. U. Haque, W. Asrar, A. A. Omar, E. Sulaeman, J. S. Mohamed Ali

Abstract:

Due to the interference effects, the intrinsic aerodynamic parameters obtained from the individual component testing are always fundamentally different than those obtained for complete model testing. Consideration and limitation for such testing need to be taken into account in any design work related to the component buildup method. In this paper, the scaled model of a straight rectangular canard of a hybrid buoyant aircraft is tested at 50 m/s in IIUM-LSWT (Low Speed Wind Tunnel). Model and its attachment with the balance are kept rigid to have results free from the aeroelastic distortion. Based on the velocity profile of the test section’s floor; the height of the model is kept equal to the corresponding boundary layer displacement. Balance measurements provide valuable but limited information of overall aerodynamic behavior of the model. Zero lift coefficient is obtained at -2.2o and the corresponding drag coefficient was found to be less than that at zero angle of attack. As a part of the validation of low fidelity tool, plot of lift coefficient plot was verified by the experimental data and except the value of zero lift coefficients, the overall trend has under predicted the lift coefficient. Based on this comparative study, a correction factor of 1.36 is proposed for lift curve slope obtained from the panel method.

Keywords: Wind tunnel testing, boundary layer displacement, lift curve slope, canard, aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2624
13104 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.

Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
13103 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
13102 Cost Efficiency of European Cooperative Banks

Authors: Karolína Vozková, Matěj Kuc

Abstract:

This paper analyzes recent trends in cost efficiency of European cooperative banks using efficient frontier analysis. Our methodology is based on stochastic frontier analysis which is run on a set of 649 European cooperative banks using data between 2006 and 2015. Our results show that average inefficiency of European cooperative banks is increasing since 2008, smaller cooperative banks are significantly more efficient than the bigger ones over the whole time period and that share of net fee and commission income to total income surprisingly seems to have no impact on bank cost efficiency.

Keywords: Cooperative banks, cost efficiency, efficient frontier analysis, stochastic frontier analysis, net fee and commission income.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 860
13101 The Impact of Seasonality on Rainfall Patterns: A Case Study

Authors: Priti Kaushik, Randhir Singh Baghel, Somil Khandelwal

Abstract:

This study uses whole-year data from Rajasthan, India, at the meteorological divisional level to analyze and evaluate long-term spatiotemporal trends in rainfall and looked at the data from each of the thirteen tehsils in the Jaipur district to see how the rainfall pattern has altered over the last 10 years. Data on daily rainfall from the Indian Meteorological Department (IMD) in Jaipur are available for the years 2012 through 2021. We mainly focus on comparing data of tehsil wise in the Jaipur district, Rajasthan, India. Also analyzed is the fact that July and August always see higher rainfall than any other month. Rainfall usually starts to rise around week 25th and peaks in weeks 32nd or 33rd. They showed that on several occasions, 2017 saw the least amount of rainfall during a long span of 10 years. The greatest rain fell between 2012 and 2021 in 2013, 2019, and 2020.

Keywords: Data analysis, extreme events, rainfall, descriptive case studies, precipitation temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191
13100 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks

Authors: Mohamed Watfa, William Daher, Hisham Al Azar

Abstract:

The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.

Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Indexing, Energy Efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
13099 Analysis of DNA Microarray Data using Association Rules: A Selective Study

Authors: M. Anandhavalli Gauthaman

Abstract:

DNA microarrays allow the measurement of expression levels for a large number of genes, perhaps all genes of an organism, within a number of different experimental samples. It is very much important to extract biologically meaningful information from this huge amount of expression data to know the current state of the cell because most cellular processes are regulated by changes in gene expression. Association rule mining techniques are helpful to find association relationship between genes. Numerous association rule mining algorithms have been developed to analyze and associate this huge amount of gene expression data. This paper focuses on some of the popular association rule mining algorithms developed to analyze gene expression data.

Keywords: DNA microarray, gene expression, association rule mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
13098 Settlement Analysis of Axially Loaded Bored Piles: A Case History

Authors: M. Mert, M. T. Ozkan

Abstract:

Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined.  Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests.

Keywords: Failure, finite element method, monitoring and instrumentation, pile, settlement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
13097 Balancing of Quad Tree using Point Pattern Analysis

Authors: Amitava Chakraborty, Sudip Kumar De, Ranjan Dasgupta

Abstract:

Point quad tree is considered as one of the most common data organizations to deal with spatial data & can be used to increase the efficiency for searching the point features. As the efficiency of the searching technique depends on the height of the tree, arbitrary insertion of the point features may make the tree unbalanced and lead to higher time of searching. This paper attempts to design an algorithm to make a nearly balanced quad tree. Point pattern analysis technique has been applied for this purpose which shows a significant enhancement of the performance and the results are also included in the paper for the sake of completeness.

Keywords: Algorithm, Height balanced tree, Point patternanalysis, Point quad tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
13096 A SWOT Analysis on Institutional Environments of University of the Punjab

Authors: Saghir Ahmad, Abid Hussain Ch., Atif Khalil, Misbah Malik

Abstract:

The major purpose of the study was to identify the institutional environments’ strengths, weaknesses, opportunities and threats of University of the Punjab, Lahore. The target population of the study was teachers of University of the Punjab Lahore. The sample of 235 teachers (155 males, 80 females) were selected through multistage stratified sampling technique. A questionnaire regarding the institutional environments of University SWOT Analysis “Strengths, Weaknesses, Opportunities, and Threats” was used to collect the required data for this study. The questionnaire consisted of two parts. The first part comprised of the demographic information (faculty, department, gender, teacher rank), while the second part included the statements regarding SWOT analysis (strengths, weaknesses, opportunities and threats). Reliability index (Cronbach’s Alpha) of the questionnaire was 0.87, which is statistically acceptable. Analysis of the data indicated that there was significant difference in the opinion of respondents. Teachers of Islamic studies and Laws had difference in their opinions regarding the institutional environment strengths, and opportunities and it was supported by the findings of the study. There was significant difference in opinions of male and female teachers regarding strengths and opportunities of university. And there was no significant difference in opinions of male and female teachers regarding weaknesses and threats of university.

Keywords: Institutional environments, SWOT analysis, teachers, University of the Punjab.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
13095 A Parallel Approach for 3D-Variational Data Assimilation on GPUs in Ocean Circulation Models

Authors: Rossella Arcucci, Luisa D’Amore, Simone Celestino, Giuseppe Scotti, Giuliano Laccetti

Abstract:

This work is the first dowel in a rather wide research activity in collaboration with Euro Mediterranean Center for Climate Changes, aimed at introducing scalable approaches in Ocean Circulation Models. We discuss designing and implementation of a parallel algorithm for solving the Variational Data Assimilation (DA) problem on Graphics Processing Units (GPUs). The algorithm is based on the fully scalable 3DVar DA model, previously proposed by the authors, which uses a Domain Decomposition approach (we refer to this model as the DD-DA model). We proceed with an incremental porting process consisting of 3 distinct stages: requirements and source code analysis, incremental development of CUDA kernels, testing and optimization. Experiments confirm the theoretic performance analysis based on the so-called scale up factor demonstrating that the DD-DA model can be suitably mapped on GPU architectures.

Keywords: Data Assimilation, Parallel Algorithm, GPU architectures, Ocean Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
13094 Contextual Sentiment Analysis with Untrained Annotators

Authors: Lucas A. Silva, Carla R. Aguiar

Abstract:

This work presents a proposal to perform contextual sentiment analysis using a supervised learning algorithm and disregarding the extensive training of annotators. To achieve this goal, a web platform was developed to perform the entire procedure outlined in this paper. The main contribution of the pipeline described in this article is to simplify and automate the annotation process through a system of analysis of congruence between the notes. This ensured satisfactory results even without using specialized annotators in the context of the research, avoiding the generation of biased training data for the classifiers. For this, a case study was conducted in a blog of entrepreneurship. The experimental results were consistent with the literature related annotation using formalized process with experts.

Keywords: Contextualized classifier, naïve Bayes, sentiment analysis, untrained annotators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4703
13093 Technology Trend and Level Assessment Using Patent Data for Preliminary Feasibility Study on R and D Program

Authors: Seongmin Yim

Abstract:

The Korean government has applied preliminary feasibility study for new and huge R&D programs since 2008.The study is carried out from the viewpoints of technology, policy, and Economics. Then integrate the separate analysis and finally arrive at a definite result; whether a program is feasible or unfeasible, This paper describes the concept and method of the feasibility analysis focused on technological viability assessment for technical analysis. It consists of technology trend assessment and technology level assessment. Through the analysis, we can determine the chance of schedule delay or cost overrun occurring in the proposed plan.

Keywords: Preliminary Feasibility Study, Technological viability, Technology Trend Assessment, Technology Level Assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
13092 Real-time Performance Study of EPA Periodic Data Transmission

Authors: Liu Ning, Zhong Chongquan, Teng Hongfei

Abstract:

EPA (Ethernet for Plant Automation) resolves the nondeterministic problem of standard Ethernet and accomplishes real-time communication by means of micro-segment topology and deterministic scheduling mechanism. This paper studies the real-time performance of EPA periodic data transmission from theoretical and experimental perspective. By analyzing information transmission characteristics and EPA deterministic scheduling mechanism, 5 indicators including delivery time, time synchronization accuracy, data-sending time offset accuracy, utilization percentage of configured timeslice and non-RTE bandwidth that can be used to specify the real-time performance of EPA periodic data transmission are presented and investigated. On this basis, the test principles and test methods of the indicators are respectively studied and some formulas for real-time performance of EPA system are derived. Furthermore, an experiment platform is developed to test the indicators of EPA periodic data transmission in a micro-segment. According to the analysis and the experiment, the methods to improve the real-time performance of EPA periodic data transmission including optimizing network structure, studying self-adaptive adjustment method of timeslice and providing data-sending time offset accuracy for configuration are proposed.

Keywords: EPA system, Industrial Ethernet, Periodic data, Real-time performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
13091 Using Data from Foursquare Web Service to Represent the Commercial Activity of a City

Authors: Taras Agryzkov, Almudena Nolasco-Cirugeda, Jos´e L. Oliver, Leticia Serrano-Estrada, Leandro Tortosa, Jos´e F. Vicent

Abstract:

This paper aims to represent the commercial activity of a city taking as source data the social network Foursquare. The city of Murcia is selected as case study, and the location-based social network Foursquare is the main source of information. After carrying out a reorganisation of the user-generated data extracted from Foursquare, it is possible to graphically display on a map the various city spaces and venues especially those related to commercial, food and entertainment sector businesses. The obtained visualisation provides information about activity patterns in the city of Murcia according to the people‘s interests and preferences and, moreover, interesting facts about certain characteristics of the town itself.

Keywords: Social networks, Foursquare, spatial analysis, data visualization, geocomputation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
13090 Quantitative Ranking Evaluation of Wine Quality

Authors: A. Brunel, A. Kernevez, F. Leclere, J. Trenteseaux

Abstract:

Today, wine quality is only evaluated by wine experts with their own different personal tastes, even if they may agree on some common features. So producers do not have any unbiased way to independently assess the quality of their products. A tool is here proposed to evaluate wine quality by an objective ranking based upon the variables entering wine elaboration, and analysed through principal component analysis (PCA) method. Actual climatic data are compared by measuring the relative distance between each considered wine, out of which the general ranking is performed.

Keywords: Wine, grape, vine, weather conditions, rating, climate, principal component analysis, metric analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
13089 Design and Development of an Innovative Advertisement Display with Flipping Mechanism

Authors: Raymond Yeo K. W., P. Y. Lim, Farrah Wong

Abstract:

Attractive and creative advertisement displays are often in high demand as they are known to have profound impact on the commercial market. In the fast advancement of technology, advertising trend has taken a great leap in attracting more and more demanding consumers. A low-cost and low-power consumption flipping advertisement board has been developed in this paper. The design of the electrical circuit and the controller of the advertisement board are presented. A microcontroller, a Darlington Pair driver and a unipolar stepper motor were used to operate the electrical flipping advertisement board. The proposed system has been implemented and the hardware has been tested to demonstrate the capability of displaying multiple advertisements in a panel.

Keywords: Advertisement board, microcontroller, stepper motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
13088 Development of an ArcGIS Toolbar for Trend Analysis of Climatic Data

Authors: Arnab Bandyopadhyay, Anubhab Pal, Subhajit Debnath

Abstract:

Climate change is a cumulative change in weather patterns over a period of time. Trend analysis using non-parametric Mann-Kendall test may help to determine the existence and magnitude of any statistically significant trend in the climatic data. Another index called Sen slope may be used to quantify the magnitude of such trends. A toolbar extension to ESRI ArcGIS named Arc Trends has been developed in this study for performing the above mentioned tasks. To study the temporal trend of meteorological parameters, 32 years (1971-2002) monthly meteorological data were collected for 133 selected stations over different agro-ecological regions of India. Both the maximum and minimum temperatures were found to be rising. A significant increasing trend in the relative humidity and a consistent significant decreasing trend in the wind speed all over the country were found. However, a general increase in rainfall was not found in recent years.

Keywords: Temporal trend, climate change, ArcGIS, Mann- Kendall test, Sen slope

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3086
13087 Maternal Health Outcome and Economic Growth in Sub-Saharan Africa: A Dynamic Panel Analysis

Authors: Okwan Frank

Abstract:

Maternal health outcome is one of the major population development challenges in Sub-Saharan Africa. The region has the highest maternal mortality ratio, despite the progressive economic growth in the region during the global economic crisis. It has been hypothesized that increase in economic growth will reduce the level of maternal mortality. The purpose of this study is to investigate the existence of the negative relationship between health outcome proxy by maternal mortality ratio and economic growth in Sub-Saharan Africa. The study used the Pooled Mean Group estimator of ARDL Autoregressive Distributed Lag (ARDL) and the Kao test for cointegration to examine the short-run and long-run relationship between maternal mortality and economic growth. The results of the cointegration test showed the existence of a long-run relationship between the variables considered for the study. The long-run result of the Pooled Mean group estimates confirmed the hypothesis of an inverse relationship between maternal health outcome proxy by maternal mortality ratio and economic growth proxy by Gross Domestic Product (GDP) per capita. Thus increasing economic growth by investing in the health care systems to reduce pregnancy and childbirth complications will help reduce maternal mortality in the sub-region.

Keywords: Economic growth, maternal mortality, pool mean group, Sub-Saharan Africa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
13086 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data

Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani

Abstract:

Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.

Keywords: EMD, neural data processing, spike detection, wavelet decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
13085 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences

Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam

Abstract:

The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.

Keywords: Learning experiences, innovation, traditional games, trainee teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
13084 Unified, Low-Cost Analysis Framework for the Cycling Situation in Cities

Authors: Joerg Schweizer, Jason N. Meggs, Nazanin R. Dehkordi, Frederico Rupi, Anton Pashkevich

Abstract:

We propose a low-cost uniform analysis framework allowing comparison of the strengths and weaknesses of the bicycling experience within and between cities. A primary component is an expedient, one-page mobility survey from which mode share is calculated. The bicycle mode share of many cities remains unknown, creating a serious barrier for both scientists and policy makers aiming to understand and increase rates of bicycling. Because of its low cost and expedience, this framework could be replicated widely, uniformly filling the data gap. The framework has been applied to 13 Central European cities with success. Data is collected on multiple modes with specific questions regarding both behavior and quality of travel experience. Individual preferences are also collected, examining the conditions under which respondents would change behavior to adopt more sustainable modes (bicycling or public transportation). A broad analysis opportunity results, intended to inform policy choices.

Keywords: bicycling, modal splits, transport policy, surveys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
13083 Validity and Reliability of Competency Assessment Implementation (CAI) Instrument Using Rasch Model

Authors: Nurfirdawati Muhamad Hanafi, Azmanirah Ab Rahman, Marina Ibrahim Mukhtar, Jamil Ahmad, Sarebah Warman

Abstract:

This study was conducted to generate empirical evidence on validity and reliability of the item of Competency Assessment Implementation (CAI) Instrument using Rasch Model for polythomous data aided by Winstep software version 3.68. The construct validity was examined by analyzing the point-measure correlation index (PTMEA), infit and outfit MNSQ values; meanwhile the reliability was examined by analyzing item reliability index. A survey technique was used as the major method with the CAI instrument on 156 teachers from vocational schools. The results have shown that the reliability of CAI Instrument items were between 0.80 and 0.98. PTMEA Correlation is in positive values, in which the item is able to distinguish between the ability of the respondent. Statistical data obtained show that out of 154 items, 12 items from the instrument suggested to be omitted. This study is hoped could bring a new direction to the process of data analysis in educational research.

Keywords: Competency Assessment, Reliability, Validity, Item Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831