Search results for: cloud computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 789

Search results for: cloud computing

279 Parallelization of Ensemble Kalman Filter (EnKF) for Oil Reservoirs with Time-lapse Seismic Data

Authors: Md Khairullah, Hai-Xiang Lin, Remus G. Hanea, Arnold W. Heemink

Abstract:

In this paper we describe the design and implementation of a parallel algorithm for data assimilation with ensemble Kalman filter (EnKF) for oil reservoir history matching problem. The use of large number of observations from time-lapse seismic leads to a large turnaround time for the analysis step, in addition to the time consuming simulations of the realizations. For efficient parallelization it is important to consider parallel computation at the analysis step. Our experiments show that parallelization of the analysis step in addition to the forecast step has good scalability, exploiting the same set of resources with some additional efforts.

Keywords: EnKF, Data assimilation, Parallel computing, Parallel efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281
278 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: Finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
277 Statistical Reliability Based Modeling of Series and Parallel Operating Systems using Extreme Value Theory

Authors: Mohamad Mahdavi, Mojtaba Mahdavi

Abstract:

This paper tries to represent a new method for computing the reliability of a system which is arranged in series or parallel model. In this method we estimate life distribution function of whole structure using the asymptotic Extreme Value (EV) distribution of Type I, or Gumbel theory. We use EV distribution in minimal mode, for estimate the life distribution function of series structure and maximal mode for parallel system. All parameters also are estimated by Moments method. Reliability function and failure (hazard) rate and p-th percentile point of each function are determined. Other important indexes such as Mean Time to Failure (MTTF), Mean Time to repair (MTTR), for non-repairable and renewal systems in both of series and parallel structure will be computed.

Keywords: Reliability, extreme value, parallel, series, lifedistribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090
276 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
275 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: Complementary and alternative medicine, Iridology, iris, feature extraction, classification, disease prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
274 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS

Authors: Xiangbin Zhu

Abstract:

Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.

Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
273 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxic Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, neural networks methods MLP type were applied to a database from an array of six sensors for the detection of three toxic gases. The choice of the number of hidden layers and the weight values are influential on the convergence of the learning algorithm. We proposed, in this article, a mathematical formula to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases and optimized the computation time. The model presented here has proven to be an effective application for the fast identification of toxic gases.

Keywords: Back-propagation, Computing time, Fast identification, MLP neural network, Number of neurons in the hidden layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
272 A Digital Media e-Learning Training Strategy for Healthcare Employees: Cost effective Distance Learning by Collaborative offline / online Engagement and Assessment

Authors: Lynn. J. MacFarlane. A

Abstract:

Within the healthcare system, training and continued professional development although essential, can be effected by cost and logistical restraints due to the nature of healthcare provision e.g employee shift patterns, access to expertise, cost factors in releasing staff to attend training etc. The use of multimedia technology for the development of e-learning applications is also a major cost consideration for healthcare management staff, and this type of media whether optical or on line requires careful planning in order to remain inclusive of all staff with potentially varied access to multimedia computing. This paper discusses a project in which the use of DVD authoring technology has been successfully implemented to meet the needs of distance learning and user considerations, and is based on film production techniques and reduced product turnaround deadlines.

Keywords: DVD, healthcare, distance learning, cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
271 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs

Authors: Swapnil Gupta, C. Pandu Rangan

Abstract:

A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.

Keywords: Uniquely restricted matching, interval graph, design and analysis of algorithms, matching, induced matching, witness counting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
270 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Marque Adrien, Delahaye Daniel, Marechal Pierre, Berry Isabelle

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: Wind direction, uncertainty level, Unmanned Aerial Vehicle, convolution neural network, SPD matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37
269 Detection and Pose Estimation of People in Images

Authors: Mousa Mojarrad, Amir Masoud Rahmani, Mehrab Mohebi

Abstract:

Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.

Keywords: Analysis of Image Processing, Canny Edge Detection, Human Body Recognition, Measurement, Pose Estimation, 2D Human Dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
268 Comparative Analysis of the Software Effort Estimation Models

Authors: Jaswinder Kaur, Satwinder Singh, Karanjeet Singh Kahlon

Abstract:

Accurate software cost estimates are critical to both developers and customers. They can be used for generating request for proposals, contract negotiations, scheduling, monitoring and control. The exact relationship between the attributes of the effort estimation is difficult to establish. A neural network is good at discovering relationships and pattern in the data. So, in this paper a comparative analysis among existing Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model and Neural Network Based Model is performed. Neural Network has outperformed the other considered models. Hence, we proposed Neural Network system as a soft computing approach to model the effort estimation of the software systems.

Keywords: Effort Estimation, Neural Network, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
267 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform

Authors: S. Hutasavi, D. Chen

Abstract:

The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.

Keywords: Built-up area extraction, Google earth engine, adaptive thresholding method, rapid mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
266 Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms

Authors: T. S. Chou, K. K. Yen, J. Luo

Abstract:

The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users- activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information from the original high dimensional database. Next, we design an intrusion detection method to solve the problems of uncertainty caused by limited and ambiguous information. In the experiments, we choose six UCI databases and DARPA KDD99 intrusion detection data set as our evaluation tools. Empirical studies indicate that our feature selection algorithm is capable of reducing the size of data set. Our intrusion detection method achieves a better performance than those of participating intrusion detectors.

Keywords: Intrusion detection, feature selection, k-nearest neighbors, fuzzy clustering, Dempster-Shafer theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
265 Analysis of Behaviour of Real Estate Rates in India- A Case Study of Pune City

Authors: Sayali Sandbhor, Ravindra Bapat, N. B. Chaphalkar

Abstract:

Decisions for investment, buying and selling of properties depend upon the market value of that property. Issues arise in arriving at the actual value of the property as well as computing the rate of returns from the estate. Addressing valuation related issues through an understanding of behavior of real property rates provide the means to explore the quality of past decisions and to make valid future decisions. Pune, an important city in India, has witnessed a high rate of growth in past few years. Increased demand for housing and investment in properties has led to increase in the rates of real estate. An attempt has been made to study the change and behavior of rates of real estate and factors influencing the same in Pune city.

Keywords: Real estate, valuation, property rates, trend analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9173
264 Heuristic Set-Covering-Based Postprocessing for Improving the Quine-McCluskey Method

Authors: Miloš Šeda

Abstract:

Finding the minimal logical functions has important applications in the design of logical circuits. This task is solved by many different methods but, frequently, they are not suitable for a computer implementation. We briefly summarise the well-known Quine-McCluskey method, which gives a unique procedure of computing and thus can be simply implemented, but, even for simple examples, does not guarantee an optimal solution. Since the Petrick extension of the Quine-McCluskey method does not give a generally usable method for finding an optimum for logical functions with a high number of values, we focus on interpretation of the result of the Quine-McCluskey method and show that it represents a set covering problem that, unfortunately, is an NP-hard combinatorial problem. Therefore it must be solved by heuristic or approximation methods. We propose an approach based on genetic algorithms and show suitable parameter settings.

Keywords: Boolean algebra, Karnaugh map, Quine-McCluskey method, set covering problem, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2793
263 Performance Analysis of Certificateless Signature for IKE Authentication

Authors: Nazrul M. Ahmad, Asrul H. Yaacob, Ridza Fauzi, Alireza Khorram

Abstract:

Elliptic curve-based certificateless signature is slowly gaining attention due to its ability to retain the efficiency of identity-based signature to eliminate the need of certificate management while it does not suffer from inherent private key escrow problem. Generally, cryptosystem based on elliptic curve offers equivalent security strength at smaller key sizes compared to conventional cryptosystem such as RSA which results in faster computations and efficient use of computing power, bandwidth, and storage. This paper proposes to implement certificateless signature based on bilinear pairing to structure the framework of IKE authentication. In this paper, we perform a comparative analysis of certificateless signature scheme with a well-known RSA scheme and also present the experimental results in the context of signing and verification execution times. By generalizing our observations, we discuss the different trade-offs involved in implementing IKE authentication by using certificateless signature.

Keywords: Certificateless signature, IPSec, RSA signature, IKE authentication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
262 High Performance Computing Using Out-of- Core Sparse Direct Solvers

Authors: Mandhapati P. Raju, Siddhartha Khaitan

Abstract:

In-core memory requirement is a bottleneck in solving large three dimensional Navier-Stokes finite element problem formulations using sparse direct solvers. Out-of-core solution strategy is a viable alternative to reduce the in-core memory requirements while solving large scale problems. This study evaluates the performance of various out-of-core sequential solvers based on multifrontal or supernodal techniques in the context of finite element formulations for three dimensional problems on a Windows platform. Here three different solvers, HSL_MA78, MUMPS and PARDISO are compared. The performance of these solvers is evaluated on a 64-bit machine with 16GB RAM for finite element formulation of flow through a rectangular channel. It is observed that using out-of-core PARDISO solver, relatively large problems can be solved. The implementation of Newton and modified Newton's iteration is also discussed.

Keywords: Out-of-core, PARDISO, MUMPS, Newton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144
261 Parallel Computation in Hypersonic Aerodynamic Heating Problem

Authors: Ding Guo-hao, Li Hua, Wang Wen-long

Abstract:

A parallel computational fluid dynamics code has been developed for the study of aerodynamic heating problem in hypersonic flows. The code employs the 3D Navier-Stokes equations as the basic governing equations to simulate the laminar hypersonic flow. The cell centered finite volume method based on structured grid is applied for spatial discretization. The AUSMPW+ scheme is used for the inviscid fluxes, and the MUSCL approach is used for higher order spatial accuracy. The implicit LU-SGS scheme is applied for time integration to accelerate the convergence of computations in steady flows. A parallel programming method based on MPI is employed to shorten the computing time. The validity of the code is demonstrated by comparing the numerical calculation result with the experimental data of a hypersonic flow field around a blunt body.

Keywords: Aerodynamic Heating, AUSMPW+, MPI, ParallelComputation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
260 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 301
259 Noise Estimation for Speech Enhancement in Non-Stationary Environments-A New Method

Authors: Ch.V.Rama Rao, Gowthami., Harsha., Rajkumar., M.B.Rama Murthy, K.Srinivasa Rao, K.AnithaSheela

Abstract:

This paper presents a new method for estimating the nonstationary noise power spectral density given a noisy signal. The method is based on averaging the noisy speech power spectrum using time and frequency dependent smoothing factors. These factors are adjusted based on signal-presence probability in individual frequency bins. Signal presence is determined by computing the ratio of the noisy speech power spectrum to its local minimum, which is updated continuously by averaging past values of the noisy speech power spectra with a look-ahead factor. This method adapts very quickly to highly non-stationary noise environments. The proposed method achieves significant improvements over a system that uses voice activity detector (VAD) in noise estimation.

Keywords: Noise estimation, Non-stationary noise, Speechenhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
258 Heuristic Continuous-time Associative Memories

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.

Keywords: Artificial Intelligent, Soft Computing, NeuralNetworks, Genetic Algorithms, Hopfield Neural Networks, andAssociative Memories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
257 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.

Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
256 Development of Optimized User Interface of Public Transit Navigator for a Smartphone

Authors: Masahiro Taketa, Masaki Ito, Takao Kawamura, Kazunori Sugahara

Abstract:

We develop a new interface for Bus-Net which is optimized for a smartphone. We are continuing to develop the shortest path planning system of public transportation called "Bus-Net" in Tottori prefecture as web application to improve the usability of public transportation. Recent trend of computing platform, however has shifted to an advanced mobile device called a smartphone such as iPhone and Android in Japan. A smartphone has different characters with existing feature phone in terms of OS, large touche panel, and several other features. We derive a guideline to design the new interface for a smartphone to full use of the functionality. The guideline is about simplicity of user-s operation, location awareness and usability. We developed the new interface for “Bus-Net" on iPhone referring to the guideline. Due to the evaluation, the application interface we developed is better than the existing web-based interface in terms of the usability.

Keywords: Path Planning, Public Transportation, Smartphone, User Interface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
255 Extending the Conceptual Neighborhood Graph of the Relations for the Semantic Adaptation of Multimedia Documents

Authors: Azze-Eddine Maredj, Nourredine Tonkin

Abstract:

The recent developments in computing and communication technology permit to users to access multimedia documents with variety of devices (PCs, PDAs, mobile phones...) having heterogeneous capabilities. This diversification of supports has trained the need to adapt multimedia documents according to their execution contexts. A semantic framework for multimedia document adaptation based on the conceptual neighborhood graphs was proposed. In this framework, adapting consists on finding another specification that satisfies the target constraints and which is as close as possible from the initial document. In this paper, we propose a new way of building the conceptual neighborhood graphs to best preserve the proximity between the adapted and the original documents and to deal with more elaborated relations models by integrating the relations relaxation graphs that permit to handle the delays and the distances defined within the relations.

Keywords: Conceptual Neighborhood Graph, Relaxation Graphs, Relations with Delays, Semantic Adaptation of Multimedia Documents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
254 Computing Fractal Dimension of Signals using Multiresolution Box-counting Method

Authors: B. S. Raghavendra, D. Narayana Dutt

Abstract:

In this paper, we have developed a method to compute fractal dimension (FD) of discrete time signals, in the time domain, by modifying the box-counting method. The size of the box is dependent on the sampling frequency of the signal. The number of boxes required to completely cover the signal are obtained at multiple time resolutions. The time resolutions are made coarse by decimating the signal. The loglog plot of total number of boxes required to cover the curve versus size of the box used appears to be a straight line, whose slope is taken as an estimate of FD of the signal. The results are provided to demonstrate the performance of the proposed method using parametric fractal signals. The estimation accuracy of the method is compared with that of Katz, Sevcik, and Higuchi methods. In addition, some properties of the FD are discussed.

Keywords: Box-counting, Fractal dimension, Higuchi method, Katz method, Parametric fractal signals, Sevcik method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4595
253 On the Design of Electronic Control Unitsfor the Safety-Critical Vehicle Applications

Authors: Kyung-Jung Lee, Hyun-Sik Ahn

Abstract:

This paper suggests a design methodology for the hardware and software of the electronic control unit (ECU) of safety-critical vehicle applications such as braking and steering. The architecture of the hardware is a high integrity system such thatit incorporates a high performance 32-bit CPU and a separate peripheral controlprocessor (PCP) together with an external watchdog CPU. Communication between the main CPU and the PCP is executed via a common area of RAM and events on either processor which are invoked by interrupts. Safety-related software is also implemented to provide a reliable, self-testing computing environment for safety critical and high integrity applications. The validity of the design approach is shown by using the hardware-in-the-loop simulation (HILS)for electric power steering(EPS) systemswhich consists of the EPS mechanism, the designed ECU, and monitoring tools.

Keywords: Electronic control unit, electric power steering, functional safety, hardware-in-the-loop simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3369
252 Computing the Loop Bound in Iterative Data Flow Graphs Using Natural Token Flow

Authors: Ali Shatnawi

Abstract:

Signal processing applications which are iterative in nature are best represented by data flow graphs (DFG). In these applications, the maximum sampling frequency is dependent on the topology of the DFG, the cyclic dependencies in particular. The determination of the iteration bound, which is the reciprocal of the maximum sampling frequency, is critical in the process of hardware implementation of signal processing applications. In this paper, a novel technique to compute the iteration bound is proposed. This technique is different from all previously proposed techniques, in the sense that it is based on the natural flow of tokens into the DFG rather than the topology of the graph. The proposed algorithm has lower run-time complexity than all known algorithms. The performance of the proposed algorithm is illustrated through analytical analysis of the time complexity, as well as through simulation of some benchmark problems.

Keywords: Data flow graph, Iteration period bound, Rateoptimalscheduling, Recursive DSP algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
251 An Approach for Transient Response Calculation of large Nonproportionally Damped Structures using Component Mode Synthesis

Authors: Alexander A. Muravyov

Abstract:

A minimal complexity version of component mode synthesis is presented that requires simplified computer programming, but still provides adequate accuracy for modeling lower eigenproperties of large structures and their transient responses. The novelty is that a structural separation into components is done along a plane/surface that exhibits rigid-like behavior, thus only normal modes of each component is sufficient to use, without computing any constraint, attachment, or residual-attachment modes. The approach requires only such input information as a few (lower) natural frequencies and corresponding undamped normal modes of each component. A novel technique is shown for formulation of equations of motion, where a double transformation to generalized coordinates is employed and formulation of nonproportional damping matrix in generalized coordinates is shown.

Keywords: component mode synthesis, finite element models, transient response, nonproportional damping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
250 Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: Metal machining, surface roughness, fuzzy logic, process modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 692