Search results for: academic learning
1844 Development of Active Learning Calculus Course for Biomedical Program
Authors: Mikhail Bouniaev
Abstract:
The paper reviews design and implementation of a Calculus Course required for the Biomedical Competency Based Program developed as a joint project between The University of Texas Rio Grande Valley, and the University of Texas’ Institute for Transformational Learning, from the theoretical perspective as presented in scholarly work on active learning, formative assessment, and on-line teaching. Following a four stage curriculum development process (objective, content, delivery, and assessment), and theoretical recommendations that guarantee effectiveness and efficiency of assessment in active learning, we discuss the practical recommendations on how to incorporate a strong formative assessment component to address disciplines’ needs, and students’ major needs. In design and implementation of this project, we used Constructivism and Stage-by-Stage Development of Mental Actions Theory recommendations.
Keywords: Active learning, assessment, Calculus, cognitive demand, constructivism, mathematics, Stage-by-Stage Development of Mental Action Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161843 Using Interval Trees for Approximate Indexing of Instances
Authors: Khalil el Hindi
Abstract:
This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.
Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101842 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics
Authors: Fabio Fabris, Alex A. Freitas
Abstract:
Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13701841 The Practice of Teaching Chemistry by the Application of Online Tests
Authors: Nikolina Ribarić
Abstract:
E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program, was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content, and achieved better educational results in chemistry, when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" – i.e., solving assignments in a workbook or writing assignments in worksheets.
Keywords: Chemistry class, e-learning, online test, Testmoz.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5631840 An Interactive e-Learning Management System (e-LMS): A Solution to Tanzanian Secondary Schools' Education
Authors: A. Ellen Kalinga, R. B. Burchard Bagile, Lena Trojer
Abstract:
Information and Communications Technologies (ICT) has been integrated in education in many developing and developed countries alike, but the use of ICT in Tanzanian schools is dismal. Many Tanzanian secondary schools have no computers. The few schools with computers use them primarily for secretarial services and computer literacy training. The Tanzanian education system at other levels like secondary school level has to undergo substantial transformation, underscored by the growing application of new information and communication technology. This paper presents the e-readiness survey result from secondary schools in Tanzania. The paper also suggests how Tanzania can make use of the few present ICT resources to support and improve teaching and learning functions to improve performance and acquisition of knowledge by using e-Learning Management System (e-LMS).Keywords: e-Learning, ICT, Object-Oriented, Participatorydesign.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27711839 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.
Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10781838 The Impact of E-Learning on Medication Administration of Nursing Students: What Recent Studies Say?
Authors: Z. Karakus, Z. Ozer
Abstract:
Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.
Keywords: E-Learning, Medication Administration, Nursing, Nursing Students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27611837 Pre-Service Teachers’ Assessment of Information Technology Application to Instruction
Authors: Adesanya Anuoluwapo Olusola
Abstract:
Technology has moved into the classroom, and it becomes difficult talking of achievement in and attitude to learning without making mention of it. The use of technology makes learning easy, real and practical as it motivates learners, sustains their interest and improves their attitude to learning. This study, therefore examined the pre-service teachers’ assessment of information technology application to instruction. The use of technology emphasizes and encourages active learning in the classroom. The study involved 100 pre-service teachers in the selected two (2) Colleges of Education, Nigeria. Purposive random sampling was used in selecting the participants and ex-post facto design was adopted the in which there is no manipulation of variables. Two valid and reliable instruments were used for data collection: Access Point ICT facilities and Application of ICT. The study established that pre-service teachers have less access to ICT facilities and Application of ICT in the college, apart from those students having the access outside the college. Also fewer pre-service teachers used ICT facilities on weekly and monthly bases. It was concluded that the establishment of students’ resources centres and Campus wide wireless connectivity must be implemented so as to improve and enhance students’ achievement in and attitude to learning. The time and attention devoted to learning activities and strategic specialized ICT skills and requisite entrepreneur skills should be increased so as to have easy access to information sources and be able to apply it in teaching process.
Keywords: Computer, ICT Application, Learning Facilities, Pre-Service Teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19321836 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad
Abstract:
The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22651835 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28841834 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification
Authors: Megha Gupta, Nupur Prakash
Abstract:
Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.
Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6381833 Understanding Cultural Dissonance to Enhance Higher Education Academic Success
Abstract:
This research documents a qualitative study of selected Native Americans who have successfully graduated from mainstream higher education institutions. The research framework explored the Bicultural Identity Formation Model as a means of understanding the expressions of the students' adaptations to mainstream education. This approach lead to an awareness of how the participants in the study used specific cultural and social strategies to enhance their educational success and also to an awareness of how they coped with cultural dissonance to achieve a new academic identity. Research implications impact a larger audience of bicultural, foreign, or international students experiencing cultural dissonance.Keywords: Bicultural Identity Formation Model, Cultural Dissonance, Higher Education, Student Success
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24731832 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15591831 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321830 Combining ILP with Semi-supervised Learning for Web Page Categorization
Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul
Abstract:
This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.
Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16431829 An Investigation of Final Tests of Translation as Practiced in Iranian Undergraduate English Translation Program
Authors: Hossein Heidari Tabrizi, Azizeh Chalak
Abstract:
The present study examined how translation teachers develop final tests as measures for checking on the quality of students’ academic translation in Iranian context. To achieve this goal, thirty experienced male and female translation teachers from the four types of the universities offering the program were invited to an in-depth 30-minute one-session semi-structured interview. The responses provided showed how much discrepancy exists among the Iranian translation teachers (as developers of final translation tests), who are least informed with the current translation evaluation methods. It was also revealed that the criteria they use for developing such tests and scoring student translations are not theory-driven but are highly subjective, mainly based on their personal experience and intuition. Hence, the quality and accountability of such tests are under serious question. The results also confirmed that the dominant method commonly and currently practiced is the purely essay-type format. To remedy the situation, some suggestions are in order. As part of the solution, to improve the reliability and validity of such tests, the present summative, product-oriented evaluation should be accompanied with some formative, process-oriented methods of evaluation. Training the teachers and helping them get acquainted with modern principles of translation evaluation as well as the existing models, and rating scales does improve the quality of academic translation evaluation.Keywords: Iranian universities, students’ academic translations, translation final tests, undergraduate translation programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20281828 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041827 Authentic Learning for Computer Network with Mobile Device-Based Hands-On Labware
Authors: Kai Qian, Ming Yang, Minzhe Guo, Prabir Bhattacharya, Lixin Tao
Abstract:
Computer network courses are essential parts of college computer science curriculum and hands-on networking experience is well recognized as an effective approach to help students understand better about the network concepts, the layered architecture of network protocols, and the dynamics of the networks. However, existing networking labs are usually server-based and relatively cumbersome, which require a certain level of specialty and resource to set up and maintain the lab environment. Many universities/colleges lack the resources and build-ups in this field and have difficulty to provide students with hands-on practice labs. A new affordable and easily-adoptable approach to networking labs is desirable to enhance network teaching and learning. In addition, current network labs are short on providing hands-on practice for modern wireless and mobile network learning. With the prevalence of smart mobile devices, wireless and mobile network are permeating into various aspects of our information society. The emerging and modern mobile technology provides computer science students with more authentic learning experience opportunities especially in network learning. A mobile device based hands-on labware can provide an excellent ‘real world’ authentic learning environment for computer network especially for wireless network study. In this paper, we present our mobile device-based hands-on labware (series of lab module) for computer network learning which is guided by authentic learning principles to immerse students in a real world relevant learning environment. We have been using this labware in teaching computer network, mobile security, and wireless network classes. The student feedback shows that students can learn more when they have hands-on authentic learning experience.
Keywords: Mobile computing, android, network, labware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20741826 Learning Factory for Changeability
Authors: Dennis Gossmann, Habil Peter Nyhuis
Abstract:
Amongst the consistently fluctuating conditions prevailing today, changeability represents a strategic key factor for a manufacturing company to achieve success on the international markets. In order to cope with turbulences and the increasing level of incalculability, not only the flexible design of production systems but in particular the employee as enabler of change provide the focus here. It is important to enable employees from manufacturing companies to participate actively in change events and in change decisions. To this end, the learning factory has been created, which is intended to serve the development of change-promoting competences and the sensitization of employees for the necessity of changes.Keywords: Changeability, human resources, learning factory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17231825 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671824 Generalized Exploratory Model of Human Category Learning
Authors: Toshihiko Matsuka
Abstract:
One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13851823 Relational Representation in XCSF
Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh
Abstract:
Generalization is one of the most challenging issues of Learning Classifier Systems. This feature depends on the representation method which the system used. Considering the proposed representation schemes for Learning Classifier System, it can be concluded that many of them are designed to describe the shape of the region which the environmental states belong and the other relations of the environmental state with that region was ignored. In this paper, we propose a new representation scheme which is designed to show various relationships between the environmental state and the region that is specified with a particular classifier.Keywords: Classifier Systems, Reinforcement Learning, Relational Representation, XCSF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13231822 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka
Authors: Manuela Nayantara Jeyaraj
Abstract:
Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.
Keywords: Digital divide, digital learning, digitization, Sri Lanka, teaching methodologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12011821 Start Talking in an e-Learning Environment: Building and Sustaining Communities of Practice
Authors: Melissa C. LaDuke
Abstract:
The purpose of this targeted analysis was to identify the use of online communities of practice (CoP) within e-learning environments as a method to build social interaction and student-centered educational experiences. A literature review was conducted to survey and collect scholarly thoughts concerning CoPs from a variety of sources. Data collected included best practices, ties to educational theories, and examples of online CoPs. Social interaction has been identified as a critical piece of the learning infrastructure, specifically for adult learners. CoPs are an effective way to help students connect to each other and the material of interest. The use of CoPs falls in line with many educational theories, including situated learning theory, social constructivism, connectivism, adult learning theory, and motivation. New literacies such as social media and gamification can help increase social interaction in online environments and provide methods to host CoPs. Steps to build and sustain a CoP were discussed in addition to CoP considerations and best practices.
Keywords: Community of practice, knowledge sharing, social interaction, online course design, new literacies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251820 The Students' Learning Effects on Dance Domain of Arts Education
Authors: Sheng-Min Cheng
Abstract:
The purpose of this study was to explore the learning effects on dance domain in Arts Curriculum at junior and senior high levels. A total of 1,366 students from 9th to 11th grade of different areas from Taiwan were administered a self-designed dance achievement test. Data were analyzed through descriptive analysis, independent sample t test, one-way ANOVA and Post hoc comparison analysis using Scheffé Test. The results showed (1) female studentsKeywords: arts education, dance learning effects, secondary level students, dance talented students
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21101819 A Primer to the Learning Readiness Assessment to Raise the Sharing of e-Health Knowledge amongst Libyan Nurses
Authors: Mohamed Elhadi M. Sharif, Mona Masood
Abstract:
The usage of e-health facilities is seen to be the first priority by the Libyan government. As such this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using ehealth services in nursing education.
Keywords: Libyan nurses, e-Learning readiness, e-Health.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21721818 Machine Learning in Production Systems Design Using Genetic Algorithms
Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli
Abstract:
To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16291817 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks
Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari
Abstract:
This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.Keywords: Iterative learning control, spherical tanks, nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12491816 Improving Learning Abilities and Inclusion through Movement: The Movi-Mente© Method
Authors: Ivan Traina, Luigi Sangalli, Fabio Tognon, Angelo Lascioli
Abstract:
Currently, challenges regarding preschooler children are mainly focused on a sedentary lifestyle. Also, motor activity in infancy is seen as a tool for the separate acquisition of cognitive and socio-emotional skills rather than considering neuromotor development as a tool for improving learning abilities. The paper utilized an observational research method to shed light on the results of practicing neuromotor exercises in preschool children with disability as well as provide implications for practice.
Keywords: Children with disability, learning abilities, inclusion, neuromotor development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5791815 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching
Authors: Enrique Barra, Aldo Gordillo, Juan Quemada
Abstract:
This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a videoconference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.
Keywords: E-learning, platform, authoring tool, science teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3521